nature04645[1]
UiO-66BiVO_(4)复合光催化剂的制备及其对四环素的光解

中国环境科学 2021,41(3):1162~1171 China Environmental Science UiO-66/BiVO4复合光催化剂的制备及其对四环素的光解綦毓文1,魏砾宏1*,石冬妮1,蒋进元2,烟征1(1.沈阳航空航天大学能源与环境学院,辽宁沈阳 110112;2.中国环境科学研究院,北京 100012)摘要:通过两步溶剂热法成功制备了UiO-66/BiVO4复合光催化材料,考察其对四环素(TC)的光催化降解性能.在模拟可见光下,当锆(Zr):铋(Bi)物质的量投料比为2:1时,对TC的光解效果最好(85.8%).对TC的总去除率分别比纯UiO-66和纯BiVO4提高27.1%和23.5%,降解速率是纯BiVO4的47.9倍.通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、紫外可见漫反射(UV-vis DRS)等对所制备的纳米光催化剂进行结构、形貌、组成及光电性能表征分析.结果表明:UiO-66与BiVO4紧密结合形成II型异质结,复合材料性能的提升归因于比表面积的和光生载流子分离率的提升及孔隙结构的改善.关键词:UiO-66/BiVO4;异质结;光催化;四环素降解中图分类号:X703 文献标识码:A 文章编号:1000-6923(2021)03-1162-10Preparation of UiO-66/BiVO4 composite photocatalyst and its photodegradation of tetracycline. QI Yu-wen1, WEI Li-hong1*, SHI Dong-ni1, JIANG Jin-yuan2, YAN Zheng1 (1.College of Energy and Environment, Shenyang Aerospace University, Shenyang 110122, China;2.Chinese Research Academy of Environmental Sciences, Beijing 100012, China). China Environmental Science, 2021,41(3):1162~1171Abstract:The UiO-66/BiVO4 composite photocatalytic material was successfully preparated by a two-step solvothermal method, and its photocatalytic degradation performance for tetracycline (TC) was investigated. Under simulated visible light, when the amount of substance about zirconium(Zr): bismuth(Bi) was 2:1, the photolysis effect of TC was the best (85.8%). Its total removal rate of TC was increased by 27.1% and 23.5% compared to pure UiO-66 and pure BiVO4, respectively. The degradation rate was 47.9times that of pure BiVO4. The structure, morphology and composition of the prepared nano-photocatalyst by X-ray diffractometer (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflection (UV-vis DRS) and photoelectric performance characterization analysis. The results showed that UiO-66 and BiVO4 were tightly combined to form II heterojunction. The improvement of composite material performance was attributed to improvements in various aspects, including specific surface area, photogenerated carrier separation rate, and pore structure.Key words:UiO-66/BiVO4;heterojunction;photocatalysis;Tetracycline degradation抗生素作为重要的药物成分,已经广泛用于人类医学和兽医学[1-2].中国是世界上最大的抗生素生产国和使用国,2013年,我国抗生素使用量为16.2万吨,约占全球抗生素使用量的一半[3].抗生素的大量使用导致其通过各种途径进入到污水处理厂[4]、地表水[5]等环境介质中.据有关报道,制药和医院废水中的抗生素浓度最高可达100~ 500mg/L[6],我国海河流域沉积物中四环素类平均含量为2783.2ng/g[7].抗生素的滥用导致水体中的细菌产生抗药性.根据世界卫生组织的预测,到2050年,因“耐药性”导致细菌感染而引起的死亡人数将超过癌症的致死人数[8].因此,水环境中的抗生素因其溶解性、持久性和高毒性而成为全球性的环境问题.电化学、臭氧氧化法等高级氧化技术是现行处理难降解有机废水的主要技术,但因存在能耗高、运行费用高等缺陷而受到限制.近年来,光催化技术作为一种绿色、高效的手段被用于抗生素废水的处理,引起了广泛关注.钒酸铋(BiVO4)作为一种廉价、环境友好型催化剂,且具有适宜的禁带宽度(约2.4eV),在可见光下对难降解有机物展现出了良好的降解性能[9-10],已被证明是一种具有良好应用前景的可见光催化剂[11].由于受到反应位点少及光生载流子效率低的限制[12],BiVO4作为光催化剂尚不能达到较好的光催化效果而无法满足实际应用的需要.研究者采用了多种方法对其改性,其中构建异质结作为一种提高收稿日期:2020-07-27基金项目:沈阳市科技局“中青年科技创新人才计划”(RC190169);辽宁省教育厅“服务地方项目”(JYT19011)* 责任作者, 教授,*****************.cn3期綦毓文等:UiO-66/BiVO4复合光催化剂的制备及其对四环素的光解 1163催化剂光电转换性能的有效方法被广泛使用[13-14].半导体异质结包含TypeⅠ型(内嵌型)、TypeⅡ型(交错型)和TypeⅢ型(错开型),Ⅱ型异质结中的半导体单元因具有载流子相互传递的特性而被广泛研究.宋等[15]制备出具有II型异质结的BiOCl/ BiVO4复合纳米片,经4h光催化后对10mg/L的RhB的降解率达96%.杜等[16]研制的BiVO4/WO3异质结复合膜经3h可见光辐射后对诺氟沙星有较好的降解效果.然而传统的铋基双半导体异质结复合催化剂仍存在处理时间长、催化剂投加量大等制约工程应用的弊端,需要进一步研究提高其表面积及载流子传输能力等性能,以期加快其进一步实际应用的进程.近十几年来,金属有机框架(MOFs)作为一种新型的多孔晶体材料引起了较多关注[17-18],其中锆(Zr)基MOFs[19]不仅具有多活性位点、高比表面积等MOFs的通用特性,还兼具强可修饰性[20]、强稳定性[21]的特点,在吸附[22]、催化[23]、传感[24]等领域被广泛应用.其中UiO-66的结构以Zr6O4(OH)4原子簇作为节点[25],与12个BDC2–配位组装而成. UiO-66中含有两种笼状结构,直径约0.8nm的正四方体笼和直径约1.1nm的正八面体笼,丰富的孔道及笼状结构使其具有很高的比表面积(600~ 1600m2/g)[26].因此,UiO-66作为Zr基直接半导体[27] MOFs的典型代表,在光催化研究中数见不鲜[28].但是,纯相UiO-66光致电子-空穴对分离率低以及光利用能力差[29],从而导致其光催化性能有限.为了克服上述缺点,许多研究者通过UiO-66与其他半导体材料构建异质结来提升其光催化性能[30-31].因此,将多活性位点的UiO-66与廉价、具有可见光响应的BiVO4相结合可能是提高材料光催化性能和实际应用性的有效方法.然而,目前对UiO-66/ BiVO4复合催化剂的构建及其可见光光催化降解机制的系统研究还鲜有报道.本研究将载流子复合率高的BiVO4锚定在UiO-66周围及表面,形成能级及尺寸匹配的异质结,提升复合催化剂的活性位点数和光生载流子分离率,同时增强复合催化剂对四环素的吸附和光催化降解能力.以期为新型铋系MOFs可见光光催化剂的设计和光催化机理的深入研究提供参考. 1材料与方法1.1主要试剂与仪器1.1.1试剂本实验中使用的试剂和溶剂均为分析纯,无需进一步纯化,购自上海阿拉丁生化科技股份有限公司.五水硝酸铋[Bi(NO3)3·5H2O]、偏钒酸铵(NH4VO3)、乙二醇(C2H6O2)用于合成BiVO4;二甲基甲酰胺(C3H7NO)、氯化锆(ZrCl4)、对苯二甲酸(C8H6O4)、苯甲酸(C7H6O2)用于合成UiO-66;实验用水为娃哈哈纯净水.1.1.2仪器 AHD500W型光化学反应器,深圳中图博安光电有限公司;紫外-可见分光光度计UV2000,上海精密科学仪器有限公司;X射线衍射仪(XRD),D8-Advance,BrukerAXS,Germany;场发射扫描电镜(SEM/EDS),∑IGMA,卡尔蔡司(上海)管理有限公司,电压15KV,观察催化剂形貌;全自动比表面积分析仪(BET),Quantachrome AUTOSORB IQ,USA;紫外-可见-近红外分光光度计(DRS),Agilent Cary 5000,Australia;X射线光电子能谱仪(XPS),紫外电子能谱(UPS),KRATOS Axis Ultra, England.1.2UiO-66和UiO-66/BiVO4的制备1.2.1UiO-66的制备准确称量5mmol的ZrCl4及30当量(相对于ZrCl4)的C7H6O2分别超声完全溶解于40mL和25mL二甲基甲酰胺(DMF)中,分别记为溶液A和B.随后将5mmol C8H6O4加入A溶液中超声至完全溶解,记为溶液C.待溶液C磁力搅拌20min后将溶液B逐滴加入搅拌40min后转移至100mL衬底为聚四氟乙烯的水热反应釜中,120℃恒温24h.待反应溶液冷却后,离心分离并用DMF和无水甲醇清洗多次去除杂质,干燥研磨制得白色固体粉末.1.2.2 UiO-66/BiVO4的制备称取2mmol Bi(NO3)3·5H2O完全溶解于10mL乙二醇中,记为溶液D.称取2.4mmol的NH4VO3溶解于15mL纯净水中,记为溶液E.为了研究不同复合比例对产物光催化性能的影响,在相同Bi3+(2mmol)投加量下,分别称取1.1094g、0.5547g、0.2774g的UiO-66超声分散于50mL乙二醇中,即溶液中的Zr含量分别为4mmol、2mmol和1mmol,记为溶液F.将溶液D加入F中充分混合,随后将溶液E逐滴加入搅拌1h后移入100mL衬底为聚四氟乙烯的水热反应釜中,1801164 中国环境科学 41卷℃恒温12h,待反应溶液冷却后,离心分离并用无水乙醇和纯净水清洗多次去除杂质,干燥研磨制得黄色固体粉末.最后将制得的Zr:Bi物质的量投料比分别为1:0.5、1:1、1:2的复合催化剂分别编号为UB-0.5、UB-1、UB-2.1.3UiO-66/BiVO4的光催化性能测试将90mg所制备的光催化剂加入到300mL浓度为10mg/L的四环素(TC)溶液中.为了保证在光催化降解实验之前保持吸附-解吸平衡,将溶液在黑暗条件下搅拌90min.随后将样品放置于500W的氙灯下(滤光片滤除λ<420nm紫外光)进行光催化降解,光强(50±5)mW/cm2.在光催化过程中,间隔抽取5mL样品,通过三次离心去除催化剂.采用紫外可见分光光度计测量357nm处的吸光度值,通过标准曲线确定TC浓度.2结果与讨论2.1XRD分析XRD分析可以提供所合成样品的组成和晶相信息.UiO-66、BiVO4及UB-X(X为Zr:Bi物质的量投料比,数值为0.5、1、2)的XRD图谱如图1所示.纯UiO-66在7.34°和8.46°出现特征衍射峰,与之前的报道相同[21-32],证明UiO-66的成功合成.纯BiVO4在18.88°、28.86°、30.56°出现特征衍射峰,对应的晶面指数分别为(011)、(121)、(040),与单斜白钨矿型BiVO4的标准卡片(JCPDS:00-14-0688)吻合.当BiVO4与UiO-66复合后,其衍射峰相对于纯BiVO4没有显著差别,UiO-66在7.34°的特征峰并没有消失,且衍射峰强度随着BiVO4复合量的增加而减少,这可能是复合材料中UiO-66含量相对少所致.UB-X中均保留了BiVO4和UiO-66的特征峰,说明UiO-66/ BiVO4复合材料成功制备.根据文献[33],Bi3+与UiO-66的官能团(-OH和-COOH)之间存在配位关系.因此,Bi3+首先通过配位键吸附在UiO-66的表面上,然后由过量VO3-转化的VO43-逐渐与UiO-66表面固定的Bi3+结合形成化学键,成键的BiVO4分子在溶剂热环境下充分结晶生长成与UiO-66尺寸匹配的BiVO4颗粒,最终形成UiO-66/BiVO4复合催化剂.此外,在27.2°出现Bi单质的衍射峰,由于在这种典型的多元醇反应过程中,乙二醇既是溶剂又是还原剂.微量乙二醇在溶剂热反应过程中首先分解生成中间体甲醛再将Bi3+还原为Bi单质,最终生成微量粒径为150nm左右的球形Bi颗粒(图2(b)),这与先前研究报道的一致,反应见式(1)和式(2)[34-35].HOCH2CH2OH→CH3CHO+H2O (1) 2Bi3++6CH3CHO→3CH3CO–OCCH3+2Bi+6H+ (2)1020304050 60 7080(4)(121)UiO-66UB-2UB-1UB-0.52θ(°)BiVO4(11)Bi图1 样品的XRD谱图Fig.1The XRD patterns of the samples(e1) (e2)(e3) (e4) (e5)图2 UiO-66(a), BiVO4(b), UB-0.5(c)的SEM图;UB-0.5(d~e)的EDS分析Fig.2 SEM images of UiO-66(a), BiVO4(b), UB-0.5(c); theEDS analysis of UB-0.5(d~e)3期綦毓文等:UiO -66/BiVO 4复合光催化剂的制备及其对四环素的光解 11652.2 形貌分析为了进一步确定复合材料中UiO -66与BiVO 4的结合方式,对样品进行表观形貌分析(SEM)和元素分析(EDS).图2为纯UiO -66、纯BiVO 4及UB -0.5的SEM 图.在30当量的苯甲酸调节下,结晶良好的纯UiO -66为尺寸800-1100nm 的正八面体(图2a).纯BiVO 4为长度在500-1000nm 的纺锤状颗粒(图2b).负载前后UiO -66与BiVO 4的形貌和颗粒尺寸相似,纺锤状BiVO 4紧密结合在UiO -66周围,另外如图2d 中的EDS 点谱图像显示,UiO -66表面能检测到BiVO 4的所有元素,即表明一些未结晶完全的BiVO 4颗粒分散在八面体UiO -66表面(图2c),说明BiVO 4与UiO -66复合后在界面处形成了异质结结构.UB -0.5的EDS 分层图像如图2(e)所示,组成UB - 0.5的Bi 、O 、V 、Zr 、C 元素分布在整个复合颗粒中,且组成BiVO 4的Bi 、O 、V 元素在外侧显示突出,组成UiO -66的Zr 、C 元素主要集中在对应的中心八面体处,与SEM 图像2c 的结果一致.进一步表明了异质结的成功构建. 2.3 XPS 及UPS 分析通过XPS 进一步分析研究了UiO -66/BiVO 4复合材料的表面元素化学态.图3(a)为BiVO 4和UB - 0.5的完整测量光谱.相较于单一BiVO 4,当UiO -66与BiVO 4复合后,出现Zr 的衍射峰,表明Bi 、Zr 、C 、V 、O 存在于UiO -66/BiVO 4异质结的表面上,这与EDS 的结果一致.如图3(b)中显示,BiVO 4主要在Bi 4f 7/2的159.2eV 和Bi 4f 5/2的164.5eV 附近处有两个对称峰,为Bi 3+在BiVO 4中的典型值[36].与原始BiVO 4相比,UB -0.5中的Bi 4f 的主要拟合峰的结合能升高,分别由BiVO 4中的159.2eV 和164.5eV 变为UB -0.5中的159.4eV 和164.7eV ,表明的Bi 3+的价态因UB - 0.5异质结中的电荷转移而变低,即电子由BiVO 4向UiO -66转移,与电荷转移机制图8一致.此外,Bi 的XPS 光谱表明UB -0.5具有更大的半峰全宽(FWHM),这是由于BiVO 4颗粒相对较小而增强的无序性和化学不均一性所致,表明大表面积的UiO -66可以有效地稳定BiVO 4颗粒并抑制聚集[37].图3(c)显示了V 元素与UiO -66结合前后的结合能同样发生了变化,且结合后的结合能移至更低的位置.UB -0.5的O1s 峰可以拟合为图3(d)中530.27eV ,531.44eV 和532.88eV 的三个峰.其中530.27eV 处的峰属于Bi -O 和Zr -O 键[38-39].531.44eV 处的峰则与表面吸附氧有关,可归因于BiVO 4表面的氧空位[40],而532.88eV 处的峰与表面羟基有关[41].对于UB -0.5的C1s 的光谱(图3(e)),约284.90eV 、286.30eV 和288.60eV 处的三个结合能峰分别属于UiO -66的C=C 、C -C 和C=O 基[36].UB - 0.5中Zr 3d 光谱(图3(f))在184.58和182.18eV 处显示典型的Zr 3d 3/2和3d 5/2峰,这些峰源自[Zr 6O 4(OH)4(CO 2)12]集群[42].综上,XPS 结果进一步提供了UiO -66/BiVO 4异质结构形成的证据,且UiO -66与BiVO 4相之间的界面结合紧密.图4显示了样品的UPS 结果.BiVO 4和UiO -66样品的VB(价带)水平为2.08eV 和3.77eV ,分别与报道的实验数据2.10eV [11]和3.50eV [43]相符.与BiVO 4相比,UiO -66/BiVO 4异质结的VB 电位为1.76eV ,负移动为0.32eV ,这证明表面部分的UiO -66/BiVO 4异质结可以向能带位置的负方向移动,增强了将氧气转化为超氧自由基的能力.1000 800 600 4002000强度(a) Survey UB-0.5BiVO 4Z r 3p B i 4fZ r 3d B i 5dC 1sB i 4dV 2p O 1sO K L LO K L LO 1s B i 4dB i 4pV 2p C 1sB i 4fB i 5d结合能(eV)170168166164162160158 156结合能(eV)1166中 国 环 境 科 学 41卷强度526 524522 520 518 516514512510(c) V2p V2p 1/2524.4 V2p 3/2517.0BiVO 4516.9524.1UB-0.5结合能(eV)538536534532530528 526结合能(eV)295 290 285 280275结合能(eV)192190188186184182180 178 176结合能(eV)图3 样品的XPS 光谱.(a)全扫描,(b)Bi 4f,(c)V 2p,(d)O 1s,(e)C 1s,(f)Zr 3dFig.3 The XPS spectrum of the sample. Typical wide survey(a), and high resolution XPS spectrum of Bi 4f(b);V 2p(c);O 1s(d);C1s(e);Zr 3d(f)图4 样品的UPS 结果 Fig.4 The UPS results of sample2.4 比表面积及孔径分析表1和图5是催化剂在77K 下的N 2吸附-脱附测试结果.对于纯UiO -66纳米颗粒,N 2吸附-脱附等温线属于无滞后环的I 型吸附-脱附等温线,这是微孔材料所具有的特定吸附-脱附等温线类型[44],且比表面积为1502.1m 2/g,其中微孔面积为1372.00m 2/g,占总比表面积的91.34%.对于复合材料UB -0.5,N 2吸附-脱附等温线由I 型转变为Ⅳ型,在较高的相对压力下出现小的回滞环(图5(a)),表明介孔的出现主要是由于BiVO 4纳米粒子在UiO -66表面堆积而引起的,如SEM 图2(c)所示.随着BiVO 4的引入,比表面积值从原始UiO -66的1502.1m 2/g 降为UB -0.5的256.3m 2/g,孔体积值从原始UiO -66的0.58cm 3/g 降为UB -0.5的0.26cm 3/g.尽管如此,其数值仍远高于纯BiVO 4纳米颗粒的17.8m 2/g 和0.05cm 3/g.相似地,在图5(b)~(c)的孔径分布曲线中,UiO -66的孔径主要分布在0.78nm 和1.10nm 附近,为八面体UiO -66的典型值,BiVO 4的孔径主要分布在5.69-14nm.在UiO -66与BiVO 4成功复合后,微孔和介孔的分布曲线分别和UiO -66与BiVO 4相似,表明UiO -66与BiVO 4分别主导了UB -0.5的微孔和介孔结构.因为在UB -0.5的复合过程中,先加入的UiO -66载体影响了的结晶过程,原先纺锤状BiVO 4的形貌发生改变(图2(b)~(c)),导致原来介孔结构发生改变而呈现出新的孔径分布,使得BiVO 4的孔径主要分布在3.81nm 附近((图5(d)).当BiVO 4复合分散在UiO -66的表面后,UiO -66的部分空隙被覆盖或堵塞((图2(c)),导致UB -0.5的微孔孔径主要分布在0.43nm.相应地,平均孔径为13.11nm 的BiVO 4负载到平均孔径为1.77nm 的UiO -66表面后,形成了平均孔径为4.36nm 的UB -0.5复合材料.表明UiO -66与BiVO 4复合之后,使孔径结构向更有利于提高吸附速率和3期綦毓文等:UiO -66/BiVO 4复合光催化剂的制备及其对四环素的光解 1167容量的方向发展,具有显著改善单一材料的表面吸附性能的潜力.0 0.2 0.4 0.6 0.81.01234567891000.20.40.60.81.01.2 1.100.78(b)孔体积变化率(d V /d r )孔径(nm)UiO-66吸附量(c m 3/g )相对压力(P/P 0)12345678910-0.020.020.040.060.080.100.120.14UB-0.53.810.43孔体积变化率(d V /d r )孔径(nm)(d)0 510 15 20 2530350.002 0.004 0.006 0.008 0.010 (c)BiVO 4孔体积变化率(d V /d r )孔径(nm)7.45图5 合成样品的BET 曲线(a)及孔径分布图UiO -66(b); BiVO4(c); UB -0.5(d)Fig.5 BET curve(a) and pore size distribution of synthetic samples. UiO -66(b); BiVO4(c); UB -0.5(d) 表1 样品的比表面积、孔径和孔体积Table 1 S BET , average pore size and pore volume of samples样品 比表面积 (m 2/g)微孔面积 (m 2/g)平均孔径 (nm)孔体积 (cm 3/g) UiO -661502.1 1372.00 1.770.58BiVO 417.8 0.18 13.11 0.05UB -0.5 256.3 107.73 4.36 0.262.5 UV -vis DRS 漫反射分析光催化剂对可见光的吸收能力是决定着其光催化性能的重要因素,因此对纯UiO -66、纯BiVO 4及复合材料UB -0.5进行UV -vis DRS 漫反射表征.如图6(a)所示,纯UiO -66在380~780nm 可见光区吸收能力微弱,纯BiVO 4具有较强的吸收能力,复合材料UB -0.5的吸收能力相较于纯UiO -66明显提升,特别是在380~500nm 尤为明显.另外,根据Kubelka -Munk 方法,利用式(3)可计算得到BiVO 4、UiO -66和UB -0.5的带隙能[36].2()n/g Ahv A hv E =− (3)式中:α,h ,ν,E g 和A 分别为吸收系数、以eV 为单位的普朗克(Planck)常数、光频率、带隙宽度和样品在吸收边处的吸光系数.同时,由于UiO -66和BiVO 4属于直接带隙半导体,因此n 取值为l.将各参数代入式(3),计算得到纯BiVO 4、UiO -66和UB -0.5的带隙能分别为2.34eV 、2.38eV 和4.00eV,如图6(b)所示.UB -0.5的带隙宽度相较于UiO -66明显减小,略高于纯BiVO 4,与图6(a)中光吸收曲线一致.说明UB -0.5复合光催化剂易于被可见光激发产生光生载流子,提高量子效率.通过图4中的UPS 分析可知,BiVO 4与UiO -66的VB 位置分别为2.08eV 、3.77eV.从图6的Tauc 图可知BiVO 4与UiO -66的Eg 分别为2.34eV 和4.00eV.CB(导带)位置可以由式(4)计算得出:E CB = E g - E VB(4)式中:E VB 代表半导体价带电位,eV;E CB 代表半导体导带电位,eV;E g 代表半导体带隙能,eV.计算出知BiVO 4与UiO -66的E g 分别为2.34eV 和4.00eV.1168 中 国 环 境 科 学 41卷BiVO 4与UiO -66的CB 位置分别为-0.26eV 和-0.23eV.300 400 500 600 700 800UiO-66UB-0.5 BiVO 4 强度波长(nm) (a)1.52.0 2.53.0 3.54.04.5带隙宽度(e V )结合能(eV)图6 样品的DRS 光谱图(a)及相应的Tauc 图(b) Fig.6 The DRS spectrum (a) and (b)corresponding Taucdiagram of Sample2.6 光催化性能通过在模拟可见光照射下抗生素TC 的降解来评判催化剂的光催化性能,结果如图7所示.如图7(a)所示,纯UiO -66在暗吸附90min 后对TC 的吸附率为51.1%,明显低于其他样品.但由于曲线斜率较大,可能尚未达到吸附平衡.为此,开展了更长时间的暗吸附实验,发现12h 后UiO -66对TC 达到吸附平衡,总吸附去除率为88.14%.纯UiO -66对TC 的吸附效率低主要因为理论分子动力学直径为1.26nm 的TC 分子[45]难以进入UiO -66中1.1nm 左右八面体笼孔道[46],并造成部分堵塞.纯BiVO 4及复合材料UB - X (X =0.5、1、2)在暗吸附第90min 达到吸附平衡,对TC 的吸附去除率分别为59.6%、68.7%、61.5%、61.6%.其中复合材料UB -0.5的吸附能力明显高于纯UiO -66,主要由于亲水性良好的BiVO 4[47]的引入极大的改善了孔径结构并提高了单一UiO -66的表面亲水性能,在比表面积减少的情况下反而加速了对液相中TC 的吸附.UB -0.5对TC 的吸附能力皆高于纯BiVO 4、UB -1和UB -2,主要由于高比表面积和孔隙率的UiO -66提供了大量的吸附位点.因此,材料对目标污染物的吸附,不仅仅依赖于高比表面积提供的多活性位点,材料的相对孔径结构和亲水性质也是非常关键的因素.UB -0.5对TC 的强吸附能力主要归因于复合材料UB -0.5良好的亲水性、较大的比表面积和适当的孔径.-90-60-300 30 60 900.10.20.30.40.50.60.70.80.91.0C /C 0时间(min)2040 60 8000.20.40.60.81.0l n (C 0/C )时间(min)图7 模拟可见光下催化剂对TC 的去除曲线(a)及降解速率曲线(b)Fig.7 The removal curve and degradation rate curve ofcatalyst for TC under visible light经90min 可见光照射后,空白实验表明TC 的直接光解可以忽略不计.纯UiO -66对TC 的总去除率为58.7%,主要因为90min 的吸附时间,尚未达到吸附平衡.相同条件下,纯BiVO 4及复合材料UB -X(X= 0.5、1、2)对TC 的总去除率分别为62.3%、85.8%、72.6%、73.2%.其中,纯BiVO 4在开灯后去除率变化微小,说明纯的BiVO 4对TC 光降解作用微弱.结果3期綦毓文等:UiO-66/BiVO4复合光催化剂的制备及其对四环素的光解 1169表明,复合材料对TC的总去除率均高于单一催化剂,其中UB-0.5异质结光催化剂最高为85.8%,比纯UiO-66和纯BiVO4分别提升27.1%和23.5%.结合BET、DRS等表征结果,显然UB-0.5对TC降解效率的提升归因于复合材料催化活性位点的增多、可见光吸收能力的增强和形成异质结复合材料后光生载流子效率的提高.研究TC的光催化降解动力学,其结果如图7(b)所示.拟一阶动力学模型很好地拟合了所有光催化剂对TC降解的动力学曲线,空白、纯UiO-66、纯BiVO4和UB-X(X=0.5、1、2)的速率常数为分别为1.19×10−4min-1、2.32×10−3min-1、1.59×10−4min-1、7.61×10−3min-1、3.74×10−3min-1和3.53×10−3min-1.毫无疑问,UB-0.5异质结的速率常数最高,分别是UB-1和UB-2速率常数的2.03和2.16倍,是纯BiVO4的47.9倍.显然,异质结复合催化剂的成功制备,极大的升高了对TC的可见光光降解速率.2.7光催化机理探讨为了探究异质结体系提高光催化活性的机制,根据我们的实验结果,提出了UiO-66/BiVO4复合材料在可见光下的光催化反应机理.当UiO-66与BiVO4复合时,复合材料的能带结构发生变化,在两个半导体之间的界面处形成稳定的异质结构.通过考虑样品的带隙和VB水平,可以绘制UiO-66/ BiVO4异质结的能带排列图.如图8所示,当复合材料暴露于可见光时,BiVO4产生电子-空穴对,由于II型异质结的形成且BiVO4的CB电势比UiO-66更负,光生电子易于从BiVO4层的CB移动到高比面积的UiO-66的CB.同时,受到VB电势的限制,两者VB层不容易发生空穴转移,从而抑制了光生电子-空穴对的复合.理论上,只有CB电势低于氧气(O2)转变为超氧自由基(·O2-)的电势(+0.13eV),溶解氧才能与CB上的电子结合生成·O2-[48],故迁移到BiVO4表面的电子和迁移到UiO-66表面的电子都能与吸附氧和溶解氧结合产生·O2-对四环素进行降解.同样,只有当电势大于·OH/H2O的转化电势(+2.68eV),光致空穴才能氧化吸附的水分子产生羟基自由基[49],故BiVO4的CB边的空穴直接对四环素氧化降解,而没有将吸附的H2O分子转化为·OH后再降解的转化过程.综上,超氧自由基和空穴是对四环素进行降解的主要活性物种,催化降解性能的提高主要归因于UiO-66/BiVO4异质结的成功构建.一方面,被激发的载流子得以有效分离,从而减少了电子-空穴对的重组并延长了载流子的寿命;另一方面,UiO-66的引入大大的增加了吸附位点和催化位点数量,进而提高了光催化降解性能.图8 UiO-66/BiVO4异质结的光催化机理示意Fig.8 Schematic diagram of the photocatalytic mechanism ofUiO-66/BiVO4 heterojunction3结论3.1采用两步溶剂热法成功制备了UiO-66/BiVO4异质结光催化剂.研究表明UiO-66的加入量对该复合材料的光学性能、吸附及光催化降解TC的性能有显著的影响.其中复合材料UB-0.5的可见光光催化活性最高,对TC的光解率达85.8%,比纯UiO-66和纯BiVO4分别提高27.1%和23.5%,降解速率是纯BiVO4的47.9倍.3.2能级匹配异质结复合材料的成功构建使光生载流子在界面电场的作用下迅速迁移,抑制了光生电子-空穴对的复合,延长了载流子寿命;其次,相较于单一材料,UB-0.5具有更高的比表面积和光吸收能力,提升了处理效率和光利用率.从而二者共同增强了复合催化剂的光催化活性.3.3根据能带隙、UPS表征结果,向负方向移动的异质结导带加强了氧气向超氧自由基的转化,进而有利于四环素的催化降解,且超氧自由基和空穴是降解TC的主要活性物种.参考文献:[1] Tang L, Zeng G M, Shen G L, et al. Rapid Detection of Picloram inAgricultural Field Samples Using a Disposable I mmunomembrane- Based Electrochemical Sensor [J]. Environmental Science & Technology, 2008,42(4):1207-1212.1170 中国环境科学 41卷[2] Yang Z H, Xu R, Zheng Y, et al. Characterization of extracellularpolymeric substances and microbial diversity in anaerobic co- digestion reactor treated sewage sludge with fat, oil, grease: biomass, bioenergy, biowastes, conversion technologies, biotransformations, production technologies [J]. Bioresource Technology, 2016,212:164- 173.[3] Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation ofantibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J].Environmental Science & Technology, 2015,49(11):6772-6782.[4] Gao L H, Shi Y L, Li W H, et al. Occurrence of antibiotics in eightsewage treatment plants in Beijing, China [J]. Chemosphere, 2012, 86(6):665-671.[5] Liu X H, Lu S Y, Guo W, et al. Antibiotics in the aquatic environments:A review of lakes, China [J]. Science of the Total Environment, 2018,627:1195-1208.[6] Cetecioglu Z, Ince B, Gros M, et al. Chronic impact of tetracycline onthe biodegradation of an organic substrate mixture under anaerobic conditions [J]. Water Research, 2013,47(9):2959-2969.[7] Chen H Y, Jing L J, Teng Y G, et al. Characterization of antibiotics in alarge-scale river system of China: occurrence pattern, spatiotemporal distribution and environmental risks [J]. Science of the Total Environment, 2018,618:409-418.[8] Willyard C, The drug-resistant bacteria that pose the greatest healththreats [J]. Nature, 2017,543(7643):15-15.[9] Zhou C Y, Cui L, Huang D L, et al. Highly porous carbon nitride bysupramolecular preassembly of monomers for photocatalytic removal of sulfamethazine under visible light driven [J]. Applied Catalysis B Environmental, 2018,220:202-210.[10] 刘琼君,林碧洲,李培培,等.BiPO4/BiVO4复合材料的制备及可见光催化活性 [J]. 高等学校化学学报, 2017,38(1):94-100.Liu Q J, Lin B Z, Li P. et al. Preparation of BiPO4/BiVO4 composites with high visible-light photocatalytic activity [J]. Chemical Journal of Chinese Universities, 2017,38(1):94-100.[11] RidhwanI S M F, Suriati S, Hameed B H. Epigrammatic progress andperspective on the photocatalytic properties of BiVO4-based photocatalyst in photocatalytic water treatment technology: A review [J]. Journal of Molecular Liquids, 2018,268:438-459.[12] Kudo A, Omori K, Kato H. Novel aqueous process for preparation ofcrystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties [J]. Journal of the American Chemical Society, 1999,121(49):11459–11467.[13] Liu C, Zhou J L, Su J Z, et al. Turning the unwanted surface bismuthenrichment to favourable BiVO4/BiOCl heterojunction for enhanced photoelectrochemical performance [J]. Applied Catalysis B: Environmental, 2019,241:506-513.[14] 柴晴雯,吕艳,张周,等.Cu2O@ZnO复合光催化剂对难生物降解有机物的光降解 [J]. 中国环境科学, 2019,39(7):2822-2830.Chai Q W, Lu Y, Zhang Z, et al. Photodegradation of refractory organic compounds by Cu2O@ZnO composite photocatalyst [J].China Environmental Science, 2019,39(7):2822-2830.[15] Song L J, Pang Y Y, Zheng Y J, et al. Design, preparation andenhanced photocatalytic activity of porous BiOCl/BiVO4, microspheres via a coprecipitation-hydrothermal method [J]. Journal of Alloys and Compounds, 2017,710:375-382.[16] Du H, Pu W H, Wang Y Y, et al. Synthesis of BiVO4/WO3 compositefilm for highly efficient visible light induced photoelectrocatalytic oxidation of norfloxacin [J]. Journal of Alloys and Compounds, 2019, 787:284-294.[17] 张哲,王磊,贺苗露,等.UIO-66改性聚酰胺正渗透复合膜的制备及性能研究 [J]. 中国环境科学, 2020,40(6):2418-2425.Zhang Z, Wang L, He M L, et al. Preparation andperformance of UIO-66modified thin-film nanocomposite membrane for forward osmosis [J]. China Environmental Science, 2020,40(6):2418-2425. [18] S.nadar S, Vaidya L, Maurya S. Polysaccharide based metal organicframeworks (polysaccharide–MOF): A review [J]. Coordination Chemistry Reviews, 2019,369:1-21.[19] Jiang D N, Chen M, Zeng G M. The application of differenttypological and structural MOFs-based materials for the dyes adsorption [J]. Coordination Chemistry Reviews, 2019,380:471-483. [20] Bai Y, Dou Y, Xie L H, et al. Zr-based metal-organic frameworks:design, synthesis, structure, and applications [J]. Chemical Society Reviews, 2016,45(8):2327-2367.[21] 盛炳琛,李从,刘颖雅,等.微通道连续合成UiO-66系列改性MOF材料 [J]. 高等学校化学学报, 2019,40(7):1365-1373.Sheng B C, Li C, Liu Y Y, et al. Microfluidic synthesis of UiO- 66 metal-organic frameworks modified with different functional groups [J]. Chemical Journal of Chinese Universities, 2019,40(7):1365-1373.[22] Azhar M R, Abid H R, Periasaamy V, et al. Adsorptive removal ofantibiotic sulfonamide by UiO-66and Z I F-67 for wastewater treatment [J]. Journal of Colloid and I nterface Science, 2017,500: 88-95.[23] 崔莹莹,崔丽,崔玫瑰,等.光电催化协同还原CO2和氧化有机污染物 [J]. 中国环境科学, 2018,38(6):2075-2081.Cui Y Y, Cui L, Cui M G, et al. Photo-electrochemical synergetic reduction of CO2 and oxidation of organic pollutants [J]. China Environmental Science, 2018,38(6):2075-2081.[24] Kim S N, Lee Y R, Hong S H, et al. Pilot-scale synthesis of azirconium-benzenedicarboxylate UiO-66for CO2 adsorption and catalysis [J]. Catalysis Today, 2015,245:54-60.[25] Kata M J, Klet R C, Moon S Y, et al. One step backward is two stepsforward: enhancing the hydrolysis rate of UiO-66by decreasing [OH– ] [J]. ACS Catalysis, 2015,5(8):4637–4642.[26] Ramsahye N A, Gao J, Jobic H, et al. Adsorption and diffusion of lighthydrocarbons in UiO-66(Zr): a combination of experimental and modeling tools [J]. The Journal of Physical Chemistry C, 2014, 118(47):27470–27482.[27] Lustig W P, Mukherjee S, Rudd N D, et al. Metal-organic frameworks:Functional luminescent and photonic materials for sensing applications [J]. Chemical Society Reviews, 2017,46(11):3242-3285.[28] Xue Y, Wang P F, Wang C, et al. Efficient degradation of atrazine byBiOBr/UiO-66 composite photocatalyst under visible light irradiation: Environmental factors, mechanisms and degradation pathways [J].Chemosphere, 2018,203:497-505.[29] Sun D, Li Z. Robust Ti- and Zr-based metal-organic frameworks for。
诺禾致源2014产品手册

CONTENTS
建库测序
06 建库测序服务
基因组测序
08 动植物基因组测序 10 基因组特征评估 11 基因组de novo测序 14 泛基因组测序(pan-genome) 16 动植物重测序 17 变异检测(基于全基因组重测序) 19 变异检测(基于简化基因组测序) 21 单个性状定位 24 遗传图谱(基于全基因组重测序) 26 遗传图谱(基于简化基因组测序) 28 群体进化(基于全基因组重测序) 30 群体进化(基于简化基因组测序)
[2] Zhi X Y, Yao J C, Li H W, et al. Genome-wide identification, domain architectures and phylogenetic analysis provide new insights into the early evolution of shikimate pathway in prokaryotes[J]. Molecular phylogenetics and evolution, 2014, 75: 154-164.
[8] Xu X, Dong G X, Hu X S, et al. The genetic basis of white tigers[J]. Current Biology, 2013, 23(11): 1031-1035. [9] Jiang W, Liu Y, Xia E, et al. Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants[J]. Plant physiology, 2013, 161(4): 1844-1861. [10] Zhang G, Cowled C, Shi Z, et al. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity[J]. Science, 2013, 339(6118): 456-460. [11] Fan Y, Huang Z Y, Cao C C, et al. Genome of the Chinese tree shrew[J]. Nature communications, 2013, 4: 1426. [12] Wang M Y, Zhao P M, Cheng H Q, et al. The Cotton transcription factor TCP14 functions in auxin-mediated epidermal cell differentiation and elongation[J]. Plant physiology, 2013, 162(3): 1669-1680. [13] Lu S, Zong C, Fan W, et al. Probing meiotic recombination and aneuploidy of single sperm cells by wholegenome sequencing[J]. Science, 2012, 338(6114): 1627-1630. [14] Guo S, Zhang J, Sun H, et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions[J]. Nature genetics, 2013, 45(1): 51-58. [15] Li S, Li R, Li H, et al. SOAPindel: Efficient identification of indels from short paired reads[J]. Genome research, 2013, 23(1): 195-200. [16] Li M, Wu H, Luo Z, et al. An atlas of DNA methylomes in porcine adipose and muscle tissues[J]. Nature communications, 2012, 3: 850. [17] Fan W, Li R. Test driving genome assemblers[J]. Nature biotechnology, 2012, 30(4): 330. [18] Liu C M, Wong T, Wu E, et al. SOAP3: ultra-fast GPU-based parallel alignment tool for short reads[J]. Bioinformatics, 2012, 28(6): 878-879. [19] Hvilsom C, Qian Y, Bataillon T, et al. Extensive X-linked adaptive evolution in central chimpanzees[J]. Proceedings of the National Academy of Sciences, 2012, 109(6): 2054-2059. [20] Zhang G, Fang X, Guo X, et al. The oyster genome reveals stress adaptation and complexity of shell formation[J]. Nature, 2012, 490(7418): 49-54.
嗜热酯酶EstTs1的远源三维结构模建及分子对接

嗜热酯酶EstTs1的远源三维结构模建及分子对接詹冬玲;邵鸿泽;韩葳葳;刘景圣【摘要】利用Phyre网络服务器,构建嗜热酯酶EstTs1的三维结构,并通过分子动力学优化构型,得到了可靠的构型.分子对接研究表明,p-硝基苯基丁酸酯是EstTs1的最适底物,其大小正适合EstTs1的活性口袋.Thr111是底物与酶结合的重要残基,与底物形成了氢键; Ser85是重要的催化残基.%A 3D structure of thermostable esterase ( EstTsl ) was built by means of the protein homology/ analogy recognition engine ( Phyre ) program and further refined via unrestrained dynamics simulation. The docking results reveal that j?-nitrophenyl butyrate ( C4 ) is the best substrate of EstTsl , which has the adaptive size to the EstTsl. In addition, the key binding-site residue of Thrl 11 plays an important role in the catalysis of EstTsl for it made a hydrogen bond with j?-nitrophenyl butyrate. One important finding was that the identification of the key binding site: residue of Ser85 which plays an important role in the catalysis of EstTsl.【期刊名称】《吉林大学学报(理学版)》【年(卷),期】2011(049)006【总页数】5页(P1131-1135)【关键词】远源三维结构模建;分子对接;嗜热酯酶EstTs1【作者】詹冬玲;邵鸿泽;韩葳葳;刘景圣【作者单位】吉林农业大学,食品科学与工程学院,长春,130118;吉林农业大学,食品科学与工程学院,长春,130118;吉林大学,分子酶学工程教育部重点实验室,长春,130012;吉林农业大学,食品科学与工程学院,长春,130118【正文语种】中文【中图分类】O623脂肪水解酶广泛存在于动物、植物及微生物中, 它可以催化水解反应和合成反应, 且反应具有很高的区域选择性、立体选择性和商业价值[1-4]. 细菌产生的脂肪水解酶根据水解底物的不同划分为: 1) 水解短链羧酸酯(小于12个C) 的酯酶[EC 3.1.1.1]; 2) 可以在油水界面上水解长链甘油酯(大于12个C)的脂肪酶[EC 3.1.1.3];3) 可以水解极性磷脂的磷脂酶[EC 3.1.4.3]. 而普通脂肪水解酶作为具有生物活性的大分子, 在高温、强酸、强碱等条件下易失活, 因此在应用上受到较大限制. 而嗜热酶具有耐高温、抗酸碱、热稳定性好等优点[3-4], 应用广泛.Plessis等[1]从嗜热菌Thermus scotoductus中发现一种含量丰富的嗜热酯酶: EstTs1, 序列分析表明, 它是一种新的脂肪水解酶家族成员. 近年来, 通过质谱、定点突变等实验方法推测出了脂肪水解酶的反应机理[5]及其在催化过程中所涉及的其他重要残基, 但由于EstTs1与同家族的酶同源性较低(与EstTs1同源性最高的是来源于结核分枝杆菌中的Rv0554(PDB code 2E3A ), 同源性为27%), 使得人们无法通过比较模建法构建模型, 研究其反应机理, 在一定程度上影响了对EstTs1酶的更深入研究. 本文利用远源三维结构模建(remote homology modeling)技术, 先将EstTs1的序列提交到Phyre(protein homology/analogy recognition engine)的模建服务器上[6-7], 然后通过分子动力学模拟方法建立了可靠的EstTs1三维结构, 分析其活性位点的组成和结构, 并在此基础上进行了EstTs1与其最适底物p-硝基苯基丁酸酯的对接研究, 确定了复合物形成具有重要作用的残基, 对进一步揭示EstTs1的催化机理及嗜热酯酶的开发利用提供了理论依据.1 理论方法同源模建技术是目前应用最广的蛋白质三维结构预测方法[8-9], 但EstTs1与同家族酶的同源性低于30%, 所以不能搭建可靠的嗜热酯酶模型. Phyre网络服务器基于折叠模式识别搭建模型, 适合于构建折叠结构相似但远源的蛋白质模型[6-7].在初始的三维结构基础上, 利用AMBFR 9程序[9]对其进行分子动力学(MD)模拟, 模拟过程中使用周期性边界条件和FF03力场, 并用PME(particle mesh ewald)计算体系的静电相互作用. 考虑到溶剂化效应, 初始结构外加入了0.8 nm的TIP3P 水分子层, 并将其置于八面体的周期性盒子中, 采用Na+平衡蛋白质中的负电荷. 能量最小化后, 在最初0.05 ns的MD模拟中升温0~353 K, 然后进行2.5 ns的MD 模拟使体系达到平衡. 最终得到EstTs1的三维结构, 使用ProStat和PROFILE-3D 程序进行评估与比较. 利用得到的稳定构象, 使用Binding-Site模型[10]进行活性部位搜索, 并结合已知的实验数据, 预测EstTs1的活性位点. 通过AutoDock4.2[11]与多种底物进行对接, 验证底物的选择性. 并用Afinity模块[12]将最适底物p-硝基苯基丁酸酯(C4), 与EstTs1对接, 得到稳定的复合物结构, 确定与底物作用时的重要残基.2 结果与讨论2.1 EstTs1的远源模建图1 EstTs1 2.5 ns动力学的RMSDFig.1 Root-mean square deviation obtained from the 2.5 ns molecular dynamics trajectory for EstTs1在2.5 ns的MD模拟过程中均方根偏差(root-mean square deviations, RMSD)随时间变化曲线如图1所示. 由图1可见, 体系的RMSD在最初的1 ns内变化剧烈, 2 ns后体系的RMSD趋于不变, 表明体系已经稳定. 图2(A)为采用Profile-3D程序对EstTs1最初搭建构型的评估结果; 图2(B)为经过分子动力学优化后各残基的Profile-3D得分. 由图2可见, 所有残基的Profile-3D得分均大于0, 表明所有残基都处于合理位置. Profile-3D的评分为121.64(程序得出的最优评分为116.34), ProStat的二面角检查结果为81.9%, 均在合理范围内. 因此, 本文所模建的EstTs1三维结构是可靠的, 如图3所示.2.2 活性位点的预测关于EstTs1的活性位点, 目前尚未见文献报道活性口袋所处的位置及组成. Plessis 等[1]只提出了EstTs1包含Gly-Leu-Ser-Asn-Gly这样的活性位点模块. 通过同一家族的同源序列对比分析, 发现这一区域为Gly83-Leu84-Ser85-Asn86-Gly87, 其中Ser85为亲核进攻试剂. 通过Binding-site模块搜寻活性口袋, 搜寻到一处包含Ser85位点, 可以确定为活性部位. 活性位点的组成为:Leu146,Trp145,Gly20,Leu21,Asn19,Asn86,Trp125,Pro237,Leu84,Arg149,Ala2 36,Phe22和Leu179.图2 EstTs1初始结构的PROFILE-3D打分值(A)与经过2.5 ns动力学优化 EstTs1结构的PROFILE-3D打分值(B)Fig.2 PROFILE-3D scores for the structures of initial EstTs1 (A) and final EstTs1 (B)2.3 分子对接使用AutoDock 4.2软件将p-硝基苯基乙酸酯(C2)、 p-硝基苯基丁酸酯(C4)、 p-硝基苯基辛酸酯(C8)和p-棕榈酸对硝基苯酯(C16)分别与EstTs1对接, 结果列于表1. 由表1可见, C4与EstTs1的结合自由能最低(为-5.05 kJ/mol), C2~C4酶与底物的结合自由能降低; C4~C16酶与底物的结合自由能升高. 通常复合物的结合自由能越低, 表明体系越稳定, 稳定的体系有利于反应发生. 上述结果与Plessis等[1]给出的4种底物的相对活力实验相符.表1 用AutoDock4.2计算的酶与不同底物和EstTs1的结合自由能Table 1Calculated binding free energies with AutoDock 4.2 program底物Δ Gbinding/(kJ·mol-1)相对活性/%p-硝基苯基乙酸酯-3.5859p-硝基苯基丁酸酯-5.05100p-硝基苯基辛酸酯-2.342p-棕榈酸对硝基苯酯-1.030为解释底物选择性的原因, 将这4种底物采用Gaussian 03软件[12]对其结构进行优化, 使用B3LYP方法6-31G*基组. 表2列出了4种底物羟基上连接的C和O的Mulliken电荷分布情况. 由于烷基是斥电子基, 中心带正电荷的碳连接的烷基越多, 整个系统的电荷可以得到越有效的分散, 因而越稳定. 随着碳链的增加(C2~C16), 烷基的供电效应增强, 体系稳定, 即C4比C2稳定. EstTs1的催化机制为典型的α/β水解酶家族两步反应:丝氨酸作为亲核试剂进攻底物的羟基氧, 生成中间产物. 体系越稳定, 亲核反应越容易发生,因此EstTs1对它的催化活力更高. 但EstTs1的活性口袋较小, 图4为C4和C16的活性口袋示意图. 由图4可见, C4的大小正好适合活性口袋. 之后随碳链的增加, 空间位阻加大, 反应较不易发生. 这与C4~C16随着碳链的增加, EstTs1对底物的催化活力降低实验结果一致.表2 底物的Mulliken电荷分布Table 2 Mulliken atomic charges with substrates底物COO1p-硝基苯基乙酸酯0.595-0.438-0.511p-硝基苯基丁酸酯0.596-0.441-0.519p-硝基苯基辛酸酯0.620-0.448-0.524p-棕榈酸对硝基苯酯0.629-0.457-0.527为确定与最适底物C4结合时起重要作用的残基, 使用Affinity软件, 将C4与EstTs1进行对接研究. 氢键对分子的结构和功能, 尤其是酶的催化作用具有重要作用. C4与EstTs1的活性口袋中形成的氢键如图5所示. C4中的羟基氧与Thr111形成氢键, 因此Thr111是与底物结合过程中起重要作用的残基.图3 EstTs1的三维结构(A)与p-硝基苯基丁酸酯的结构(B)Fig.3 3D structures of EstTs1 (A) and p-nitrophenyl butyrate (B)图4 C4在活性口袋中(A)与C16在活性口袋中(B)示意图Fig.4 C4 in the activepocket (A) and C16 in the active pocket (B)图5 底物C4与EstTs1活性位点部分残基的氢键示意图Fig.5 Hydrogen bond between C4 and EstTs1C4与EstTs1相互作用主要体现为非键相互作用. 分子间的非键相互作用, 对于确定底物与蛋白的相对位置及关键残基非常重要. 底物在EstTs1活性口袋中的取向如图4所示, p-硝基苯基丁酸酯与EstTs1活性部位的残基间的相互作用能列于表3. 为验证Ser85的作用, 将Ser85突变成Ala, 然后将p-硝基苯基丁酸酯与突变后的酶进行对接. 由表3可见, S85A突变使酶和底物的相互作用能升高, 体系不稳定, 不易于化学反应的发生, 表明Ser85是重要的催化残基. 表4列出了与底物结合时起重要作用的残基. 在所有活性部位的残基中, Ile146和Trp145与底物的相互作用最强(与底物的相互作用能最低), 是在催化过程中稳定底物的重要氨基酸. 此外, Gly20,Leu21,Asn19,Asn86,Trp125,Pro237,Leu84,Arg149,Ala236,Phe22和Leu179与底物的相互作用以范德华力为主.表3 EstTs1和S85A突变体与底物的结合自由能Table 3 Calculated binding energies of ligand tested with EstTs1 and S85A mutant酶Evdw/(kJ·mol-1)Eele/(kJ·mol-1)Etotal/(kJ·mol-1)WT-51.73-15.77-67.54S85A突变体-33.93-2.59-26.52综上可见, 底物p-硝基苯基丁酸酯在EstTs1的稳定性主要依靠范德华力, 而在催化过程中, Ser85担当亲核试剂. 活性部位残基Ile146与Trp145底物的相互作用最强, Thr111与底物形成了氢键, 因此, Ile146,Trp145,Thr111是在催化过程中稳定底物的重要氨基酸.表4 底物p-硝基苯基丁酸酯和EstTs1活性位点部分残基的总能量(Etotal)、范德华相互作用能(Evdw)及静电相互作用能(Eele)Table 4 Total energy Etotal, van-der-Waal energy Evdw and electrostatic Eele between p-nitrophenylbutyrate and individual residue残基Evdw/(kJ·mol-1)Eele/(kJ·mol-1)Etotal/(kJ·mol-1)Ile146-8.080.12-7.97Ser85-0.98-6.81-7.79Trp145-6.11-0.12-6.23Gly20-3.59-2.14-5.73Leu21-3.54-1.70-5.24Asn19-3.08-0.76-3.84Asn86-1.68-1.77-3.46Trp125-2.980.23-2.75Pro237-1.53-1.19-2.73Leu84-2.820.14-2.69Arg149-1.94-0.57-2.51Ala236-1.02-0.93-1.95Phe22-1.20-0.26-1.47Leu179-1.330.05-1.28参考文献【相关文献】[1] Plessis E M, Berger E, Stark T, et al. Characterization of a Novel Thermostable Esterase from Thermus Scotoductus SA-01: Evidence of a New Family of Lipolytic Esterases [J]. Curr Microbiol, 2010, 60(4): 248-253.[2] ZHAO Bo, GAO Ren-jun, LIAN Hong, et al. Lipolytic Enzymes LipA and LipB from Bacillus Subtilis [J]. China Journal of Biological Chemistry and Molecular Biology, 2008,24(5): 419-425. (赵博, 高仁钧, 廉虹, 等. 枯草杆菌脂肪水解酶LipA和LipB [J]. 中国生物化学与分子生物学报, 2008, 24(5): 419-425.)[3] Panda T, Gowrishankar B S. Production and Applications of Esterases [J]. Appl Microbiol Biotechnol, 2005, 67(2): 160-169.[4] Ro H S, Hong H P, Kho B H, et al. Genome-Wide Cloning and Characterization of Microbial Esterases [J]. FEMS Microb Lett, 2004, 233(1): 97-105.[5] SUN Lei, Levisson M, Hendriks S, et al. Crystallization and Preliminary Crystallographic Analysis of an Esterase with a Novel Domain from the Hyperthermophile Thermotoga maritima [J]. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2007, 63: 777-779.[6] Kelley L A, Sternberg M J E. Protein Structure Prediction on the Web: A Case Study Using the Phyre Server [J]. Nature Protocols, 2009, 4(3): 363-371.[7] Bennett-Lovsey R M, Herbert A D, Sternberg M J E, et al. Exploring the Extremes of Sequence/Structure Space with Ensemble Fold Recognition in the Program Phyre [J]. Proteins, 2008, 70(3): 611-625.[8] HAN Wei-wei, ZHAN Dong-ling, ZHAO Xi, et al. Computational Investigation on the Ethylene-Induced Esterase from Citrus sinensis [J]. Chem Res Chinese Universities, 2009,25(6): 1-4.[9] HAN Wei-wei, WANG Ye, LUO Quan, et al. Insights into a 3D Homology Model of Arylesterase: The Key Residues upon Protein-Ligand Docking and MM-PBSA Calculations [J]. J Theo Com Chem, 2011, 10(2): 165-177.[10] ZHAN Dong-ling, HAN Wei-wei, FENG Yan. Experimental and Computational Studies Indicate the Mutation of Glu12 to Increase the Thermostability of Oligomeric Protease from Pyrococcus horikoshii [J]. J Mol Model, 2011, 17: 1241-1249.[11] Huey R, Morris G M, Olson A J, et al. A Semiempirical Free Energy Force Field with Charge-Based Desolvation [J]. J Comput Chem, 2007, 28(6): 1145-1152.[12] HAN Wei-wei, WANG Ying, ZHOU Yi-han, et al. Understanding Structural/Functional Properties of Amidase from Rhodococcus Erythropolis by Computational Approaches [J]. J Mol Model, 2009, 15: 481-487.。
5,15-二(二茂铁基)-卟啉酞菁钇的结构和振动光谱的密度泛函理论研究

原子与分子物理学报JOURNAL OF ATOMIC AND MOLECULAR PHYSICS Vol.38No.3 Jun.2021第3"卷第3期2021年6月5,15-二"二茂铁基)-口卜咻献菁钇结构和振动光谱的密度泛函理论研究姜力,周启,陈玉锋,蔡雪(牡丹江师范学院化学化工学院,牡丹江市157000)摘要:本文选用混杂的B3LYP密度泛函理论方法,在Lanl2dz水平上,对5,15-二"二茂铁基)-”卜啉酞菁钇[Por(Fc)2]Y(Pc)的结构进行了优化,结果表明,5,15-二"二茂铁基)-”卜啉駄菁钇呈现出三明治型构型,”卜啉环与与菁环呈穹型围绕在金属铉原子周围.对分子內主要的键长与键角进行了理论计算,通过频率计算,得到了5,15-二"二茂铁基)-”卜啉駄菁原[Por(Fc)2] Y(Pc)的红外光谱图,与实验所得的红外光谱图进行比对,将理论计算和实验所得的光谱主要振动峰进行了线性回归拟合,相关系数为0.992,标准偏差为16.96.理论计算与实验所获得的红外光谱图基本一致,说明本文文选用的DFT理论计算方方是可行行.通过GaussView软件对5,15-二"二茂铁基)-”卜啉駄菁原红外谱带简正振动模式进行了指认.此卜,分析讨论了5,15-二"二茂铁基)-”卜啉駄菁原Por(Fc)2] Y(Pc)的分子静电势,确定了极大值与极小值的位置.对于研究5,15-二"二茂铁基)-”卜啉駄菁原分子周性质,提供了相应的理论基础.关键词:"卜啉駄菁;密度泛泛理论;振动光谱;分子静电势中图分类号:O641.4文献标识码:A DOI:10.19855/j.l000-0364.2021.031007Theoretical study on the structure and vibrational spectroscopy of5,15-bis(伽,。
中国肝癌病人p53突变体R248W的细胞功能研究

中国肝癌病人p53突变体R248W的细胞功能研究赵晶;郭泽坤【期刊名称】《西北农林科技大学学报(自然科学版)》【年(卷),期】2008(036)010【摘要】[目的]探索p53基因突变对细胞正常功能的影响,阐明肝癌的发病机制.[方法]利用PCR产物直接测序的方法,对202例中国肝癌患者p53基因的11个外显子进行突变筛查;利用定点突变的方法构建真核表达载体pCMV-R248W,Western blot检测突变体蛋白R248W在p53缺失型H1299细胞中的表达情况;采用双荧光素酶报告基因检测系统和流式细胞仪,研究R248W突变对转录活性及促凋亡能力的影响.[结果]在其中1例样本的7号外显子处筛查到突变形式为CGG→TGG的点突变,使p53蛋白248位的精氨酸(Arg)突变为色氨酸(Trp),即R248W,突变率为0.495%;在H1299细胞中转染等量的pCMV-p53和pOMV-R248W时.野生型p53与突变体R248W的蛋白表达量相当,但R248W的转录活性及促凋亡能力显著低于野生型p53.[结论]R248W突变可能引起p53蛋白构象的改变,从而影响p53的转录活性及促凋亡能力,使细胞的正常生理功能紊乱,导致肿瘤发生.【总页数】7页(P186-192)【作者】赵晶;郭泽坤【作者单位】西北农林科技大学,生命科学学院,农业分子生物学重点实验室,陕西,杨凌,712100;西北农林科技大学,生命科学学院,农业分子生物学重点实验室,陕西,杨凌,712100【正文语种】中文【中图分类】Q279【相关文献】1.中国兰春剑隆昌素叶色突变体光合特性的初步研究 [J], 熊剑锐;何俊蓉;蒋彧;李萍2.恶性肿瘤复发与p53热点突变体的相关性研究 [J], 王焕彬;许杰3.中国汉族人群24种CYP2C19新突变体的体外活性研究 [J], 李传保;戴大鹏;蔡杰;耿培武;王双虎;王豪;胡国新;蔡剑平4.突变体p53研究进展 [J], 李大虎;张令强;贺福初5.四引物扩增受阻突变体系PCR技术在中国明对虾SNP基因分型中的研究 [J], 张建勇;王清印;王伟继;孟宪红;孔杰;张全启因版权原因,仅展示原文概要,查看原文内容请购买。
LncRNA H19在肿瘤发病中的作用机制研究进展

LncRNA H19在肿瘤发病中的作用机制研究进展①朱敏郗雪艳杜伯雨(湖北医药学院基础医学院,十堰442000)中图分类号R735.3文献标志码A文章编号1000-484X(2021)07-0883-05[摘要]随着研究的深入和研究技术的提高,研究者在人类基因组中发现了大量非编码RNA(NcRNA),这类RNA一直受到人们的广泛关注。
越来越多的研究显示,NcRNA可能参与各种基因表达的调控。
目前的研究已证实,长链非编码RNA (LncRNA)在生长调控及生理代谢中发挥重要作用,并且参与肿瘤调控。
LncRNA H19是最早发现的印迹LncRNA,虽然在大多数组织中LncRNA H19的表达在出生后被关闭,但很多研究提示其可在肿瘤发生期间被重新激活或抑制,从而影响肿瘤进展。
本文主要综述近期LncRNA H19在肿瘤发病中作用机制的研究进展,为今后的研究提供参考。
[关键词]LncRNA;H19;肿瘤;作用机制Research progress of mechanism of LncRNA H19in cancer disease development ZHU Min,XI Xue-Yan,DU Bo-Yu.School of Basic Medical Sciences,Hubei University of Medicine,Shiyan 442000,China[Abstract]With the deepening of study and the improvement of research techniques,researchers have found a large number of noncoding RNA(NcRNAs)in human genome,which has been receiving attention.Increasing evidence indicated that NcRNA is likely to involve in the regulation of various gene expression.Recent studies have confirmed that long noncoding RNA(LncRNA)plays im‐portant regulator roles in various biological processes,including cancer development.LncRNA H19is the first imprinted gene. Although H19expression is turned off after birth in most tissues,there are many studies demonstrate that it can be reactivated or inhib‐ited during tumorigenesis.This article mainly reviews the recent research progress of the pathogenic mechanism of LncRNA H19in cancer disease development,aimed to provide a reference for future research.[Key words]LncRNA;H19;Cancer;Mechanism1概述由美国国立人类基因组研究院启动的多国联合研究项目计划——DNA元件百科全书(EN‐CODE)项目已证实,基因组中有80%的基因可被转录,然而最终可表达为蛋白质的基因只有不到2%[1]。
双去甲氧基姜黄素对四氯化碳致小鼠急性肝损伤的保护作用及机制

双去甲氧基姜黄素对四氯化碳致小鼠急性肝损伤的保护作用及机制矫春丽; 宋艳芹; 杜源; 卢永颖; 张雷明【期刊名称】《《药学研究》》【年(卷),期】2019(038)005【总页数】5页(P253-256)【关键词】双去甲氧基姜黄素; 肝损伤; 抗炎; 抗凋亡【作者】矫春丽; 宋艳芹; 杜源; 卢永颖; 张雷明【作者单位】[1]烟台大学药学院山东烟台264005; [2]烟台市食品药品检验检测中心山东烟台264000【正文语种】中文【中图分类】R967肝损伤是临床上的常见病,各种物理和化学因素均可导致急慢性肝损伤,严重或持续的肝损伤最终可导致急性肝功能衰竭,危及患者生命[1-2]。
实验性肝损伤包括化学性肝损伤、免疫性肝损伤、酒精性肝损伤及药物性肝损伤等多种类型,其中四氯化碳(CCl4)是经典的诱导肝损伤动物模型的化学物质,当肝脏持续受到CCl4作用时,肝细胞内的多种酶大量释放入血,包括谷丙转氨酶(alanine transferase,ALT)、谷草转氨酶(aspartate transferase,AST)及环氧化物酶-2等,其能促进炎症反应的发生,最终导致肝纤维化[3-4]。
细胞色素P450酶系(CYP450)将CCl4转化为有毒的代谢产物,损伤细胞DNA和生物膜 [5]。
另外,肝细胞还能分泌大量的炎症因子,其中肿瘤坏死因子α(tumor necrosis factor α,TNF-α)能刺激免疫相关细胞产生大量细胞因子,引起局部或全身炎症反应,还可激活细胞内相关死亡区域的蛋白,激活半胱氨酸蛋白酶(caspase)家族,最终诱导细胞凋亡[6]。
双去甲氧基姜黄素(Bisdemethoxycurcumin,BDMC)、去甲氧基姜黄素和姜黄素统属姜黄素类化合物,是从植物姜黄根茎中提取的一种植物色素,这3种成分结构简单且相近,易于合成,具有多种相似的药理活性,如抗炎、抗氧化、抗肿瘤等,无明显的毒副作用[7]。
未培养微生物的研究与微生物分子生态学的发展

未培养微生物的研究与微生物分子生态学的发展*叶姜瑜1,2罗固源1,2(重庆大学三峡库区生态环境教育部重点实验室重庆400045)1(重庆大学城市建设与环境工程学院重庆400045)2摘要:近年来现代分子技术和基因组学逐渐渗透到有关生命科学的整个领域,也为微生物生态学提供了新的研究方法和机遇。
16S rRNA基因序列分析、DNA-DNA杂交、核酸指纹图谱以及宏基因组学等分子技术检查自然环境中的微生物,可以克服传统纯培养技术的不足,是一条探知未培养微生物、寻找新基因及其产物的新途径,开启了我们认识微生物多样性和获得新资源的大门。
关键词:未培养微生物,微生物分子生态学,分子技术中图分类号:Q93文献标识码:A文章编号:0253-2654(2004)05-0111-05Progress in the Biodiversity of Nonculturab le Microorganisms andM icrobial Molecular EcologyYE Jiang-Yu1,2LUO Gu-Yuan1,2(Chon gqin g U ni versit y Ke y L a bora tory o f Eco-en vironmen ts o f Three Gorges Reservoir Re gion,Min ist ry o f Edu cation Ch ongqin g400045)1(Cit y Construction an d En viron men ta l En gin eerin g Aca de my,Chon gqin g Un ive rsity,Chon gqing400045)2 Abs tract:Recent progress in molecu lar microbial ecology has revealed that traditi on al cultu rin g method s fail to rep resen tthe scope of microb ial di versity i n n ature,only a small proportion of viab le microorgani sms i n a samp le are recove red bycu lturing techni ques1Molecular techni ques,16S rRNA seq uencin g,DNA-DNA h yb rid ization,genetic fin gerp rin ti ngtech niqu e and metagenomics etc,have become rou ti ne methods in microbial ecol ogy,which are u sed to expl ore the d-ive rsi ty of uncul tured microb ial commu nities an d ob tain novel environmental D NA w i thou t an y cultivation1K ey words:Noncu lturable microorgan ism,Mic robial molecular ecology,Molecular techniq ue1原核微生物是地球上最早的生命形式,在数十亿年的进化过程中,形成了适应各种环境的生理和分子机制,占据了地球几乎所有环境,包括没有其它生命形式能够共存的极端环境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Management of singlet and triplet excitons for efficient white organic light-emitting devicesYiru Sun 1,Noel C.Giebink 1,Hiroshi Kanno 1,Biwu Ma 2,Mark E.Thompson 2&Stephen R.Forrest 1†Lighting accounts for approximately 22per cent of the electricity consumed in buildings in the United States,with 40per cent of that amount consumed by inefficient (,15lm W 21)incandescent lamps 1,2.This has generated increased interest in the use of white electroluminescent organic light-emitting devices,owing to their potential for significantly improved efficiency over incandescent sources combined with low-cost,high-throughput manufactur-ability.The most impressive characteristics of such devices reported to date have been achieved in all-phosphor-doped devices,which have the potential for 100per cent internal quantum efficiency 2:the phosphorescent molecules harness the triplet excitons that constitute three-quarters of the bound elec-tron–hole pairs that form during charge injection,and which (unlike the remaining singlet excitons)would otherwise recombine non-radiatively.Here we introduce a different device concept that exploits a blue fluorescent molecule in exchange for a phosphorescent dopant,in combination with green and red phosphor dopants,to yield high power efficiency and stable colour balance,while maintaining the potential for unity internal quantum efficiency.Two distinct modes of energy transfer within this device serve to channel nearly all of the triplet energy to the phosphorescent dopants,retaining the singlet energy exclusively on the blue fluorescent dopant.Additionally,eliminating the exchange energy loss to the blue fluorophore allows for roughly 20per cent increased power efficiency compared to a fully phosphorescent device.Our device challenges incandescent sources by exhibiting total external quantum and power efficien-cies that peak at 18.760.5per cent and 37.660.6lm W 21,respectively,decreasing to 18.460.5per cent and 23.860.5lm W 21at a high luminance of 500cd m 22.Electrophosphorescent organic light-emitting devices (OLEDs)have been shown to harvest 100%of the excitons generated by electrical injection,corresponding to a fourfold increase in efficiency compared to that achievable in singlet-harvesting fluorescent OLEDs 3.In this context,electrophosphorescent white OLEDs (WOLEDS)have been reported to exhibit 4–7high quantum (5–12%)and luminous power efficiencies (6–20lm W 21)at bright-nesses ,100cd m 22.To date,however,blue electrophosphorescent devices have exhibited short operational lifetimes 8that limit the colour stability of all-phosphor-doped WOLEDs.Also,compared with their fluorescent counterparts,WOLEDs employing phosphor-escent blue dopants excited via the conductive host introduce an approximately 0.8eV exchange energy loss in power efficiency.This results from the energetic relaxation following intersystem crossing into the emissive triplet state.This loss can be avoided by resonant injection from the hole transport layer (HTL)and electron transport layer (ETL)into the phosphor triplet state 6,9,but the subsequent transfer to green and red dopants required to generate white light canreintroduce these parasitic energy losses.Here we demonstrate a new WOLED architecture that uses a fluorescent emitting dopant to harness all electrically generated high energy singlet excitons for blue emission,and phosphorescent dopants to harvest the remainder of lower-energy triplet excitons for green and red emission.This structure takes advantage of the fortuitous connection between the proportion of singlets dictated by spin statistics (that is,one singlet versus three triplets are produced by electrical exci-tation 10)and the roughly 25%contribution of blue to the perceived white light spectrum.This allows for resonant energy transfer from both the host singlet and triplet energy levels that minimizes exchange energy losses,thereby maximizing device power efficiency while maintaining the potential for unity internal quantum efficiency (IQE).This approach has the further advantages of a stable white balance with current,a high efficiency at high brightness due to reduced geminate exciton recombination 11,and an enhanced lifetime due to the combined use of a stable fluorescent blue,and long lived phosphorescent green and red,dopants in a single emissive region.The WOLED consists of a blue fluorophore,4,40-bis(9-ethyl-3-carbazovinylene)-1,10-biphenyl (BCzVBi)12,doped in a region spatially separate from the highly efficient green and red phosphor-escent dopants fac-tris(2-phenylpyridine)iridium (Ir(ppy)3)and iridium(III )bis(2-phenyl quinolyl-N,C 20)acetylacetonate (PQIr),respectively.All lumophores are doped into a single,common conductive host,4,40-bis(N-carbazolyl)biphenyl (CBP),to form the extended emissive layer (EML)which is sandwiched between the electron transporting/hole blocking layer of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP),and the 4,40-bis[N-(1-naphthyl)-N-phenyl-amino]-biphenyl (a -NPD)HTL.The principle of device operation is illustrated in Fig.1.Excitons are formed on the host with a singlet-to-triplet formation ratio ofx s /x t .Singlet excitons are transferred following a resonant Fo¨rster process onto the lightly doped (5%)blue fluorophore as opposed to direct trap formation 12.The non-radiative host triplets,however,cannot efficiently transfer to the fluorophore by the Fo¨rster mecha-nism,or by Dexter transfer owing to the low doping concentration.On the other hand,triplets typically have long diffusion lengths 10(,100nm),and hence can migrate into the centre of the EML where they transfer onto the phosphors.Resonant transfer of the host triplet onto the green phosphor avoids exchange energy losses at this stage,although there are some unavoidable losses in transferring into the lowest energy red phosphor.Finally,placing an undoped host spacerwith a thickness larger than the Fo¨rster radius (,3nm)between the blue fluorophore and the phosphors prevents direct energy transfer from the blue dopant to the green and red phosphors.This device architecture is unique in that the singlet and triplet excitons are harvested along completely independent channels,and hence the transfer from host to dopant for both species can be separatelyLETTERS1Department of Electrical Engineering,Princeton Institute for the Science and Technology of Materials (PRISM),Princeton University,Princeton,New Jersey 08544,USA.2Department of Chemistry,University of Southern California,Los Angeles,California 90089,USA.†Present address:Department of Electrical Engineering and Computer Science,Department of Physics,and Department of Materials Science and Engineering,University of Michigan,Ann Arbor,Michigan 48109,USA.optimized to be nearly resonant,thereby minimizing energy losses while maintaining a unity IQE.Figure 2provides evidence for this transfer mechanism by com-paring the un-normalized electroluminescent spectra of three devices at a current density of J ¼100mA cm 22.Device I has a 16-nm-thick CBP spacer placed between the two 5-nm-thick 5wt%BCzVBi:CBP layers at each side of the EML,whereas device II has a 25-nm-thick uniformly doped 5wt%BCzVBi:CBP EML.Both devices have nearly identical emission spectra and external quantum efficiencies (EQE)of h ext ¼(2.6^0.2)%,indicating that ostensibly 100%of the exciton formation occurs at the edges of the EML.Furthermore,lack of short wavelength CBP emission in device I suggests that the charge density in the middle region of EML available for exciton formation directly on the host is negligible.When a 20-nm-thick 3wt%Ir(ppy)3:CBP layer is inserted in the EML and separated from the two 5wt%BCzVBi:CBP regions by 4-nm-thick undoped CBP spacers (device III),the total efficiency is increased to h ext ¼(5.2^0.2)%,with the additional 2.6%emission coming from Ir(ppy)3.From this we conclude that exciton diffusion from the point of origin at the edges of the EML,rather than direct charge trapping and exciton formation on the phosphor,dominates,because carriers trapped by Ir(ppy)3would result in a noticeable decrease in the BCzVBi emission.Triplet diffusion from the edges of the EML to the phosphorescent doped region is consistent with previous observations in red fluorescent/phosphorescent OLEDs,where the fluorophore ‘filters’out the singlet excitons,leaving only triplets to diffuse to a spatially separated phosphor doped region 3.To determine whether the location of the exciton formation region is predominantly at either the HTL/EML or EML/ETL inter-face,we compared the emission from two comparable devices with opposite symmetries,where the structure consisted of either NPD (30nm)/5wt%BCzVBi:CBP (10nm)/CBP (20nm)/BCP (40nm),or NPD (30nm)/CBP (20nm)/5wt%BCzVBi:CBP:(10nm)/BCP (40nm).The corresponding maximum efficiencies of these deviceswere h ext ¼(1.4^0.1)%and (1.8^0.1)%,both smaller than h ext ¼(2.6^0.2)%for device II.Moreover,CBP emission at a peak wavelength of l ¼390nm is observed in the first device,and a -NPD emission at l ¼430nm is observed in the second structure.These observations suggest that excitons are generated at both the HTL/EML and EML/ETL interfaces,consistent with the ambipolar conductivity of CBP 13,14.Exciton formation at the edges,with correspondingly low generation in the bulk of the EML,can be understood as follows:large densities of holes (p )and electrons (n )pile up at the energy barriers at two EML interfaces.The exciton formation probability,which is ,n £p ,is thus also significantly higher at these locations as compared with the EML bulk.On the basis of these results,WOLEDs were fabricated by doping the middle region of the EML with both the green and red phos-phorescent dopants (Fig.3a,inset).As the high energy of the highest occupied molecular orbital of PQIr suggests that it can trap holes in the CBP host,a slight decrease of the blue emission intensity is observed in the WOLED.Fitting of the WOLED spectrum in Fig.3b with the individual dopant spectra suggests that the ratio of emission from fluorescent to phosphorescent dopants approaches the ratio of 1/3,consistent with the singlet-to-triplet exciton formation ratio in emissive organic materials 10,15,16.Furthermore,given the perform-ance characteristics of the purely fluorescent BCzVBi device (device II in Fig.2),we also find that the fraction of excitons trapped by,and formed directly on,the phosphorescent dopants in the EML is x trap ¼(18^5)%(see Methods).That is,approximately 20%of the excitons are formed by direct trapping on the phosphor dopants,whereas the remaining 80%are formed at the edges of the EML,at which point the triplets subsequently diffuse into the centre where they are transferred from host to phosphor dopant before emission.A maximum forward viewing EQE of h ext ¼(11.0^0.3)%is achieved at a current density J ¼(1.0^0.6)mA cm 22,and decreases only slightly to h ext ¼(10.8^0.3)%at a high forward viewing luminance of 500cd m 22(Fig.3a).This device gives a maximum forward viewing power efficiency of h p ¼ð22:1^0:3ÞlmW 21.As illumination sources are generally characterized by theirtotalFigure 1|Proposed energy transfer mechanisms in the fluorescent/phosphorescent WOLED.This illustrates the separate channels for triplet (T)and singlet (S)formation and transfer directly onto their corresponding emissive dopants.The majority of excitons are formed in the host material with a singlet-to-triplet formation ratio of x s /x t .The singlet excitons in the two formation regions at each side of the light emitting layer (EML)are rapidly,and near-resonantly,transferred to the blue fluorescent dye located in these regions.The phosphor-doped region is located in the centre of the EML and separated from the exciton formation zones by spacers of undoped host material.The triplets then diffuse efficiently to the central region,where they transfer to the lower energy green or red phosphor dopants,again by a nearly resonant process to the green dopant triplet manifold,and with some energy loss to the red triplet.Diffusion of singlet excitons to the phosphor dopants is negligible due to their intrinsically short diffusion lengths 23.Parasitic effects of charge trapping onto the phosphorescent dopants are discussed in thetext.Figure 2|Un-normalized electroluminescence spectra of three device structures shown in the inset.The spectra were measured at a current density of 100mA cm 22.Inset,schematic cross-section of the device;see text for definitions of abbreviations used.X ¼CBP (16nm)for device I;X ¼5wt%BCzVBi:CBP (15nm)for device II;X ¼CBP (4nm)/3wt%Ir(ppy)3:CBP (20nm)/CBP (4nm)for device III.Quantitative comparison of the three spectra suggests that excitons are primarily formed at the two interfaces,and that fluorescent doping across the entire emission layer does not increase the blue luminescence intensity (compare devices I and II).However,doping the middle of the EML with the phosphor Ir(ppy)3results in additional green emission without a corresponding decrease in blue,BCzVBi emission (devices I and III),indicating that triplets formed on CBP are efficiently transferred to Ir(ppy)3,whereas the BCzVBi acts to harvest,or ‘filter out’,all of the singlets.NATURE |Vol 440|13April 2006LETTERSemitted power,this device therefore has maximum total efficiencies 6of h p,t ¼(37.6^0.6)lm W 21,and h ext,t ¼(18.7^0.5)%.At a practical surface luminance of 500cd m 22,h p,t ¼(23.8^0.5)lm W 21,or approximately 50%greater than for common incandescent lighting.Although the commercially available blue fluorophore has a low h ext ¼2.7%(compared with a maximum expected 5%achieved in the literature),the WOLED performance,nevertheless,represents a considerable improvement over the best all-phosphorescent devices previously reported 6,7,17(see Supplementary Information).The intrinsic singlet-to-triplet ratio and the separation of thechannels in harvesting the two excitonic species gives a well-balanced and largely current-independent colour rendition,resulting in a colour rendering index of CRI ¼85at all current densities studied,which is the highest CRI among the reported values for a WOLED.The Commission Internationale d’Eclairage (CIE)coordinates have a negligible shift from (0.40,0.41)at 1mA cm 22to (0.38,0.40)at 100mA cm 22.This differs from observations of an all-phosphor-doped WOLED,where blue emission becomes stronger with increas-ing driving voltage 6owing to the requirement for high energy excitation of the blue phosphor.In the inset of Fig.3b are images of three devices,each driven at 4times higher drive current than the device above it in the array,to show the colour stability of the emission.To further understand exciton diffusion,in Fig.4a we plot (open circles)h ext due to Ir(ppy)3emission versus the position (x )of a thin (5nm)slab of 5wt%Ir(ppy)3:CBP located at various distancesfromFigure 3|Performance characteristics of the fluorescent/phosphorescent WOLED.a ,Forward viewing external quantum efficiency (filled squares)and power efficiency (open circles)versus current density of the WOLED shown in the inset.The forward viewing external quantum efficiency peaks at h ext ¼(11.0^0.3)%at J ¼(1.0^0.6)mA cm 22,and decreases slightly to h ext ¼(10.8^0.3)%at a forward viewing luminance of 500cd m 22.The maximum forward viewing power efficiency is h p ¼(22.1^0.3)lm W 21,with total peak and high luminance efficiencies of h p,t ¼(37.6^0.6)and (23.8^0.5)lm W 21at 500cd m 22,respectively.The forward viewingluminance at 1A cm 22is (83,000^7,000)cd m 22.The drive voltage for this device is (6.0^0.5)V at J ¼10mA cm 22.Inset,schematic structure of the WOLED with the following layer thicknesses:b 1¼15nm,b 2¼10nm,r ¼8nm,g ¼12nm,and with an electron transport layer (ETL)consisting of 20-nm 4,7-diphenyl-1,10-phenanthroline (BPhen)followed by 20-nm Li doped BPhen in 1:1molar ratio.Here,BPhen is used to further reduce device drive voltage.When 40-nm BCP is used as ETL and b 1¼10nm,b 2¼10nm,r ¼12nm and g ¼8nm,h ext and CRI are nearly identical to the above structure.b ,Normalized electroluminescence spectra of WOLED emission at various current densities.Note that colour dependence on current density is minimal,with CRI ¼85at all three values of current density.Inset,images of three,4.5mm 2devices,each driven at four times the drive current (from 1.7to 28mA cm 22)of the device above it in the array (equivalent to a two f-stop difference in illumination)to show the colour stability of theemission.Figure 4|Triplet diffusion profile and reduced efficiency roll-off at high currents.a ,External quantum efficiency (open circles)from Ir(ppy)3emission at 10mA cm 22versus distance between the 50-A˚slab of 5wt%Ir(ppy)3:CBP and the NPD/CBP interface in the structure shown inset.A fit following equation (2)for triplet diffusion gives the solid curve and atriplet diffusion length of L D ¼(460^30)A˚.The error bars indicate the standard deviations in measurement.Inset,schematic cross-section of the test structures:NPD (30nm)/CBP (x nm)/5wt%Ir(ppy)3:CBP (5nm)/CBP ((2002x )nm)/BCP (40nm),with x ¼0,50,100,150,200.b ,Comparison of external quantum efficiency roll-off.Open circles depict theperformance of the all-phosphor white device of ref.6,in comparison to the white device of this work (squares),and a blue fluorescent BCzVBi device (triangles).The high current roll-off of the phosphor device is described by triplet–triplet annihilation (fit shown as solid line),yielding an onset current density J 0¼(50^4)mA cm 22.The device of this work clearlydemonstrates a roll-off that appears qualitatively similar to that of the all-fluorescent device.For comparison,J 0¼(360^10)mA cm 22and J 0¼(1,440^10)mA cm 22for the WOLED of this work and the all-fluorescent device,respectively.LETTERSNATURE |Vol 440|13April 2006the HTL/EML interface within a200-nm-thick CBP EML(see Fig.4a inset).Fitting(solid curve,see Methods)of the efficiency versus x yields a triplet diffusion length of L D¼(460^30)A˚,and predicts that(75^5)%of the phosphorescent emission results from triplet exciton diffusion from the adjacent EML interfaces,in agreement with the value calculated from analysis of the spectral content of the emission.Compared with previous all-phosphor,high efficiency WOLEDs, the device also has a less pronounced efficiency roll-off at high current densities.For example,in Fig.4b we show a comparison of h ext versus J for an all-phosphor white device6,the device of this work,and afluorescent BCzVBi device II.The high-current decline in h ext of the all-phosphor white is due to triplet–triplet annihil-ation14,18.In contrast,there is a striking resemblance between the efficiency roll-off of the current device,and that of device II. Modelling of the roll-offs in these two structures is complicated by recombination processes such as exciton–polaron quenching11,sing-let–triplet annihilation,andfield-induced exciton dissociation. Nevertheless,for both of these latter devices,the current density at the point where h ext has declined by half from its peak is.7times that of the conventional phosphor device,while the peak EQE occurs at a value of J nearly1,000times larger.The apparent absence of triplet–triplet annihilation suggests that the highest density of triplet excitons is at the interfaces in thefluorescent doped regions,where they subsequently diffuse towards the centre,thereby lowering the local density(Fig.4a)in the region of the guest phosphors.The reduced sensitivity of h ext to current density is another clear difference between the WOLED of this study and previous,high efficiency all-phosphor devices.We note that the efficiency of the present device can be further improved by usingfluorescent dopants19with IQE¼25%and phosphors20,21with IQE¼100%,resulting in a total WOLED internal quantum efficiency of100%.Using such‘ideal’chromo-phores,whose spectra are the same as the current dopants used,an approximately34%total EQE and60lm W21power efficiency can in principle be achieved using this structure,corresponding to a four-fold increase over incandescent power efficiency,and even competing with high efficiency,high CRIfluorescent lighting sources.As noted above,the exchange energy difference between the host singlet and dopant triplet states can lead to a loss of luminance efficiency in all-phosphor doped WOLEDs.By applying this design concept to systems where the host singlet is resonant with the bluefluorophore singlet state,and the host triplet is resonant with the green phosphor triplet level,this structure could have a power efficiency improve-ment of,20%compared to similarly ideal all-phosphor devices.The highly efficient WOLED structure reported here,with a colour rendition that is unusually independent of current density,has potential for use in the next generation of sources for solid-state indoor lighting.METHODSDevice manufacture.Devices were grown on clean glass substrates pre-coated with a150-nm-thick layer of indium tin oxide(ITO)with a sheet resistance of 20Q per square.All organic layers were grown in succession without breaking vacuum(,1027torr).After organicfilm deposition,a shadow mask with 1-mm-diameter openings was affixed in a N2filled glove box before the cathode (consisting of8-A˚-thick LiF),followed by a500-A˚-thick Al cap,was deposited by high vacuum(1026torr)thermal evaporation.Current–voltage and EQE measurements were carried out using a semiconductor parameter analyser (HP4145)and a calibrated Si photodiode(Hamamatsu S3584-08)following standard procedures22.Data analysis.To interpret the emission spectrum,the WOLED EQE is expressed as:h ext¼ð12x trapÞh Bþ½ð12x trapÞx tþx trap h GRð1Þwhere h B and h GR are respectively the EQEs of a singly doped bluefluorescent device and the comparable singly doped green and red phosphorescent devices, and x trap is the fraction of excitons trapped and formed directly on the phosphorescent dopants in the EML.Byfitting the WOLED spectrum in Fig.3b at J¼100mA cm22with the electroluminescence spectra of the three individual dopant materials,and accounting for photon energy in these power spectra,wefind that(20^2)%of the total quantum efficiency is due to emission from the bluefluorescent dopant,and(80^2)%is from green and red phosphorescent dopants.Given the performance characteristics(h B)of the purely BCzVBi device(device II in Fig.2),we calculate x trap¼(18^5)%from thefirst term in equation(1).Modelling.Exciton diffusion through the EML is modelled as shown in Fig.4a (solid line)as follows:in steady state,and assuming that all singlet formation occurs at the HTL/EML(x¼0),and EML/ETL interfaces(x¼200nm)(in Fig.4a),a solution to the triplet diffusion equation gives:nðxÞ¼1sinh LL Dx t n R sinh xL Dþx t n L sinhL2xL Dþx s n L dðxÞþx s n R dðx2LÞð2Þwhere n is the total exciton density:n(x¼0)¼n L and n(x¼L¼200nm)¼x¼L¼200nm)¼n R,L D is the triplet diffusion length,and the delta function terms account for the presence of contributing singlets at the interfaces.As the EQE from Ir(ppy)3emission is proportional to the exciton density in the Ir(ppy)3-doped slab,Fig.4a(solid curve)shows thefit of the efficiency at J¼10mA cm22versus x using equation(2)and x t¼3x s,from which we infer L D¼(460^30)A˚(error bars account for the spread infits at additional current densities).With this calculated diffusion length,integration of the total exciton density in the phosphorescent doped region in the WOLED predicts that(75^5)%of the phosphorescent emission results from triplet exciton diffusion from the adjacent EML interfaces,in agreement with the value calculated from analysis of the spectral content of the emission(equation(1)).Received19June2005;accepted13February2006. Department of Energy National Lighting Inventory and Energy ConsumptionEstimate Vol.1,xii(US Govt Printing Office,Washington DC,2001).2.D’Andrade,B.W.&Forrest,S.R.White organic light-emitting devices forsolid-state lighting.Adv.Mater.16,1585–-1595(2004).3.Baldo,M.A.et al.Highly efficient phosphorescent emission from organicelectroluminescent devices.Nature395,151–-154(1998).4.Adamovich,V.et al.High efficiency single dopant white electrophosphorescentlight emitting diodes.N.J.Chem.26,1171–-1178(2002).5.D’Andrade,B.W.&Forrest,S.R.Effects of exciton and charge confinement onthe performance of white organic p-i-n electrophosphorescent emissiveexcimer devices.J.Appl.Phys.94,3101–-3109(2003).6.D’Andrade,B.W.,Holmes,R.J.&Forrest,S.R.Efficient organicelectrophosphorescent white-light-emitting device with a triple doped emissive layer.Adv.Mater.16,624–-627(2004).7.Tokito,S.,Iijima,T.,Tsuzuki,T.&Sato,F.High-efficiency whitephosphorescent organic light-emitting devices with greenish-blue andred-emitting layers.Appl.Phys.Lett.83,2459–-2461(2003).8.Tung,Y.J.et al.A high efficiency phosphorescent white OLED for LCDbacklight and display rm.Display35,48–-51(2004).9.Holmes,R.J.et al.Efficient,deep-blue organic electrophosphorescence byguest charge trapping.Appl.Phys.Lett.83,3818–-3820(2003).10.Baldo,M.A.Excitonic singlet-triplet ratio in a semiconducting organic thinfilm.Phys.Rev.B66,14422–-14428(1999).11.Kalinowski,J.et al.Triplet energy exchange betweenfluorescent andphosphorescent organic molecules in a solid state matrix.Chem.Phys.297,39–-48(2004).12.Hosokawa,C.,Higashi,H.,Nakamura,H.&Kusumoto,T.Highly efficient blueelectroluminescence from a distyrylarylene emitting layer with a new dopant.Appl.Phys.Lett.67,3853–-3855(1995).13.Adachi,C.,Thompson,M.E.&Forrest,S.R.Architectures for efficientelectrophosphorescent organic light-emitting devices.IEEE J.Select.Top.Quant.Electron.8,372–-377(2002).14.Baldo,M.A.&Forrest,S.R.Transient analysis of organicelectrophosphorescence:I.Transient analysis of triplet energy transfer.Phys.Rev.B62,10958–-10966(2000).15.Reufer,M.et al.Spin-conserving carrier recombination in conjugated polymers.Nature Mater.4,340–-346(2005).16.Segal,M.,Baldo,M.A.,Holmes,R.J.,Forrest,S.R.&Soos,Z.G.Excitonicsinglet-triplet ratios in molecular and polymeric organic materials.Phys.Rev.B 68,075211(2003).17.Qin,D.S.&Tao,Y.White organic light-emitting diode comprising of bluefluorescence and red phosphorescence.Appl.Phys.Lett.86,113507(2005). 18.Baldo,M.A.,Adachi,C.&Forrest,S.R.Transient analysis of organicelectrophosphorescence.II.Transient analysis of triplet-triplet annihilation.Phys.Rev.B62,10967–-10977(2000).19.Murata,H.,Kafafi,Z.H.&Uchida,M.Efficient organic light-emitting diodesNATURE|Vol440|13April2006LETTERSwith undoped active layers based on silole derivatives.Appl.Phys.Lett.80,189–-191(2002).20.Kawamura,Y.et al.100%phosphorescence quantum efficiency of Ir(III)complexes in organic semiconductorfilms.Appl.Phys.Lett.86,071104(2005).21.Adachi,C.,Baldo,M.A.,Thompson,M.E.&Forrest,S.R.Nearly100%internalphosphorescence efficiency in an organic light emitting device.J.Appl.Phys.90,5048–-5051(2001).22.Forrest,S.R.,Bradley,D.D.C.&Thompson,M.E.Measuring the efficiency oforganic light-emitting devices.Adv.Mater.15,1043–-1048(2003).23.Sokolik,I.,Priestley,R.,Walser,A.D.,Dorsinville,R.&Tang,C.W.Bimolecularreactions of singlet excitons in tris(8-hydroxyquinoline)aluminum.Appl.Phys.Lett.69,4168–-4170(1996).Supplementary Information is linked to the online version of the paper at /nature.Acknowledgements H.K.is currently on leave from Sanyo Electric Co.,Ltd., Osaka,Japan.The authors thank the Department of Energy and Universal Display Corp.for partial support of this work,as well as R.Holmes andB.W.D’Andrade for discussions.Author Information Reprints and permissions information is available at /reprintsandpermissions.The authors declare no competing financial interests.Correspondence and requests for materials should be addressed to S.R.F.(forrest@).LETTERS NATURE|Vol440|13April2006。