2020年高中数学人教A版必修4第1章 三角函数《任意角的三角函数一》 导学案(含答案解析)

合集下载

高中数学 人教A版必修4 第1章 1.3三角函数的诱导公式(一)

高中数学 人教A版必修4    第1章 1.3三角函数的诱导公式(一)

的运用.利用诱导公式把求任意角的三角函数值转化为求锐角 的三角函数值,清晰地体现了化归的思想.
填一填·知识要点、记下疑难点
§1.3(一)
1.设 α 为任意角,则 π+α,-α,π-α 的终边与 α 的终边之间
本 课 时 栏 目 开 关
的对称关系.
相关角 π+ α 与 α -α 与 α π- α 与 α 终边之间的对称关系 关于 原点 对称 关于 x轴 对称 关于 y轴 对称
研一研·问题探究、课堂更高效
由三角函数的定义得
§1.3(一)
y sin α= y ,cos α= x ,tan α= x ,
-y y 本 又 sin(π+α)=-y ,cos(π+α)=-x ,tan(π+α)= -x = x ,
课 时 栏 ∴sin(π+α)=-sin α , cos(π+α)=-cos α,tan(π+α)= tan α . 目 开 关 (3)公式作用:第三象限角的三角函数转化为第一象限角的三
§1.3(一)
(1)公式内容:
sinπ+α=-sin α,
本 课 时 栏 目 开 关
cosπ+α=-cos α, tanπ+α=tan α.
(2)公式推导: 如图,设角 α 的终边与单位圆交于点 P1(x, y),则角 π+α 的终边与单位圆的交点为 P2(-x,-y),下面是根据三角函数定义推 导公式的过程,请你补充完整:
§1.3(一)
本 课 时 栏 目 开 关
§1.3(一)
【学习要求】 1.了解三角函数的诱导公式的意义和作用.
本 课 化简和证明问题. 时 3.能运用有关诱导公式解决一些三角函数的求值、 栏 目 【学法指导】 开 关 1.本节将要学习的诱导公式既是
1 3 2π - , 2 2 (4)角 的终边与单位圆的交点坐标为_______________ ,所以

高中数学 第一章 三角函数 1.2.1 任意角的三角函数(第1课时)教案 新人教A版必修4(202

高中数学 第一章 三角函数 1.2.1 任意角的三角函数(第1课时)教案 新人教A版必修4(202

广东省汕头市高中数学第一章三角函数1.2.1 任意角的三角函数(第1课时)教案新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省汕头市高中数学第一章三角函数1.2.1 任意角的三角函数(第1课时)教案新人教A版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省汕头市高中数学第一章三角函数1.2.1 任意角的三角函数(第1课时)教案新人教A版必修4的全部内容。

1.2.1任意角的三角函数(1)一、教学目标:1、知识与技能(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);(2)理解任意角的三角函数不同的定义方法;(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;(4)掌握并能初步运用公式一;(5)树立映射观点,正确理解三角函数是以实数为自变量的函数.2、过程与方法初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数。

引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义。

根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.3、情态与价值任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值”来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合"的对应关系与学生熟悉的一般函数概念中的“数集到数集”的对应关系有冲突,而且“比值”需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数。

高中数学第一章三角函数1.3三角函数的诱导公式课件新人教A版必修4

高中数学第一章三角函数1.3三角函数的诱导公式课件新人教A版必修4

sin
2
cos
,
cos
2
sin .
sin
2
cos
,
cos
2
sin
.
cos180 cos
原式=
cos
sin
sin cos
1
练习 利用公式求下列三角函数值:
1 cos 420 cos60 cos 60 1 2
2 sin
7 6
sin
5 6
sin
6
1 2
3sin 1300
4
cos
79 6
cos
5 6
cos
6
3 2
练习
化简 1sin 180 cos sin 180
4 tan 324 32 __ta_n__3_5_2_8_;
化简11scio原ns式52=cs2ions•22sin•2sin •c•osco2s
;
= sin • sin • cos
cos
= sin2
化简
2 cos2
tan 360
sin .
原式=cos2 tan sin
1.思考
给定一个角α (1)终边与角α的终边关于原点对称的角 与α有什么关系?它们的三角函数之间有 什么关系?
公式二
y
P(x,y)
sin(π+α)=-sinα cos(π+α)=-cosα
π +α α
O
x
tan(π+α)=tanα
P(-x,-y)
(2)终边与角α的终边关于x轴对称的角与α 有什么关系?它们的三角函数之间有什么 关系?
y
P(-x,y)
π-α P(x,y)

高一数学人教A版必修四教案:第一章三角函数1-2任意角的三角函数

高一数学人教A版必修四教案:第一章三角函数1-2任意角的三角函数
问题 2.以上结论对任一个角 都成立吗?你能够说明吗?
(1) (sin)2 (cos)2 1对任一个角 都成立;
sin tan 对任何一个不等于 k (k Z ) 的角 都成立.
cos
2
(2)说明方法 1:用三角函数的定义说明(利用定义)
说明方法 2:用三角函数线说明(数形结合)
(3)体会从特殊到一般的认知规律,了解同角三角函数关系的几何意义.

所以原等式成立.
证法 2、(1 sin x)(1 sin x) 1 sin2 x cos2 x cos x cos x
且1 sin x 0,cos x 0 cos x 1 sin x
(2)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所 在象限进行分类讨论.
五、评价设计
(1) 作业:习题 1.2A 组第 10,13 题. (2) 熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关 系式;注意三角恒等式的证明方法与步骤.
1.2.3 同角三角函数的基本关系
教学重点:正弦、余弦、正切线的概念。 教学难点:正弦、余弦、正切线的利用。 授课类型:新授课 教学模式:讲练结合 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.三角函数的定义及定义域、值域:
练习 1:已知角 的终边上一点 P( 3, m) ,且 sin 2m ,求 cos,sin 的值。
r
x
当 m 5 时, r 2 2, x 3 ,
cos x 6 , tan y 15 ;
r4
x3
当 m 5 时, r 2 2, x 3 ,
cos x 6 , tan y 15 .
r4
x3
2.三角函数的符号:

1.2.1任意角的三角函数课件高中数学人教A版必修4第一章

1.2.1任意角的三角函数课件高中数学人教A版必修4第一章

反思与感悟
利用诱导公式一可把负角的三角函数
化为0到2π间的三角函数,也可把大于2π的角的三
角函数化为0到2π间的三角函数,即实现了“负化
正,大化小”.同时要熟记特殊角的三角函数值.
明目标、知重点
跟踪训练3
求下列各式的值:
23π
(1)cos- 3 +tan



17π
4 ;
π

π

原式=cos3+-4×2π+tan4+2×2π
角为自变量,以比值为函数值的函数, 角的概念推广
后,这样的三角函数的定义明显不再适用,如何对三角
函数重新定义,这一节我们就来一起研究这个问题.
明目标、知重点
探究点一 锐角三角函数的定义
思考1 如图, Rt△ABC中,∠C=90°,若已知
a=3,b=4,c=5,试求sin A,cos B,sin B,
反思与感悟
准确确定三角函数值中角所在象限是基
础,准确记忆三角函数在各象限的符号是解决这类问
题的关键.可以利用口诀“一全正、二正弦、三正切、
四余弦”来记忆.
明目标、知重点
跟踪训练2
已知cos θ·tan θ<0,那角θ是( C )
A.第一或第二象限角
B.第二或第三象限角
C.第三或第四象限角
D.第一或第四象限角
明目标、知重点

; 叫做α的正切,记作

②终边定义法:
设角α终边上任意一点的坐标为(x,y),它与原点的距离为r,则



2
2


x
+y

有sin α=
,cos α=
,tan α=

1.3 三角函数的诱导公式 课件(共19张PPT)高中数学人教A版必修四

1.3 三角函数的诱导公式 课件(共19张PPT)高中数学人教A版必修四

2k (k Z)、 、 的三角函数值,等于
的同名函数值,前面加上一个把 看成锐角时原函
数值的符号。
14
理论迁移
例1 求下列各三角函数的值:
(1)cos225
(2)sin 11
3
(3)sin(-16 )
3
(4)cos(-2040 )
15
利用诱导公式一~四,可以把任意角的三角函数转化为锐角三角函数,一般可按下面 步骤进行:
任意负角的 用公式一 任意正角的 三角函数 或公式三 三角函数
用公式一
锐角的三角 用公式二 0~2π的角
函数
或公式四 的三角函数
这是一种化归与转化的数学思想.
16
课堂小结: 1.小结使用诱导公式化简任意角的三 角函数为锐角的步骤.
2.体会数形结合、对称、化归的思想. 3.“学会”学习的习惯.
17
作业布置:
公式二:
sin( ) sin cos( ) cos tan( ) tan
10
问题4:公式中的角 仅是锐角 吗?
11
知识探究(二)
对于任意给定的一个角α,-α的终边与α的终边
有什么关系?
那么它们之间的三角函
数值有什么关系?
y
α的终边
P(x,y)
公式三:
o
Q(x,-y)
x
sin( ) sin
1
(一)回顾旧知
问题1: (1)我们是怎样利用单位圆定义任意角的三角函数? (2) 终边相同的角的三角函数之间有什么关系?
2
温故而知新
1、任意角的三角函数的定义
sin y
y
α的终边
cos x tan y (x 0)
x

2020版高中数学人教A版必修4 导学案 《任意角》(含答案解析)学生版

2020版高中数学人教A版必修4 导学案 《任意角》(含答案解析)学生版

1.下列说法正确的是( )
ห้องสมุดไป่ตู้
A.终边相同的角一定相等
B.钝角一定是第二象限角
C.第一象限角一定不是负角
D.小于 90°的角都是锐角
2.与-457°角终边相同的角的集合是(
A.{α|α=k·360°+457°,k∈Z}
B.{α|α=k·360°+97°,k∈Z}
C.{α|α=k·360°+263°,k∈Z}
命题角度 2 求终边在给定直线上的角的集合 例 4:写出终边在直线 y=- 3x 上的角的集合.
反思与感悟 求终边在给定直线上的角的集合,常用分类讨论的思想,即分 x≥0 和 x<0 两 种情况讨论,最后再进行合并.
3 跟踪训练 4 写出终边在直线 y= x 上的角的集合.
3
类型四 区域角的表示 例 5:如图所示.
课时作业
一、选择题
1.把-1 485°化成 k·360°+α(0°≤α<360°,k∈Z)的形式是( )
A.315°-5×360° B.45°-4×360° C.-315°-4×360° D.-45°-10×180°
2.若α是第四象限角,则 180°-α是( )
A.第一象限角
B.第二象限角
C.第三象限角
D.{α|α=k·360°-263°,k∈Z}
3.2 017°是第
象限角.
4.与-1 692°终边相同的最大负角是
5.写出终边落在坐标轴上的角的集合 S.
) .
1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理 解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转幅度”决定角的“绝对值大小”. 2.关于终边相同的角的认识 一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合 S={β|β=α+k·360°, k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和. 注意:(1)α为任意角; (2)k·360°与α之间是“+”号,k·360°-α可理解为 k·360°+(-α); (3)相等的角终边一定相同;终边相同的角不一定相等,终边相同的角有无数多个,它们相差 360°的整数倍; (4)k∈Z 这一条件不能少.

高中数学人教A版必修四教师用书:第1章+阶段复习课+第1课+任意角的三角函数及诱导公式

高中数学人教A版必修四教师用书:第1章+阶段复习课+第1课+任意角的三角函数及诱导公式

第一课 任意角的三角函数及诱导公式[核心速填]1.与角α终边相同的角的集合为 S ={β|β=α+k ·360°,k ∈Z }. 2.角度制与弧度制的换算3.弧度制下扇形的弧长和面积公式 (1)弧长公式:l =|α|r . (2)面积公式:S =12lr =12|α|r 2. 4.任意角的三角函数(1)定义1:设任意角α的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx (x ≠0).(2)定义2:设任意角α的终边上任意一点P 的坐标为(x ,y ),r =|OP |=x 2+y 2,则sin α=y r ,cos α=x r ,tan α=yx (x ≠0).5.同角三角函数基本关系式 sin 2α+cos 2α=1;sin αcos α=tan α. 6.诱导公式记忆口诀 奇变偶不变,符号看象限.[体系构建][题型探究](1)把α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限角; (2)求γ,使γ与α的终边相同,且γ∈⎝ ⎛⎭⎪⎫-π2,π2.[解] (1)∵-800°=-3×360°+280°,280°=149π, ∴α=-800°=14π9+(-3)×2π.∵α与角14π9终边相同,∴α是第四象限角.(2)∵与α终边相同的角可写为2k π+14π9,k ∈Z 的形式,而γ与α的终边相同,∴γ=2k π+14π9,k ∈Z . 又γ∈⎝ ⎛⎭⎪⎫-π2,π2,∴-π2<2k π+14π9<π2,k ∈Z , 解得k =-1,∴γ=-2π+14π9=-4π9.[规律方法] 1.灵活应用角度制或弧度制表示角 (1)注意同一表达式中角度与弧度不能混用.(2)角度制与弧度制的换算设一个角的弧度数为α,角度数为n ,则 αrad =⎝ ⎛⎭⎪⎫α·180π°,n °=⎝ ⎛⎭⎪⎫n ·π180rad. 2.象限角的判定方法(1)根据图象判定.利用图象实际操作时,依据是终边相同的角的概念,因为0°~360°之间的角与坐标系中的射线可建立一一对应的关系.(2)将角转化到0°~360°范围内.在直角坐标平面内,0°~360°范围内没有两个角终边是相同的.[跟踪训练]1.若α角与8π5角终边相同,则在[0,2π]内终边与α4角终边相同的角是________.【导学号:84352139】2π5,9π10,7π5,19π10 [由题意,得α=8π5+2k π(k ∈Z ),α4=2π5+k π2(k ∈Z ). 又α4∈[0,2π],所以k =0,1,2,3,α4=2π5,9π10,7π5,19π10.]线,其中弧、弧、弧的圆心依次是A 、B 、C ,如果AB =1,那么曲线CDEF 的长是________.图1-1(2)一扇形的圆心角为2弧度,记此扇形的周长为c ,面积为S ,则c -1S 的最大值为________.(1)4π (2)4 [(1)弧的长是120π×1180=2π3,弧的长是:120π×2180=4π3, 弧的长是:120π×3180=2π,则曲线CDEF 的长是:2π3+4π3+2π=4π.(2)设扇形的弧长为l ,半径为r ,圆心角大小为2弧度, 则l =2r ,可求:c =l +2r =2r +2r =4r , 扇形的面积为S =12lr =12r 2×2=r 2, 所以c -1S =4r -1r 2=-⎝ ⎛⎭⎪⎫1r 2+4r=-⎝ ⎛⎭⎪⎫1r -22+4≤4.r =12时等号成立,所以c -1S 的最大值为4.][规律方法] 弧度制下有关弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式l =|α|r ,扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,α是扇形的圆心角);(2)涉及扇形的周长、弧长、圆心角、面积等的计算,关键是先分析题目已知哪些量、求哪些量,然后灵活运用弧长公式、扇形面积公式直接求解或列方程(组)求解.[跟踪训练]2.如图1-2,已知扇形AOB 的圆心角为120°,半径长为6,求弓形ACB 的面积.【导学号:84352140】图1-2[解] ∵120°=120180π=23π,∴l =6×23π=4π,∴的长为4π.∵S 扇形OAB =12lr =12×4π×6=12π,如图所示,作OD ⊥AB ,有S △OAB =12×AB ×OD =12×2×6cos 30°×3=9 3. ∴S 弓形ACB =S 扇形OAB -S △OAB =12π-9 3. ∴弓形ACB 的面积为12π-9 3.(1)若一个α角的终边上有一点P (-4,a ),且sin α·cos α=34,则a的值为( )A .43B .±4 3C .-43或-433D. 3(2)已知角α的终边经过点P (12m ,-5m )(m ≠0),求sin α,cos α,tan α的值.【导学号:84352141】(1)C [(1)因为α角的终边上有一点P (-4,a ),所以tan α=-a4, 所以sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=-a 4⎝ ⎛⎭⎪⎫-a 42+1=34,整理得3a 2+16a +163=0,(a +43)(3a +4)=0,所以a =-43或-433.](2)r =(12m )2+(-5m )2=13|m |,若m >0,则r =13m ,α为第四象限角, sin α=y r =-5m 13m =-513, cos α=x r =12m 13m =1213, tan α=y x =-5m 12m =-512.若m <0,则r =-13m ,α为第二象限角, sin α=y r =-5m -13m =513,cos α=x r =12m -13m =-1213,tan α=y x =-5m 12m =-512.[规律方法] 利用定义求三角函数值的两种方法(1)先由直线与单位圆相交求出交点坐标,再利用正弦、余弦、正切函数的定义,求出相应的三角函数值.(2)取角α的终边上任意一点P (a ,b )(原点除外),则对应的角α的正弦值sin α=b a 2+b 2,余弦值cos α=a a 2+b2,正切值tan α=ba .当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.[跟踪训练]3.如果点P (sin θ·cos θ,2cos θ)位于第三象限,试判断角θ所在的象限.【导学号:84352142】[解] 因为点P (sin θ·cos θ,2cos θ)位于第三象限, 所以sin θ·cos θ<0,2cos θ<0, 即⎩⎨⎧sin θ>0,cos θ<0,所以角θ在第二象限.(1)已知sin(-π+θ)+2cos(3π-θ)=0,则sin θ+cos θsin θ-cos θ=________.(2)已知f (α)=sin 2(π-α)·cos (2π-α)·tan (-π+α)sin (-π+α)·tan (-α+3π).①化简f (α);②若f (α)=18,且π4<α<π2,求cos α-sin α的值; ③若α=-47π4,求f (α)的值. 【导学号:84352143】[思路探究] 先用诱导公式化简,再用同角三角函数基本关系求值. (1)13 [(1)由已知得-sin θ-2cos θ=0,故tan θ=-2, 则sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1=-2+1-2-1=13.] (2)①f (α)=sin 2α·cos α·tan α(-sin α)(-tan α)=sin α·cos α.②由f (α)=sin α·cos α=18可知,(cos α-sin α)2=cos 2α-2sin α·cos α+sin 2α =1-2sin α·cos α=1-2×18=34, 又∵π4<α<π2,∴cos α<sin α, 即cos α-sin α<0, ∴cos α-sin α=-32. ③∵α=-474π=-6×2π+π4, ∴f ⎝ ⎛⎭⎪⎫-474π=cos ⎝ ⎛⎭⎪⎫-474π·sin ⎝ ⎛⎭⎪⎫-474π =cos ⎝ ⎛⎭⎪⎫-6×2π+π4·sin ⎝ ⎛⎭⎪⎫-6×2π+π4=cos π4·sin π4=22×22=12.母题探究:1.将本例(2)中“18”改为“-8”“π4<α<π2”改为“-π4<α<0”求cos α+sin α.[解] 因为-π4<α<0,所以cos α>0,sin α<0且|cos α|>|sin α|, 所以cos α+sin α>0,又(cos α+sin α)2=1+2sin αcos α=1+2×⎝ ⎛⎭⎪⎫-18=34,所以cos α+sin α=32. 2.将本例(2)中的用tan α表示1f (α)+cos 2α.[解] 1f (α)+cos 2α=1sin αcos α+cos 2α=sin 2α+cos 2αsin αcos α+cos 2α=tan 2α+1tan α+1. [规律方法] 1.牢记两个基本关系式sin 2α+cos 2α=1及sin αcos α=tan α,并能应用两个关系式进行三角函数的求值、化简、证明.在应用中,要注意掌握解题的技巧.比如:已知sin α±cos α的值,可求cos αsin α.注意应用(cos α±sin α)2=1±2sin αcos α.2.诱导公式可概括为k ·π2±α(k ∈Z )的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.精美句子1、善思则能“从无字句处读书”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.1 任意角的三角函数(一)学习目标1.通过借助单位圆理解并掌握任意角的三角函数定义,了解三角函数是以实数为自变量的函数.2.借助任意角三角函数的定义理解并掌握正弦、余弦、正切函数值在各象限内的符号.3.通过对任意角的三角函数定义的理解,掌握终边相同的角的同一三角函数值相等.知识点一任意角的三角函数使锐角α的顶点与原点O重合,始边与x轴的非负半轴重合,在终边上任取一点P,作PM⊥x 轴于M,设P(x,y),|OP|=r.思考1角α的正弦、余弦、正切分别等于什么?思考2对确定的锐角α,sin α,cos α,tan α的值是否随P点在终边上的位置的改变而改变?思考3在思考1中,当取|OP|=1时,sin α,cos α,tan α的值怎样表示?梳理(1)单位圆在直角坐标系中,我们称以原点O为圆心,以单位长度为半径的圆为单位圆.(2)定义在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:①y叫做α的正弦,记作sin α,即sin α=y;②x叫做α的余弦,记作cos α,即cos α=x;③yx叫做α的正切,记作tan α,即tan α=yx(x≠0).对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.知识点二正弦、余弦、正切函数的定义域思考对于任意角α,sin α,cos α,tan α都有意义吗?梳理三角函数的定义域知识点三思考根据三角函数的定义,你能判断正弦、余弦、正切函数的值在各象限的符号吗?知识点四诱导公式一思考当角α分别为30°,390°,-330°时,它们的终边有什么特点?它们的三角函数值呢?类型一 三角函数定义的应用命题角度1 已知角α终边上一点坐标求三角函数值 例1 已知θ终边上一点P(x ,3)(x≠0),且cos θ=1010x ,求sin θ,tan θ.反思与感悟(1)已知角α终边上任意一点的坐标求三角函数值的方法:①先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应地三角函数值.②在α的终边上任选一点P(x ,y),设P 到原点的距离为r(r>0),则sin α=yr ,cos α=xr.当已知α的终边上一点求α的三角函数值时,用该方法更方便. (2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.跟踪训练1 已知角α的终边过点P(-3a ,4a)(a≠0),求2sin α+cos α的值.命题角度2 已知角α终边所在直线求三角函数值例2 已知角α的终边在直线y=-3x上,求10sin α+3cos α的值.反思与感悟在解决有关角的终边在直线上的问题时,应注意到角的终边为射线,所以应分两种情况处理,取射线上异于原点的任意一点的坐标的(a,b),则对应角的三角函数值分别为sin α=ba2+b2,cos α=aa2+b2,tan α=ba.跟踪训练2 已知角α的终边在直线y=3x上,求sin α,cos α,tan α的值.类型二 三角函数值符号的判断例3 (1)若α是第二象限角,则点P(sin α,cos α)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限反思与感悟角的三角函数值的符号由角的终边所在位置确定,解题的关键是准确确定角的终边所在的象限,同时牢记各三角函数值在各象限的符号,记忆口诀:一全正,二正弦,三正切,四余弦. 跟踪训练3(1)已知点P(tan α,cos α)在第三象限,则α是第 象限角.类型三 诱导公式一的应用 例4 求下列各式的值.(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°;(2)sin ⎝ ⎛⎭⎪⎫-11π6+cos 12π5·tan 4π.反思与感悟利用诱导公式一可把负角的三角函数化为0到2π间的三角函数,也可把大于2π的角的三角函数化为0到2π间的三角函数,即实现了“负化正,大化小”. 跟踪训练4 求下列各式的值.(1)cos 25π3+tan ⎝ ⎛⎭⎪⎫-15π4; (2)sin 810°+tan 765°-cos 360°.1.已知角α的终边经过点(-4,3),则cos α等于( ) A.45 B.35 C.-35 D.-452.cos(-11π6)等于( )A.12B.-12C.32D.-323.若点P(3,y)是角α终边上的一点,且满足y<0,cos α=35,则tan α等于( )A.-34B.34C.43D.-434.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是( )A.1B.0C.2D.-25.已知角α的终边上有一点P(24k ,7k),k≠0,求sin α,cos α,tan α的值.1.正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或比值为函数值的函数.2.角α的三角函数值的符号只与角α所在象限有关,角α所在象限确定,则三角函数值的符号一定确定,规律是“一全正,二正弦,三正切,四余弦”.3.终边相同的三角函数值一定相等,但两个角的某一个函数值相等,不一定有角的终边相同,更不一定有两角相等.课时作业一、选择题1.sin(-1 380°)的值为( )A.-12B.12C.-32D.322.已知α是第二象限角,P(x ,5)为其终边上一点,且cos α=24x ,则x 的值为( ) A. 3 B.± 3 C.- 2 D.- 3 3.已知sin θ<0,且tan θ<0,则θ为( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角 4.已知角α的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.5π6 B.2π3 C.4π3 D.11π65.已知角α的终边经过点P(3,4t),且sin(2kπ+α)=-35(k∈Z ),则t 等于( )A.-916B.916C.34D.-346.某点从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,-12C.⎝ ⎛⎭⎪⎫-12,-32D.⎝ ⎛⎭⎪⎫-32,127.如果点P(sin θ+cos θ,sin θcos θ)位于第二象限,那么角θ的终边在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 8.若角α的终边在直线y =-2x 上,则sin α等于( ) A.±15 B.±55 C.±255 D.±12二、填空题9.tan 405°-sin 450°+cos 750°= .10.使得lg(cos αtan α)有意义的角α是第 象限角.11.若角α的终边与直线y =3x 重合且sin α<0,又P(m ,n)是α终边上一点,且|OP|=10,则m -n = .12.函数y =|sin x|sin x +|cos x|cos x -2|sin xcos x|sin xcos x 的值域是 .三、解答题13.化简下列各式:(1)sin 72π+cos 52π+cos(-5π)+tan π4;(2)a 2sin 810°-b 2cos 900°+2abtan 1 125°.四、探究与拓展14.已知角θ的终边上有一点P(x ,-1)(x≠0),且tan θ=-x , 则sin θ+cos θ= .15.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限;(2)若角α的终边与单位圆相交于点M ⎝ ⎛⎭⎪⎫35,m ,求m 的值及sin α的值.参考答案思考1 角α的正弦、余弦、正切分别等于什么?答案sin α=yr,cos α=xr,tan α=yx.思考2 对确定的锐角α,sin α,cos α,tan α的值是否随P点在终边上的位置的改变而改变?答案不会.因为三角函数值是比值,其大小与点P(x,y)在终边上的位置无关,只与角α的终边位置有关,即三角函数值的大小只与角有关.思考3 在思考1中,当取|OP|=1时,sin α,cos α,tan α的值怎样表示?答案sin α=y,cos α=x,tan α=yx.知识点二正弦、余弦、正切函数的定义域思考对于任意角α,sin α,cos α,tan α都有意义吗?答案由三角函数的定义可知,对于任意角α,sin α,cos α都有意义,而当角α的终边在y轴上时,任取一点P,其横坐标x都为0,此时yx无意义,故tan α无意义.思考根据三角函数的定义,你能判断正弦、余弦、正切函数的值在各象限的符号吗?答案由三角函数定义可知,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y),则sin α=y,cos α=x,tan α=yx.当α为第一象限角时,y>0, x>0,故sin α>0,cos α>0,tan α>0,同理可得当α在其他象限时三角函数值的符号,如图所示.梳理记忆口诀:“一全正,二正弦,三正切,四余弦”.思考当角α分别为30°,390°,-330°时,它们的终边有什么特点?它们的三角函数值呢?答案它们的终边重合.由三角函数的定义知,它们的三角函数值相等.例1解由题意知r=|OP|=x2+9,由三角函数定义得cos θ=xr=xx2+9.又∵cos θ=1010x,∴xx2+9=1010x.∵x≠0,∴x=±1.当x=1时,P(1,3),此时sin θ=312+32=31010,tan θ=31=3. 当x =-1时,P(-1,3), 此时sin θ=3(-1)2+32=31010,tan θ=3-1=-3. 跟踪训练1解 r =(-3a )2+(4a )2=5|a|.①若a>0,则r =5a ,角α在第二象限, sin α=y r =4a 5a =45,cos α=x r =-3a 5a =-35,∴2sin α+cos α=85-35=1.②若a<0,则r =-5a ,角α在第四象限, sin α=4a -5a =-45,cos α=-3a -5a =35, ∴2sin α+cos α=-85+35=-1.综上所述,2sin α+cos α=±1. 例2解 由题意知,cos α≠0.设角α的终边上任一点为P(k ,-3k)(k≠0),则 x =k ,y =-3k ,r = k 2+(-3k )2=10|k|. (1)当k>0时,r =10k ,α是第四象限角,sin α=y r =-3k 10k =-31010,1cos α=r x =10kk =10,∴10sin α+3cos α=10×⎝ ⎛⎭⎪⎫-31010+310 =-310+310=0.(2)当k<0时,r =-10k ,α是第二象限角, sin α=y r =-3k -10k =31010,1cos α=r x =-10k k =-10, ∴10sin α+3cos α=10×31010+3×(-10) =310-310=0.综上所述,10sin α+3cos α=0.跟踪训练2解 因为角α的终边在直线y =3x 上,所以可设P(a ,3a)(a≠0)为角α终边上任意一点,则r =a 2+(3a )2=2|a|(a≠0). 若a>0,则α为第一象限角,r =2a , 所以sin α=3a 2a =32,cos α=a 2a =12,tan α=3a a= 3. 若a<0,则α为第三象限角,r =-2a , 所以sin α=3a -2a =-32,cos α=-a 2a =-12,tan α=3aa= 3. 例3答案 D解析 ∵α为第二象限角,∴sin α>0,cos α<0, ∴点P 在第四象限,故选D. (2)确定下列各三角函数值的符号. ①sin 182°;②cos(-43°);③tan 7π4.解 ①∵182°是第三象限角, ∴sin 182°是负的,符号是“-”. ②∵-43°是第四象限角,∴cos(-43°)是正的,符号是“+”. ③∵7π4是第四象限角,∴tan 7π4是负的,符号是“-”.跟踪训练3 答案 二解析 由题意知tan α<0,cos α<0, ∴α是第二象限角. (2)判断下列各式的符号.①sin 145°cos(-210°);②sin 3·cos 4·tan 5. 解 ①∵145°是第二象限角,∴sin 145°>0.∵-210°=-360°+150°,∴-210°是第二象限角, ∴cos (-210°)<0,∴sin 145°cos(-210°)<0. ②∵π2<3<π<4<3π2<5<2π,∴sin 3>0,cos 4<0,tan 5<0, ∴sin 3·cos 4·tan 5>0. 例4解:(1)原式=sin(-4×360°+45°)cos(3×360°+30°) +cos(-3×360°+60°)sin(2×360°+30°) =sin 45°cos 30°+cos 60°sin 30° =22×32+12×12=64+14=1+64. (2)原式=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos ⎝ ⎛⎭⎪⎫2π+2π5·tan (4π+0)=sin π6+cos 2π5×0=12.跟踪训练4解:(1)原式=cos ⎝ ⎛⎭⎪⎫8π+π3+tan ⎝ ⎛⎭⎪⎫-4π+π4=cos π3+tan π4=12+1=32.(2)原式=sin(90°+2×360°)+tan(45°+2×360°)-cos 360° =sin 90°+tan 45°-1=1+1-1=1.1.答案 D解析 由题意可知x =-4,y =3,r =5,所以cos α=x r =-45.故选D.2.答案 C 解析 cos(-11π6)=cos(-2π+π6)=cos π6=32. 3.答案 D 解析 ∵cos α=332+y 2=35,∴32+y 2=5,∴y 2=16, ∵y<0,∴y=-4,∴tan α=-43.4.答案 C解析 ∵α为第二象限角,∴sin α>0,cos α<0. ∴|sin α|sin α-cos α|cos α|=sin αsin α-cos α-cos α=2.5.解:当k>0时,令x =24k ,y =7k , 则有r =(24k )2+(7k )2=25k ,∴sin α=y r =725,cos α=x r =2425,tan α=y x =724.当k<0时,令x =24k ,y =7k ,则有r =-25k ,∴sin α=y r =-725,cos α=x r =-2425,tan α=y x =724.课时作业 1.答案 D解析 sin(-1 380°)=sin(-360°×4+60°)=sin 60°=32. 2.答案 D解析 ∵cos α=x r =x x 2+5=24x ,∴x=0或2(x 2+5)=16,∴x=0或x 2=3,∴x=0(∵α是第二象限角,∴舍去)或x =3(舍去)或x =- 3.故选D. 3.答案 D 4.答案 D 解析 ∵sin2π3=32,cos 2π3=-12.∴角α的终边在第四象限, 且tan α=cos2π3sin2π3=-33,∴角α的最小正值为2π-π6=11π6.5.答案 A解析 sin(2kπ+α)=sin α=-35<0,则α的终边在第三或第四象限.又点P 的横坐标为正数,所以α是第四象限角,所以t <0. 又sin α=4t9+16t 2,则4t 9+16t2=-35,所以t =-916. 6.答案 A解析 由三角函数定义可得Q ⎝⎛⎭⎪⎫cos 2π3,sin 2π3,cos 2π3=-12,sin 2π3=32. 7.答案 C解析 由题意知sin θ+cos θ<0,且sin θcos θ>0,∴⎩⎪⎨⎪⎧sin θ<0,cos θ<0,∴θ为第三象限角.8.答案 C9.答案32解析:tan 405°-sin 450°+cos 750°=tan(360°+45°)-sin(360°+90°)+cos(720°+30°) =tan 45°-sin 90°+cos 30°=1-1+32=32. 10.答案 一或二解析 要使原式有意义,需cos αtan α>0,即需cos α,tan α同号, 所以α是第一或第二象限角. 11.答案 2解析 ∵y=3x 且sin α<0,∴点P(m ,n)位于y =3x 在第三象限的图象上,且m<0,n<0,n =3m. ∴|OP|=m 2+n 2=10|m|=-10m =10,∴m=-1,n =-3,∴m-n =2. 12.答案 {-4,0,2}解析 由sin x≠0,cos x≠0知,x 的终边不能落在坐标轴上, 当x 为第一象限角时,sin x>0,cos x>0,sin xcos x>0,y =0; 当x 为第二象限角时,sin x>0,cos x<0,sin xcos x<0,y =2; 当x 为第三象限角时,sin x<0,cos x<0,sin xcos x>0,y =-4; 当x 为第四象限角时,sin x<0,cos x>0,sin xcos x<0,y =2. 故函数y =|sin x|sin x +|cos x|cos x -2|sin xcos x|sin xcos x 的值域为{-4,0,2}.13.解:(1)原式=sin 32π+cos π2+cos π+1=-1+0-1+1=-1.(2)原式=a 2sin 90°-b 2cos 180°+2abtan(3×360°+45°) =a 2+b 2+2abtan 45°=a 2+b 2+2ab =(a +b)2. 14.答案 0或- 2解析 ∵θ的终边过点P(x ,-1)(x≠0),∴tan θ=-1x .又tan θ=-x ,∴x 2=1,即x =±1. 当x =1时,sin θ=-22,cos θ=22,因此sin θ+cos θ=0; 当x =-1时,sin θ=-22,cos θ=-22, 因此sin θ+cos θ=- 2.故sin θ+cos θ的值为0或- 2.15.解:(1)∵1|sin α|=-1sin α,∴sin α<0.①∵lg(cos α)有意义,∴cos α>0. ②由①②得角α在第四象限.(2)∵点M(35,m)在单位圆上,∴(35)2+m 2=1,解得m =±45.又α是第四象限角,∴m<0,∴m=-45.由三角函数定义知,sin α=-45.。

相关文档
最新文档