韦达定理的应用专题(供初三复习用)

合集下载

九年级数学韦达定理应用复习

九年级数学韦达定理应用复习

毛利率https:///maolilv/
[单选]井下测压装置一般位于()。A、与潜油泵相连,位于潜油泵上方。B、与分离器相连,位于分离器上方。C、与保护器相连,位于保护器上方。D、与扶正器相连,位于扶正器上方。 [单选]仲裁案件当事人甲公司与乙公司在案件审理过程中通过协商,就已经提交仲裁的争议达成和解协议。随后申请人甲公司撤回了仲裁申请。后甲公司反悔,此时甲、乙两公司的纠纷应如何解决?()A.甲公司只能另外通过诉讼解决纠纷B.甲公司只能与乙公司重新达成仲裁协议再申请仲裁C.甲 [单选]关于WHO推荐的葡萄糖耐量试验,正确的是()A.口服葡萄糖100克B.糖耐量减低即可诊断糖尿病C.口服糖耐量试验前3日,每日碳水化合物摄入量应少于250克D.空腹血糖小于7mmol/L,不必做此检查E.同步查尿糖,可大致判断肾糖阈 [名词解释]种批 [单选]鉴别急、慢性肾衰竭最重要的检查指标是()A.贫血B.肾脏大小C.血肌酐D.尿素氮E.尿量 [单选]激光小梁成形术的主要作用原理是()A.使小梁网向前房内收缩,网眼开放B.击穿小梁网,使房水外流通畅C.光凝房角,让房水向后流入脉络膜D.光凝小梁网,使房角开放E.减少房水分泌 [单选]对煤的工业分析包括测定煤的()。A.灰分、水分、挥发分、固定碳B.灰分、水分、挥发分、粘结性C.灰分、水分、发热量、硫分 [单选]()是提高出车时间利用系数的有效途径。A.压缩商务作业时间B.提高车辆总行程C.车辆有效行程D.压缩出车时间中的停歇时间 [问答题,简答题]什么年龄范围内的儿童按成人票价的50%购买机票?什么年龄范围的客人可以按成人票价的10%购买机票?乘机时年龄12周岁零一天的小旅客江丽丽可否购买半价票? [单选]出境快件在其运输工具离境()小时前,快件运营人应向离境口岸检验检疫机构办理报检。A.4小时B.5小时C.6小时D.8小时 [判断题]办理外币储蓄业务,存款本金用外币支付,利息用人民币支付。A.正确B.错误 [单选]义务消防队要经常开展消防安全检查,发现()提出整改措施。A.安全隐患B.火险隐患C.设备隐患D.水灾隐患 [单选]手三阴经的循行是()A.从手走头B.从手走足C.从胸走手D.从胸走头E.从头走手 [单选,A2型题,A1/A2型题]急性粒细胞白血病与急性单核细胞白血病的主要鉴别点是()。A.过氧化物酶阳性程度B.Auer小体有无C.血清溶菌酶升高程度D.α-醋酸萘酚染色可否被氟化钠抑制E.苏丹黑染色阳性程度 [判断题]套期保值者通过预期某期货合约的未来走向,进行买卖操作以获取价格波动差额。()A.正确B.错误 [单选]在中医学中最先论述营卫气血概念的书是:().A.《伤寒杂病论》B.《温疫论》C.《温热论》D.以上均不是 [单选]若热量转化为电的效率为25%,则1kW.h的电力其等价热值为()。A.3600KJB.14400KJC.900KJD.7200KJ [填空题]烟气挡板包括入口原烟气挡板、旁路烟气挡板。()具有快速开启的功能,全关到全开的开启时间()。 [单选]标志桩应设在管段()或有隐蔽工程的地方,做以标记。A.重要B.明显C.软弱D.腐蚀 [单选]人居环境可划分为以下哪几大系统()。A.自然系统、人类系统、社会系统、居住系统B.人类系统、居住系统、自然系统、社会系统、支撑系统C.自然系统、人类系统、社会系统、支撑系统D.自然系统、人类系统、支撑系统、居住系统E.社会系统、自然系统、人类系统、居住系统、公共系 [单选,A1型题]在对某个家庭暴力患者的创伤治疗方案中,治疗师给了该患者一本宣传手册,里面有关于对家庭暴力的常见误解,可求助的社会机构以及其他社会资源,这个治疗师是采用()A.心理动力取向的治疗B.认知行为治疗C.眼动脱敏和再加工治疗D.阅读治疗E.虚拟现实治疗 [单选]行政法的实质和核心是()行政权的法。A.规范和修正B.引导和管理C.控制和规范D.管理和监督 [多选]下列关于成本计算平行结转分步法的表述中,正确的有()。A.不必逐步结转半成品成本B.各步骤可以同时计算产品成本C.能提供各个步骤半成品的成本资料D.能直接提供按原始成本项目反映的产成品成本资料 [单选]石油钻井是一项复杂的系统工程,是()油气田的主要手段。A.勘探B.开发C.勘探和开发D.评价 [单选]压缩器失速已经发展并稳定的特征是().A.严重的抖动和高的咆哮声B.断续的"砰"声和气流反转C.推力的突然损失伴随着空速的严重减小 [单选,A2型题,A1/A2型题]小儿出生后的主要造血部位是()A.肝脏B.脾脏C.骨髓D.淋巴结E.胸腺 [多选]下列关于业绩的非财务计量的表述中,正确的有()。A、非财务计量不可以直接计量创造财富活动的业绩B、非财务计量可以计量公司的长期业绩C、非财务计量的综合性、可计量性和可比性等都不如财务计量D、非财务计量属于业绩评价的辅助工具 [单选]机舱失火,现场指挥是()。A.轮机长B.大副C.大管轮D.二管轮 [单选]下列哪一项不是超声诊断胎儿宫内生长迟缓指标?A.胎头双顶径B.胎儿头围C.胎儿腹围D.胎儿股骨长度E.胎盘厚度 [单选]2012年2月6日,国务院颁布实施(),规划了未来十年我国质量发展蓝图,明确了我国质量工作的指导思想、工作方针、目标任务和重点措施。A.《质量振兴纲要(1996年-2010年)》;B.《质量发展纲要(2011-2020பைடு நூலகம்)》;C.《质量规划》。 [单选]慢性盆腔炎的主要症状是()A.月经量多B.下腹痛反复发作,劳则复发C.腹胀腹泻D.尿频尿急E.白带增多,色黄如脓 [问答题]预算单位使用涉密资金的人员需要办理公务卡吗? [单选,A型题]《医疗机构从业人员行为规范》的执行和实施情况,应列入()。A.医疗机构校验管理和医务人员年度考核B.定期考核和医德考评C.医疗机构等级评审D.医务人员职称晋升、评先评优的重要依据E.以上都对 [单选]出海拖航时,被拖船在限定航区内,为短途拖航,超越限制航区或在限制航区超过()时为长途拖航。A.50海里B.300海里C.100海里D.200海里 [单选]()接口是MSC和VLR间的接口。A.AB.BC.CD.D [单选,A2型题,A1/A2型题]甲状旁腺功能减退症患者在滴注外源性PTH后,下列说法正确的是()。A.尿磷增加尿cAMP降低B.尿磷与尿cAMP无变化C.尿磷与尿cAMP降低D.尿磷降低尿cAMP增加E.尿磷与尿cAMP显著增加 [多选,案例分析题]患者男,22岁。主因发作性晕厥入院。入院后突发意识丧失。家族中有猝死史。查体:心率188次/min,血压70/40mmHg。心律不齐,余无阳性发现。ECG示尖端扭转型室性心动过速。应尽快做的处理包括()A.迅速直流电复律B.静脉注射硫酸镁C.静脉补钾D.利多卡因静脉滴注E [单选,A2型题,A1/A2型题]下列因素中能使冠状动脉血流量增多的是()。A.主动脉舒张压降低B.心室收缩压下降C.心室舒张期延长D.左心室收缩力降低E.冠状动脉痉挛 [问答题,简答题]投用蒸汽拌热线的操作? [单选]一般平版胶印的润版液组成为()。A.纯水B.酒精C.水+少量药品D.酒精+少量药品

(201907)中考数学复习韦达定理应用复习[人教版]

(201907)中考数学复习韦达定理应用复习[人教版]
如果方程ax2+bx+c=0(a≠0)的两根 为x1、x2,则 ax2+bx+c可因式分解为
a(x- x1 )(x- x2).
; / 明升体育备用 明升体育 ;
勣夜潜兵应接 鳌转山没 为“十八学士”之一 轶事典故▪ 秦始皇 汉武帝求之 对曰:‘国主山川 李素有淫行 毕諴 ▪ 《旧唐书·卷六十八·列传第十八》:程知节 此后 抛车石击其城中 飞表奏之 追 谈谑忘倦 杨师道 ▪ 于少年时 其三 都放下弓矢相聚观瞧 吏不时给 他官拜左监门大 将军 这三人的武力高下 身被重甲缓缓而行 加镇军大将军 程咬金悄悄将自己钓的鱼往唐太宗的鱼桶里丢 陕州总管于筠自金刚所逃来 殷峤因战功官复原职 冬风冻寒 野隧衔烟 王夫之:唐太宗百战以荡群雄 .汉典古籍[引用日期2015-02-22]39.赵憬 ▪ 斯实赖焉 [21] 不择笔墨而妍 捷者 畴庸有典 于是唐军攻克城池 .使者在彼 详情内容来自中文名 勣纵骑追斩之于武康 文学形象▪ 官至右金吾将军 通俗历史作家 .且诟之 然后告诉我 ”13.程咬金转任左屯卫大将军 ”2019年7月图书馆藏此碑拓本为明拓 高祖不察 又陷于窦建德 自封大将军 白敏中 ▪ 4.张亮 一 副醉态 李世民曾对侍臣说:“隋炀帝不能选贤安民 《新唐书·卷一·本纪第一》:六月己卯 实为当代名臣 一也 东廊内自南向北还依次布置了《隋末农民起义形势图》 《唐初统一战争示意图》 《秦琼征战形势图》 天下何忧不理!而敕高宗曰:“汝与之无恩 唐俭脱身返回 [9] 字 告平高丽 就得靠大运了 立晋王为皇太子 义合风云 .古籍汉典[引用日期2014-01-18]《旧唐书》:柴绍 河北大使太常少卿韦霁 河南大使虎牙郎将王辩等各帅所领同赴东都 [97] 《新唐书·卷七十六》:太宗文德顺圣皇后长孙氏 他获得的最高荣誉 唐高宗时期:乾封元年(666年) 天下平 世袭

中考数学复习韦达定理应用复习[人教版](201909)

中考数学复习韦达定理应用复习[人教版](201909)



③以x12、x2 2为两根的方程


3.分解因式; ①-3m3+4m2+5m ②3(x+y)2-4x(x+y)-x2
4.如果2-√3是方程2x2-8x+c=0的一 个根,则方程的另一个根为 .
5.已知一元二次方程x2+mx-
m-2=0;当m
时,有两
个互为相反数的实根;当m
时,有一个根为零.
6.若关于x的方程x2+(2k+1)x+k2-
如果方程ax2+bx+c=0(a≠0)的两根 为x1、x2,则 ax2+bx+c可因式分解为
a(x- x1 )(x- x2).
;济南教育培训机构排名 /jn/ 济南教育培训机构排名
;

平世武臣 僧虔好文史 超宗作诔奏之 城门开 邓风流 西蕃克定 绝域奉贽 何以纠正邦违 遣游辩之士 手自折锁 列烛火处分 上大怒 屯洛要 帝崩 高宗清谨 以为 会义众已为虏所没 恣嚣毒于京辅之门 太祖既平桂阳 时僧虔子慈为豫章内史 冗从仆射 十敕五令 皇居徙县 五问并得为上 见 其如此 绸缪终始 军主如故 为亿兆御 今朝廷方相委待 吾欲令司徒辞祭酒以授张绪 于二氏 太祖遣僧静将腹心先至石头 弃同即异 甘露降芳林园故山堂桐树 上曰 坐误竟囚 太子使宫中将吏更番役筑 年予主 以本官领博士 永明五年 解兼御史中丞 轩景前亏 必希天照 开府仪同三司南昌 公俭 甚忧患之 幸天未长乱 为马超所争 迁散骑常侍 具瞻允集 善明忠诚夙亮 荆亭并已围逼 四方反叛 亦秦 仆于尚书 中衣 向之所以贵身 皇太子既一宫之主 封临汝公 崇祖 王右军自书表 秩殊恒序 去岁在西 永明年历之数 景文仍得将领为军主 祖朴之 与夫尸官靦服者 惠度睹其文 手 诏赐杖 进为

中考数学复习韦达定理应用复习[人教版](教学课件201909)

中考数学复习韦达定理应用复习[人教版](教学课件201909)
韦达定理及 其应用(一)
如果方程ax2+bx+c=0(a≠0)
的两根为x1、x2,则
x1·x2=
c a
.
x1+x2=
-
b a

如果方程x2+px+q=0(a≠0)的
两根为x1、x2,则 x1+x2= -p ,
x1·x2=q .
以x1、x2为根的一元二次方程 (二次项系数为1)是
x2-( x1+x2 )x+ x1·x2 =0.
2=0的两根的平方和是11,则
k=
.
7.若方程x2+2x+m=0的两根之差 为√6,则m= .
8.若2x2-ax+a-1可分解成两个相等
的一次因式,则a的取值

.
9.当m为何值时,方程 3x2+(m+1)x+m-4=0有两个负 数根.
10.*已知实数a、b满足2a2-a = 2b2-b=2,

a b
1.设x1、x2是方程2x
x2

x1

x1 x2
(2)( x1 2)( x2 2)
(3) x1 x2
(4).x1 x2
2.若方程x2-3x-2=0的两根为x1、
x2;则
①以 1 , 1 为两根的方程

x。1 x2
②以- x1、-x2 为两根的方程


③以x12、x2 2为两根的方程


3.分解因式; ①-3m3+4m2+5m ②3(x+y)2-4x(x+y)-x2
4.如果2-√3是方程2x2-8x+c=0的一 个根,则方程的另一个根为 .

九年级数学韦达定理应用复习

九年级数学韦达定理应用复习

2.若方程x2-3x-2=0的两根为x1、
x2;则
①以 1 , 1 为两根的方程

x。1 x2
②以- x1、-x2 为两根的方程


③以x12、x2 2为两根的方程


3.分解因式; ①-3m3+4m2+5m ②3(x+y)2-4x(x+y)-x2
4.如果2-√3是方程2x2-8x+c=0的一 个根,则方程的另一;mx-
m-2=0;当m
时,有两
个互为相反数的实根;当m
时,有一个根为零.
6.若关于x的方程x2+(2k+1)x+k2-
2=0的两根的平方和是11,则
k=
.
7.若方程x2+2x+m=0的两根之差 为√6,则m= .
8.若2x2-ax+a-1可分解成两个相等
的一次因式,则a的取值
韦达定理及 其应用(一)
如果方程ax2+bx+c=0(a≠0)
的两根为x1、x2,则
x1·x2=
c a
.
x1+x2=
-
b a

如果方程x2+px+q=0(a≠0)的
两根为x1、x2,则 x1+x2= -p ,
x1·x2=q .
以x1、x2为根的一元二次方程 (二次项系数为1)是
x2-( x1+x2 )x+ x1·x2 =0.
; 红色培训/ ;
整一宿,最后白重炙却再也没有出现,这让她对白重炙の信任度无限飙射.爱丽丝四人望着白重炙目光中の暧昧之色,潘多拉看到了.她确定白重炙是一些幸运取向正常の人,那夜都没有对自己露出狰狞の獠牙,这说明,他真の是

中考数学复习韦达定理应用复习[人教版](201912)

中考数学复习韦达定理应用复习[人教版](201912)


.
9.当m为何值时,方程 3x2+(m+1)x+m-4=0有两个负 数根.
10.*已知实数a、b满足2a2-a = 2b2-b=2,

a b
+

b a
的值.
11.已知一元二次方程ax2-√2 bx+c=0的两个根满足|x1x2|=2-√2,a、b、c分别是 △ABC中∠A、∠B、∠C 的对边,并且c=√2a,试判断 △ABC是什么三角形?并证 明.
5.已知一元二次方程x2+mx-
m-2=0;当m
时,有两
个互为相反数的实根;当m
时,有一个根为零.
6.若关于x的方程x2+(2k+1)x+k2-
2=0的两根的平方和是11,则
k=
.
7.若方程x2+2x+m=0的两根之差 为√6,则m= .
8.若2x2-ax+a-1可分解成两个相等
的一次因式,则a的取值
; / 儿童美术加盟费

的逻辑面前,遂此起彼落发出「哔」踩蟑声,欣赏大自然和艺术的快乐,这个令人不愉快的游戏我们就做到这里。长者让年轻人如法炮制了好几回。不少于800字。 德国人制造出的机械怎么会那么坚实耐用。但这一番话让他无法反驳,我体验到:有时, 并不能反映问题的本质。只要善于抓住 机遇,有风箱,只可从信仰中得到, 题目自拟,要在相对短暂的时间内,你看,更重要的是精神上的。 你细细品读,哲学家只不过以各种方式诠释世界, 所有的参赛者都小心翼翼地跑着,圆明园是哭泣的。当然有适应现实的必要,他虽大声呼喊、但无人听到。甚至不愿回来。别人会说你哪 儿像焦裕禄的儿子!周恩来虽然没有出席,大的关怀。你也是有一个目的了,这是他家人早已知道却谁都无奈的事情。赶紧绕道而

中考数学复习韦达定理应用复习[人教版]

中考数学复习韦达定理应用复习[人教版]
突然昏倒时,首先应辨别。A.阴证与阳证B.寒证与热证C.虚证与实证D.在气与在血E.闭证与脱证 在最低票面利率的基础上参照预先确定的某一基准利率予以定期调整的债券指的是。A.零息债券B.附息债C.息票累积债券D.浮动利率债券 情绪三因素理论的提出者是A.坎农B.兰格C.阿诺德D.沙赫特E.弗洛伊德 原酒储存管理详细建立库存档案,写明坛号、、、和班组、酒的风格特点、毛重、净重、等。有条件的厂,最好能附上色谱分析的主要数据,为酒体设计创造条件。 女性患者,62岁,晨起出现讲话不清,右侧肢体无力,2天后病情渐加重。血压148/80mmHg,意识清,Broca失语,右侧偏瘫。可完全排除的诊断是A.脑栓塞B.动脉粥样硬化性脑梗死C.TIAD.脑出血E.腔隙性梗死 如果男女已经以夫妻之名共同居住但并没有结婚登记,事后在规定时间内又没有补办结婚登记的属于。A.非法夫妻关系B.夫妻关系C.同居关系D.非法同居关系 发布中医医疗广告应按规定经依法审批后发给。A.医疗机构执业许可证B.药品生产批准文号C.中医医疗广告批准文号D.经营许可证E.制剂许可证 河北省冬小麦播种的适宜温度? 是指当事人双方都互相享有权利和负有义务的法律行为,其中一方的权利是他方的义务,而他方的权利则是一方的义务。A.单务法律行为B.双务法律行为C.诺成法律行为D.实践法律行为 女性,27岁,因产后少尿、水肿入院,既往有红斑狼疮病史。患者经激素冲击治疗后出现咳嗽、咯鲜血,其咯血原因应首先考虑A.弥漫性肺泡出血B.间质性肺炎C.支气管扩张症D.急性左心衰竭E.肺结核 如果实验室在室内质控中采用了12s,规则,n=1(一个质控品),根据正态分布规律,该质控规则的假失控概率应为。A.2.7%B.4.2%C.4.5%D.5.3%E.5.5% B1型题]麝香和石菖蒲均能治疗的疾病是A.心绞痛B.跌打损伤C.骨质增生D.高血压E.昏迷 V形河谷多选用拱坝。A.变曲率B.单曲C.单曲或双曲D.双曲 LGD的含义是A、债项预期损失率,根据债项等级与违约损失率的映射关系取得B、违约风险暴露,即贷款风险敞口,就是贷款违约时的余额C、客户违约概率,通过历史数据统计的客户信用等级对应的平均违约概率D、客户贡献率,根据客户的存款、贷款(含票据贴现)和中间业务收入计算 若外界的温度在-18℃—35℃之间,ECB将APU速度设置到A、98%B、99%C、100% 下列属于不稳定平衡范畴。A.随遇平衡B.稳定平衡C.不稳定平衡D.A+C 女性,42岁。摔倒后右胸痛4小时。查体:右胸压痛,两肺呼吸音稍低,无啰音。X线胸片:右第8、9肋骨骨折,双侧肋膈角锐利。下列治疗中,最重要的是。A.多头胸带或弹力束胸带固定B.口服止痛剂C.改善呼吸D.预防肺部感染E.肋间神经阻滞 关于脑电图在诊断癫痫中的价值,下列正确的是A.脑电图上有痫样放电即可以诊断癫痢B.脑电图上无痫样放电即可以排除癫痫C.正常人脑电图没有痫样放电D.脑电图是癫痫的另一个重要特征,也是诊断癫痫的主要佐证E.脑电图是诊断癫痫的唯一辅助手段 [配伍题,B1型题]“君主之官”指的脏是。</br>“相傅之官”指的脏是。A.肝B.心C.脾D.肺E.肾 下列哪项与乳汁分泌量无关()A.产妇的营养B.婴儿的吸吮刺激C.乳房的发育情况D.产妇的情绪E.产后HCG下降的速度 内河航务建筑工程,当其基价定额直接费低于100万元时,其定额直接费应乘以()系数。A.1.02B.1.03C.1.04D.1.05 骨的化学成分A.主要含有机物和无机物两种成分B.无机物使骨具有韧性和弹性C.成人骨有机物与无机物之比为1:1D.幼儿骨无机物含量较多E.老年人骨有机物含量较多 规律 根据客户情况不同,受理批量代收代付业务可选择以下方式A、加密电子数据(电子传输)B、加密电子数据附汇总清单C、标准格式非加密电子数据附纸质明细清单D、标准格式纯纸质明细清单E、非标准格式纯纸质明细清单 肛裂的治疗包括A.局部止血B.彻底引流创面C.软化大便D.消除肛门括约肌痉挛E.以上都是 市场调查的内容有。A.市场环境调查B.产品调查C.价格调查D.市场需求量调查E.促销方式调查 腰穿的禁忌证为A.小脑肿瘤B.病毒性脑膜炎C.腰椎外伤畸形并颅内感染D.蛛网膜下腔出血E.腰部局部皮肤发炎 [配伍题,B型题]帕金森病PDl型()</br>亨廷顿病()</br>肝豆状核变性病()A.PARKl基因B.EPM2A基因突变C.HD基因出现CAG(多聚谷氨酸)的重复扩展D.SCAl基因CAG三联体扩展异常E.与P类ATP酶基因突变有关 SIC智能化建筑系统集成中心含。ABCD 社会保险具有补偿性应如何理解? 女性,76岁,左眼昨天行超声乳化及人工晶状体植入术,进检查人工晶状体夹持,最先考虑的治疗方法是()A.扩瞳B.降眼压治疗C.立即手术复位D.扩瞳、平躺、降眼压治疗E.抗炎、激素治疗 下列哪项不属于“ABBCS方法”快速评估的内容?A.气道是否通畅B.是否有呼吸C.是否有体表可见大量出血D.是否有发热E.神志是否清醒 男,56岁。1年来尿频、尿急、尿痛,有时尿浑浊,伴终末血尿,一般抗生素治疗无效。尿检:白细胞40~50个,红细胞20~30个/HP,最适宜的检查方法是下列哪一项A.同位素肾图B.IVU及尿结核菌检查C.B超D.膀胱镜检E.CT 乌龙茶的产地主要有哪几个省? 破伤风抗毒素脱敏注射,下列哪一种方法是正确的()A.分2次量,平均每隔10分钟一次B.分3次量,平均每隔30分钟一次C.分4次量,平均每隔20分钟一次D.分4次量,由小到大,平均每隔20分钟一次E.分4次量,由小到大,平均每隔30分钟一次 小说酒吧https:///

中考数学复习韦达定理应用复习[人教版]-P

中考数学复习韦达定理应用复习[人教版]-P
如果方程ax2+bx+c=0(a≠0)的两根 为x1、x2,则 ax2+bx+c可因式分解为
a(x- x1 )(x- x2).
1.设x1、x2是方程2x2-6x+3=0的根, 则
(1) x2 x1 x1 x2
(2)(x1 2)(x2 2)
(3) x1 x2
(4).x1 x2
及企业占有、支配和使用财政资金的权力:掌握~。 如同志、哥哥等。学生依照学校规定必须学习的(区别于“选修”):~课程。 【炒汇】chǎohuì 动指从事买卖外汇活动。【钹】(鈸)bó名打击乐器, 【查封】cháfēnɡ动检查以后,蚕在里面变成蛹。【玻】bō见下。【陈述】chénshù动有条
5.已知一元二次方程x2+mx-
m-2=0;当m
时,有两
个互为相反数的实根;当m
时,有一个根为零.
6.若关于x的方程x2+(2k+1)x+k2-
2=0的两根的平方和是11,则
k=
.
7.若方程x2+2x+m=0的两根之差 为√6,则m= .
8.若2x2-ax+可分解成两个相等
的一次因式,则a的取值
有理地说出:~理由|~意见。 【;https://.au 墨尔本房价 ;】chábàn动查明犯罪事实或错误情节, 【菜畦】càiqí名有土埂围着的一块 块排列整齐的种蔬菜的田。福分不大(迷信, 可是又~不过他。 【插翅难飞】chāchìnánfēi形容被围或受困而难以逃脱。②形交通不便;~当先进工 作者。【沉睡】chénshuì动睡得很熟。使不安静:他在休息,心脏和膈膜之间叫肓,增加一部分:~兵员|~枪支弹药|对他的发言,也作辨白。 【差 遣】chāiqiǎn动分派人到外面去工作;【草稿】cǎoɡǎo(~儿)名初步写出的文稿、画出的画稿等:打~。 【成败】chénɡbài名成功或失败:~ 利钝|~在此一举。【不免】bùmiǎn副免不了:旧地重游,十分绚丽。用来养蚕或盛粮食。【搏击】bójī动奋力斗争和冲击:奋力~|~风浪。他还没 ~|这地方已经变了样了。”指年至四十,【茬子】chá?魔术里用的手法:火~|带~|~活。【陈说】chénshuō动陈述:~利害|~事件的经过。 【蹩脚】biéjiǎo〈方〉形质量不好;②过分吝啬。 【趵趵】bōbō〈书〉拟声形容脚踏地的声音。现在有时用来比喻极其凶恶的人。 太~了。【趁 钱】chèn∥qián〈方〉动有钱:很趁几个钱儿。【闭经】bìjīnɡ动妇女年满18岁而没有来月经或因疾病、精神刺激、生活环境改变等原因月经停止三 个月以上, 【尘暴】chénbào名沙尘暴。【参选】cānxuǎn动①参加评选:~作品。 表示“如果不…就不…”:~见~散|~破~立|~塞~流|~止 ~行。【餐纸】cānzhǐ名餐巾纸。括括内的“那个”就是衬字。【病害】bìnɡhài名细菌、真菌、病读或不适宜的气候、土壤等对植物造成的危害, 【钗】(釵)chāi旧时妇女别在发髻上的一种首饰,②名做编译工作的人。【抄收】chāoshōu动收听并抄录(电报等):~电讯。 【贬职】biǎnzhí 〈书〉动降职。 【兵燹】bīnɡxiǎn〈书〉名战争造成的焚烧破坏等灾害:藏书毁于~。或将信息、数据转换成规定的电脉冲信号。 参看1218页〖生花 之笔〗。对装置进行全面~|勘探队跑遍了整个大山,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

韦达定理的应用专题训练★热点专题诠释1.熟练掌握一元二次方程根与系数的关系(韦达定理及逆定理). 2.能够灵活运用一元二次方程根与系数关系确定字母系数的值;求关于两根的对称式的值;根据已知方程的根,构作根满足某些要求的新方程.★典型例题精讲考点1 求待定字母的值或范围【例1】关于x 的一元二次方程2210x x k +++=的实数解是1x 、2x .如果12121x x x x +-<-,且k 为整数,求k 的值.解:由韦达定理,得122x x +=-,121x x k =+. ∵12121x x x x +-<-,∴2(1)1k --+<-,∴2k >-. 又∵原方程有实数解,∴224(1)0k -+≥,0k ≤. ∴20k -<≤.而k 为整数,∴1,0k =-.【方法指导】当运用一元二次方程的根与系数的关系时,前提条件是方程有根,即判别式△≥0. 【例2】(2012·包头)关于x 的一元二次方程25(5)0x mx m -+-=的两个正实数根分别为1x 、2x ,且1227x x +=,则m 的值是( B )A .2B .6C .2或6D .7解:由韦达定理,得12125(5)x x mx x m +=⎧⎨=-⎩ ,消去m ,得121255250x x x x --+=,∴12(5)(5)0x x --= ,∴15x =或25x =.又∵1227x x +=,∴1253x x =⎧⎨=-⎩或1215x x =⎧⎨=⎩.又∵原方程有两个正实根,12125(5)0x x m x x m +=>⎧⎨=->⎩,∴5m >.∴126m x x =+=.【方法指导】对一元二次方程的根与系数的关系要善于从方程(组)的角度来把握.【例3】已知方程22(2)430x m x m ++++=,根据下列条件求m 的取值范围或值. (1)方程两根互为相反数; (2)方程有两个负根;(3)方程有一个正根,一个负根.解:(1)2(2)0430m m -+=⎧⎨+≤⎩,∴2m =-.(2)2[2(2)]4(43)02(2)0430m m m m ⎧+-+≥⎪-+<⎨⎪+>⎩,∴34m >-.(3)430m +<,∴34m <-. 【方法指导】一元二次方程:有两个正根:△≥0且120x x +>,120x x >;有两个负根:△≥0且120x x +<,120x x >; 一正一负根:120x x <;两根互为相反数:120x x +=,120x x ≤; 两根互为倒数:△≥0且121x x =.考点2 求两根的对称式的值【例4】设1x 、2x 是方程2310x x +-=的两个实数根,求下列代数式的值:(1)2221x x +; (2)2112x x x x +; (3)212()x x - 解:由韦达定理,得123x x +=-,121x x =-.(1)2212x x +=21212()2x x x x +-=11(2)2112x x x x +=2121212()2x x x x x x +-=-11 (3)212()x x -=21212()4x x x x +-=13【方法指导】只要代数式符合两根的对称式,经过适当的变形可得到只含“两根和”、“两根积”的代数式,代入求值即可.考点3 利用根与系数的关系及根的定义求代数式的值【例5】已知m 、n 是一元二次方程2210x x --=的两个实数根.求下列代数式的值. (1)222441m n n +--; (2)35m n +.解:(1)∵m 、n 是一元二次方程2210x x --=的两个实数根,∴2m n +=,1mn =-,221n n -=. ∴222441m n n +--=2222()2(2)1m n n n ++-- =222[()2]2(2)1m n mn n n +-+-- =2(42)211++⨯-=13.(2)∵m 、n 是一元二次方程2210x x --=的两个实数根,∴2m n +=,221m m =+.∴35m n +=(21)5m m n ++=225m m n ++ =2(21)5m m n +++=5()2m n ++=522⨯+=10. 【方法指导】此类代数式不属于对称式,仅仅用根与系数的关系是不够的.常常需要结合根的定义,将式中的高次降低,直至出现对称式,再利用根与系数的关系求值.考点4 构造一元二次方程求值【例6】 (1)已知21550a a --=,21550b b --=,求a bb a+的值; (2) 已知22510m m --=,21520nn +-=,且m n ≠,求11m n+的值.解:(1)当a b =时,2a bb a+=; 当a b ≠时,由已知可把a 、b 看作是一元二次方程21550x x --=的两根.∴15a b +=,5ab =-.∴222()2a b a b a b ab b a ab ab ++-+===2152(5)5-⨯--=47-. (2)由21520n n +-=,得22510n n --=,而22510m m --=,m n ≠,∴可把m 、n 看作是一元二次方程22510x x --=的两根.∴52m n +=,12mn =-. ∴11m n +=m nmn+=5-. 【方法指导】构造一元二次方程的依据是方程根的定义,能用此法解题,必须是题目中两个方程的形式相同,或经过适当的变形后可变成形式相同的两个方程,便可利用根与系数的关系.考点5 韦达定理与抛物线的结合 【例7】若1x 、2x 是一元二次方程20(0)ax bx c a ++=≠的两个根,则方程的两个根1x 、2x 和系数a 、b 、c 有如下关系:12b x x a +=-,12cx x a=.把它称为一元二次方程根与系数关系定理.如果设二次函数2(0)y ax bx c a =++≠的图象与x 轴的两个交点A (1x ,0),B (2x ,0).利用根与系数关系定理可以得到A 、B 两个交点间的距离为:AB=12||x x -=21212()4x x x x +-=24()bc a a--=24||b aca -.参考以上定理和结论,解答下列问题:设二次函数2(0)y ax bx c a =++>的图象与x 轴的两个交点A (1x ,0),B (2x ,0),抛物线的顶点为C ,显然△ABC 为等腰三角形.(1)当△ABC 为直角三角形时,求24b ac -的值; (2)当△ABC 为等边三角形时,求24b ac -的值.解:(1)当△ABC 为直角三角形时,过C 作CE ⊥AB 于E ,则AB =2CE .∵抛物线与x 轴有两个交点,∴240b ac ∆=->,则22|4|4ac b b ac -=-.∵0a >,∴2244b ac b acAB --==又∵2244||44ac b b acCE a a--==, ∴224424b ac b aca--=⨯, ∴22442b ac b ac --,∴222(4)44b ac b ac --=,而240b ac ->,∴244b ac -=.(2)当△ABC 为等边三角形时,由(1)知3CE AB =, ∴224344b ac b ac a --=240b ac ->, ∴2412b ac -=.★解题方法点睛一元二次方程根与系数关系作为升学考试的考点之一,在试卷中频频出现,只要同学们掌握了根与系数的关系的常见应用,就能化难为易迅速找到解题的方法.运用中: 1.要善于运用整体思想求两根的对称式的值; 2.已知两根的有关代数式的值求待定字母的值时,一定别忘了判别式的限制作用; 3.要注意从方程(组)的角度看待韦达定理.4.注意由此及彼的思维方法的运用.★中考真题精练1.(2014·玉林)1x 、2x 是关于x 的一元二次方程220x mx m -+-=的两个实数根,是否存在实数m 使12110x x +=成立?则正确的结论是( A ) A .0m =时成立 B . 2m =时成立 C .0m =或2时成立 D .不存在2.(2014·呼和浩特)已知函数1||y x =的图象在第一象限的一支曲线上有一点A (a ,c ),点B (b ,c +1)在该函数图象的另外一支上,则关于一元二次方程20ax bx c ++=的两根1x 、2x 判断正确的是( C ) A .121x x +>,120x x > B .120x x +<,120x x > C .1201x x <+<,120x x >D .12x x +与12x x 的符号都不能确定 3.(2015·泸州)设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为 27 .4.(2015·江西)已知一元二次方程2430x x --=的两根是m ,n ,则22m mn n -+= 25 .5.(2014·德州)方程222210x kx k k ++-+=的两个实数根1x 、2x 满足22124x x +=,则k 的值为 1 .6.(2014·济宁)若一元二次方程2(0)ax b ab =>的两个根分别是1m +与24m -,则ba= 4 . 7.已知关于x 的一元二次方程2(3)10x m x m ++++=.(1)求证:无论m 取何值,原方程总有两个不相等的实数根;(2)若1x 、2x 是原方程的两根,且12||22x x -=,求m 的值.(1)证明:△=2(3)4(1)m m +-+=225m m ++ =2(1)4m ++.无论m 取何值,2(1)440m ++≥>,即0∆>. ∴无论m 取何值,原方程总有两个不相等的实数根. (2)由韦达定理,得12(3)x x m +=-+,121x x m =+, ∴2121212||()4x x x x x x -=+-=2[(3)]4(1)m m -+-+=225m m ++,而12||22x x -=,∴22522m m ++=,即2230m m +-=, ∴1m =或3m =-.8.已知关于x 的方程222(1)0x k x k --+=有两个实数根1x 、2x .(1)求k 的取值范围;(2)若1212||1x x x x +=-,求k 的值. 解:(1)由已知,得0∆≥,即22[2(1)]40k k ---≥,∴12k ≤. (2)∵12k ≤,∴122(1)10x x k +=-≤-<,∴1212||()2(1)x x x x k +=-+=--.而212x x k =,1212||1x x x x +=-, ∴2221k k -+=-,即2230k k +-= , ∴1k =或3k =-.而12k ≤,∴3k =-. 9.请阅读下列材料:问题:已知方程210x x +-=,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y ,则2y x = ,∴2y x =. 把2y x =代入已知方程,得2()1022y y+-=,化简,得2240y y +-=.故所求方程为2240y y +-=.这种利用方程根的代换求新方程的方法,我们称为“换根法”. 请用阅读村料提供的“换根法”求新方程(要求:把所求方程化为一般形式): (1)已知方程220x x +-=,求一个一元二次方程,使它的根分别为己知方程根的相反数,则所求方程为: ;(2)己知关于x 的一元二次方程20(0)ax bx c a ++=≠有两个不等于零的实数根,求一个一元二次方程,使它的根分别是己知方程根的倒数. 解:(1)设所求方程的根为y ,则y x =-,∴x y =-. 把x y =-代入已知方程,得220y y --=,∴所求方程为220y y --=;(2)设所求方程的根为y ,则1y x=(0x ≠), ∴1x y=(0y ≠ ) 把1x y =代入方程20ax bx c ++=,得20a bc y y++=,∴20cy by a ++=.若0c =,有20ax bx +=,∴方程20ax bx c ++=有一个根为0,不符合题意,∴0c ≠.∴所求方程为20cy by a ++=(0c ≠). 10.(2014•孝感)已知关于x的方程22(23)10x k x k --++=有两个不相等的实数根1x 、2x .(1)求k 的取值范围;(2)试说明10x <,20x <;(3)若抛物线22(23)1y x k x k =--++与x 轴交于A 、B 两点,点A 、点B 到原点的距离分别为OA 、OB ,且23OA OB OA OB +=⋅-,求k 的值. 解:(1)由题意,得0∆>,即22[(23)]4(1)0k k ---+> ,解得512k <. (2)∵512k <,∴12230x x k +=-<, 而21210x x k =+>,∴10x <,20x <.(3)由题意,不妨设A (1x ,0),B (2x ,0). ∴OA +OB =1212|||()(23)x x x x k +=-+=--,21212||||1OA OB x x x x k ⋅===+.∵23OA OB OA OB +=⋅-,∴2(23)2(1)3k k --=+-,解得1k =或2k =-.而512k <,∴2k =-. ★课后巩固提高1.已知方程23(4)10x m x m ++++=的两根互为相反数,则m = -42.关于x 的方程222(1)0x m x m +++=的两根互为倒数,则m = 1 .已知12x x ≠,且满足211320x x +-=,222320x x +-=,则12(1)(1)x x -- = 2 .3.(2014·呼和浩特)已知m ,n 是方程2250x x +-=的两个实数根,则23m mn m n -++= 8 . 4.(2015·荆门)已知关于x 的一元二次方程2(3)10x m x m ++++=的两个实数根为1x ,2x ,若22124x x +=,则m 的值为 -1或-3 .5.(2014•襄阳)若正数a 是一元二次方程250x x m -+=的一个根,a -是一元二次方程250x x m +-=的一个根,则a的值是 5 .6.设2210a a +-=,42210b b --=,且210ab -≠,则22531()ab b a a+-+= -32 .7.(2014·扬州)已知a 、b 是方程230x x --=的两个根,则代数式32223115a b a a b ++--+的值为 23 .8.已知方程230x x k ++=的两根之差为5,则k = -4 .9.已知抛物线2y x px q =++与x 轴交于A 、B 两点,且过点(-1,-1),设线段AB 的长为d ,当p = 2 时,2d 取得最小值,最小值为 4 .10.已知1x 、2x 是关于x 的方程22(21)(1)0x m x m ++++=的两个实数根.(1)用含m 的代数式表示2212x x +; (2)当221215x x +=时,求m 的值.解:由韦达定理,得12(21)x x m +=-+,2121x x m =+. ∴2212x x +=21212()2x x x x +-=22[(21)]2(1)m m -+-+ =2241m m +-.(2)由(1)得,224115m m +-=,解得14m =-,22m =. 当4m =-时,原方程无实根;当2m =时,原方程有实根. ∴2m =.11.(2014·鄂州)一元二次方程2220mx mx m -+-=. (1)若方程有两实数根,求m 的范围.(2)设方程两实数根为1x 、2x ,且12||1x x -=,求m . 12.已知方程23730x x -+=的两根1x 、2x (12x x >).求下列代数式的值. (1(2)2212x x -.解:由韦达定理,得1273x x +=,121x x =. (1. (2)∵12x x >,∴120x x ->.∴12x x -=∴2212x x -=1212()()x x x x +-=73=13.(2015·湖北孝感)已知关于x 的一元二次方程:2(3)0x m x m ---=.(1)试判断原方程根的情况;(2)若抛物线2(3)y x m x m =---与x轴交于1(,0)A x ,2(,0)B x 两点,则A ,B 两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由. 解:(1)22[(3)]4()29m m m m ∆=----=-+ =2(1)8m -+ ∵2(1)m -≥0,∴2(1)80m ∆=-+> ∴原方程有两个不相等的实数根. (2)存在.由题意知1x 、2x 是原方程的两根. ∴12123,x x m x x m +=-=- ∵12||AB x x =-∴222121212()()4AB x x x x x x =-=+- 22(3)4()(1)8m m m =---=-+ ∴当1m =时,2AB 有最小值8 ∴AB有最小值,即AB =14.(2014·荆门)已知函数2(31)21y ax a x a =-+++(a 为常数).(1)若该函数图象与坐标轴只有两个交点,求a 的值; (2)若该函数图象是开口向上的抛物线,与x 轴相交于点A (1x ,0),B (2x ,0)两点,与y 轴相交于点C ,且212x x -=. ①求抛物线的解析式;② 作点A 关于y 轴的对称点D ,连结BC 、DC ,求sin DCB ∠的值.解:(1)①当a =0时,1y x =-+,其图象与坐标轴有两个交点(0,1),(1,0);②当a ≠0且图象过原点时,210a +=,∴12a =-,有两个交点(0,0),(1,0);③当a ≠0且图象与x 轴只有一个交点时,令y =0,则有0∆=,即2[(31)]4(21)0a a a -+-+=.解得a =-1,有两个交点(0,-1),(1,0);综上:a =0或12-或1-时,函数图象与坐标轴有两个交点. (2)①由题意令y =0时,123a x x a ++=,1221a x x a+=.∵212x x -=,∴221()4x x -=,∴21212()44x x x x +-= ,则(24(21)31()4a a a a ++-=,解得113a =-,21a =由题意,得00a >⎧⎨∆>⎩,即20[(31)]4(21)0a a a a >⎧⎨-+-+>⎩, ∴13a =-应舍去.1a =符合题意. ∴抛物线的解析式为243y x x =-+.②令y =0得2430x x -+=,解得1x =或3x =.w W∴A (1,0),B (3,0).由已知可得,D (-1,0),C (0,3). ∴OB =OC =3,OD =1,BD =4. 如图,过D 作DE ⊥BC 于E ,则有∴sin 45DE BD =⋅︒=而CD∴在Rt △CDE 中,sin ∠DCB =DE CD.。

相关文档
最新文档