余弦定理(55张PPT)
合集下载
余弦定理ppt课件

边.
a 2 b 2 c 2 2bc cos A
b 2 a 2 c 2 2ac cos B
c 2 a 2 b 2 2ab cos C
利用余弦定理可以解决:
b2 c2 a 2
cos A
2bc
a 2 c2 b2
cos B
2ac
a 2 b2 c2
3
3.△ABC 的三内角 A,B,C 所对边的长分别为 a,b,c,设
向量 p =(a+c,b), q =(b-a,c-a),若 p ∥ q ,则 C 的大
小为( A )
π
π
π
2π
A.
B.
C.
D.
6
3
2
3
三 判断三角形的形状
例3:设△ABC 的内角 A,B,C 所对的边分别为 a,b,c.
若 bcosC+ccosB=asinA,则△ABC 的形状为( )
C.( 8,10)
D.( 10,8)
谢 谢 பைடு நூலகம் 看
B.-1
C.1
D.−
B
)
跟踪训练
1、△ABC 中,若 a:b:c=3:5:7,则这个三角形的最
大内角为( C )
A.60°
B.90°
C.120°
D.150°
二
例2
利用余弦定理进行边角互化
在△ 中,,,分别是内角,,的对边,且
= + + ,则角的大小为( D )
A.
B.
C.
D.
跟踪训练
1. 在△ABC中,已知(a+b+c)(b+c-a)=3bc,则角A= ( B )
a 2 b 2 c 2 2bc cos A
b 2 a 2 c 2 2ac cos B
c 2 a 2 b 2 2ab cos C
利用余弦定理可以解决:
b2 c2 a 2
cos A
2bc
a 2 c2 b2
cos B
2ac
a 2 b2 c2
3
3.△ABC 的三内角 A,B,C 所对边的长分别为 a,b,c,设
向量 p =(a+c,b), q =(b-a,c-a),若 p ∥ q ,则 C 的大
小为( A )
π
π
π
2π
A.
B.
C.
D.
6
3
2
3
三 判断三角形的形状
例3:设△ABC 的内角 A,B,C 所对的边分别为 a,b,c.
若 bcosC+ccosB=asinA,则△ABC 的形状为( )
C.( 8,10)
D.( 10,8)
谢 谢 பைடு நூலகம் 看
B.-1
C.1
D.−
B
)
跟踪训练
1、△ABC 中,若 a:b:c=3:5:7,则这个三角形的最
大内角为( C )
A.60°
B.90°
C.120°
D.150°
二
例2
利用余弦定理进行边角互化
在△ 中,,,分别是内角,,的对边,且
= + + ,则角的大小为( D )
A.
B.
C.
D.
跟踪训练
1. 在△ABC中,已知(a+b+c)(b+c-a)=3bc,则角A= ( B )
余弦定理完整版课件

0.5954,
∴ C ≈ 36°或144°(舍).
例 2:在ABC中,已知a=2.730,b=3.696,
C=82°28′,解这个三角形.
解: 由 c2=a2+b2-2abcosC, 得 c≈4.297. ∵ cosA= b2+c2-a2 ≈0.7767, 2bc
∴ A≈39°2′,
≈ 2.60,
cosC
=
DC2 + BC2 – 2DC·BC
BD2=
–
0.30,
C ≈ 107.5°.
D
30°
A
C B
练习
ABC中,
(1)a=4,b=3,C=60°,则c=√__1_3__;
(2)a = 2, b = 3, c = 4, 则C = _1_0_4_._5_°. (3)a=2,b=4,C=135°,则A=_1_4_._6_°_.
B
a
c
c2=a2+b2-2abcosC.
C
b
A
例 1:在ABC中,已知a=7,b=10,
c=6,求A、B和C.
解:∵ ∴ ∵
cosA= b2+c2-a2 =0.725, 2bc
A≈44° cosC= a2+b2-c2 =0.8071,
2ab
∴ C≈36°,
∴ B=180°-(A+C)≈100°.
( ) ∵sinC=
2. 余弦定理
∵ a-b=c,
B
∴ (a-b)·(a-b)=c·c , a ∴ |a|2 +|b|2 -2a·b=|c|2, 即 c2=a2+b2-2abcosC. C
c
b
A
c2=a2+b2-2abcosC; b2=c2+a2-2cacosB;
a2=b2+c2-2bccosA. 余弦定理:三角形任何一边的平方等于其
∴ C ≈ 36°或144°(舍).
例 2:在ABC中,已知a=2.730,b=3.696,
C=82°28′,解这个三角形.
解: 由 c2=a2+b2-2abcosC, 得 c≈4.297. ∵ cosA= b2+c2-a2 ≈0.7767, 2bc
∴ A≈39°2′,
≈ 2.60,
cosC
=
DC2 + BC2 – 2DC·BC
BD2=
–
0.30,
C ≈ 107.5°.
D
30°
A
C B
练习
ABC中,
(1)a=4,b=3,C=60°,则c=√__1_3__;
(2)a = 2, b = 3, c = 4, 则C = _1_0_4_._5_°. (3)a=2,b=4,C=135°,则A=_1_4_._6_°_.
B
a
c
c2=a2+b2-2abcosC.
C
b
A
例 1:在ABC中,已知a=7,b=10,
c=6,求A、B和C.
解:∵ ∴ ∵
cosA= b2+c2-a2 =0.725, 2bc
A≈44° cosC= a2+b2-c2 =0.8071,
2ab
∴ C≈36°,
∴ B=180°-(A+C)≈100°.
( ) ∵sinC=
2. 余弦定理
∵ a-b=c,
B
∴ (a-b)·(a-b)=c·c , a ∴ |a|2 +|b|2 -2a·b=|c|2, 即 c2=a2+b2-2abcosC. C
c
b
A
c2=a2+b2-2abcosC; b2=c2+a2-2cacosB;
a2=b2+c2-2bccosA. 余弦定理:三角形任何一边的平方等于其
余弦定理ppt课件

(1)求∠A(用角度制表示); (2)当 a= 3,△ABC 的面积 S= 23时,求 b 和∠B.
❖ 分析:(1)由平面向量共线定理可得出关于各 角的一个关系式,化简之后便可求出∠A;(2) 分别利用三角形面积公式及余弦定理列出关 于b,c的方程,求出b,c的值,进而求出∠B.
解析:(1)∵m∥n,
3
2 3
=12,
∴∠BAC=30°,所求角为 30°+45°=75°.
∴甲船应沿北偏东 75°方向航行.
答:甲船应沿北偏东 75°方向航行半小时后才能
与乙船相遇.
[例 5] 在△ABC 中,a、b、c 分别是∠A、∠B、∠C
的对边,若 m=(sin2B+2 C,1),n=(cos2A+72,4),且 m∥n.
即(281)2=9+y2-3y,整理得: (y-185)(y-98)=0, ∴y=185或 y=98(舍去),∴AD 的长为185.
❖ [例3] 在△ABC中,a·cosA=b·cosB,试确 定此三角形的外形.
解析:解法 1:由 a·cosA=b·cosB 以及余弦定理得 a·b2+2cb2c-a2=b·a2+2ca2c-b2, 得 a2(b2+c2-a2)=b2(a2+c2-b2), a2b2+a2c2-a4-a2b2-b2c2+b4=0,即(a2-b2)(c2-a2 -b2)=0. ∴a2=b2 或 c2=a2+b2, ∴a=b 或 c2=a2+b2.
❖ 二、余弦定理的运用
❖ 利用余弦定理可以处理两类斜三角形问题:
❖ 1.知三边,求⑪________. ❖ 2.知两边和它们的夹角,求⑫________
和⑬________.
❖ 友谊提示:了解运用余弦定理应留意以下 四点:
❖ (1)余弦定理提示了恣意三角形边角之间的 客观规律,是解三角形的重要工具;
❖ 分析:(1)由平面向量共线定理可得出关于各 角的一个关系式,化简之后便可求出∠A;(2) 分别利用三角形面积公式及余弦定理列出关 于b,c的方程,求出b,c的值,进而求出∠B.
解析:(1)∵m∥n,
3
2 3
=12,
∴∠BAC=30°,所求角为 30°+45°=75°.
∴甲船应沿北偏东 75°方向航行.
答:甲船应沿北偏东 75°方向航行半小时后才能
与乙船相遇.
[例 5] 在△ABC 中,a、b、c 分别是∠A、∠B、∠C
的对边,若 m=(sin2B+2 C,1),n=(cos2A+72,4),且 m∥n.
即(281)2=9+y2-3y,整理得: (y-185)(y-98)=0, ∴y=185或 y=98(舍去),∴AD 的长为185.
❖ [例3] 在△ABC中,a·cosA=b·cosB,试确 定此三角形的外形.
解析:解法 1:由 a·cosA=b·cosB 以及余弦定理得 a·b2+2cb2c-a2=b·a2+2ca2c-b2, 得 a2(b2+c2-a2)=b2(a2+c2-b2), a2b2+a2c2-a4-a2b2-b2c2+b4=0,即(a2-b2)(c2-a2 -b2)=0. ∴a2=b2 或 c2=a2+b2, ∴a=b 或 c2=a2+b2.
❖ 二、余弦定理的运用
❖ 利用余弦定理可以处理两类斜三角形问题:
❖ 1.知三边,求⑪________. ❖ 2.知两边和它们的夹角,求⑫________
和⑬________.
❖ 友谊提示:了解运用余弦定理应留意以下 四点:
❖ (1)余弦定理提示了恣意三角形边角之间的 客观规律,是解三角形的重要工具;
9.1.2-余弦定理课件(共48张PPT)高一下学期数学人教B版(2019)必修第四册第九章解三角形

已知两边和这两边的夹角,或已知三边则这个三角形就确定了,故
(3)(4)正确.
-6-
课前篇自主预习
激趣诱思
知识点拨
微练习1
在△ABC中,已知AB=2,AC=3,A=60°,则BC=(
A.9
课堂篇探究学习
B.19
C.√7
)
D.√19
答案:C
解析:由余弦定理,可得 BC2=AB2+AC2-2AB×ACcos
-8-
课前篇自主预习
激趣诱思
课堂篇探究学习
知识点拨
知识点二:用余弦定理解三角形的问题
1.已知两边及夹角解三角形;
2.已知三边解三角形.
-9-
课前篇自主预习
激趣诱思
课堂篇探究学习
知识点拨
名师点析 1.已知三边求三角的基本方法
方法一:直接根据余弦定理的三个变式求出三角.
方法二:首先由余弦定理的变式求出最大边所对的角,再由正弦定
所以利用正弦定理可得
sin2Bsin2C+sin2Csin2B=2sin Bsin Ccos Bcos C,
因为sin Bsin C≠0,所以sin Bsin C=cos Bcos C,
所以cos(B+C)=0,所以cos A=0,因为0<A<π,所以A=
为直角三角形.
π
2
,所以△ABC
-24-
课前篇自主预习
1
A=4+9-2×2×3×2=7,所以 BC=√7.故选 C.
-7-
课前篇自主预习
激趣诱思
课堂篇探究学习
知识点拨
微练习2
(2020安徽定远县民族学校高一月考)在△ABC中,AB=5,
(3)(4)正确.
-6-
课前篇自主预习
激趣诱思
知识点拨
微练习1
在△ABC中,已知AB=2,AC=3,A=60°,则BC=(
A.9
课堂篇探究学习
B.19
C.√7
)
D.√19
答案:C
解析:由余弦定理,可得 BC2=AB2+AC2-2AB×ACcos
-8-
课前篇自主预习
激趣诱思
课堂篇探究学习
知识点拨
知识点二:用余弦定理解三角形的问题
1.已知两边及夹角解三角形;
2.已知三边解三角形.
-9-
课前篇自主预习
激趣诱思
课堂篇探究学习
知识点拨
名师点析 1.已知三边求三角的基本方法
方法一:直接根据余弦定理的三个变式求出三角.
方法二:首先由余弦定理的变式求出最大边所对的角,再由正弦定
所以利用正弦定理可得
sin2Bsin2C+sin2Csin2B=2sin Bsin Ccos Bcos C,
因为sin Bsin C≠0,所以sin Bsin C=cos Bcos C,
所以cos(B+C)=0,所以cos A=0,因为0<A<π,所以A=
为直角三角形.
π
2
,所以△ABC
-24-
课前篇自主预习
1
A=4+9-2×2×3×2=7,所以 BC=√7.故选 C.
-7-
课前篇自主预习
激趣诱思
课堂篇探究学习
知识点拨
微练习2
(2020安徽定远县民族学校高一月考)在△ABC中,AB=5,
余弦定理(55张PPT)

2.在解三角形的过程中,求某一个角有时既可以用余 弦定理,也可以用正弦定理,两种方案有什么利弊呢?
提示:用余弦定理求角时,运算量较大,但角与余弦 值是一一对应的,无须讨论;而用正弦定理求角时,运算 量较小,但由于在区间(0,π)上角与正弦值不是一一对应 的,一般情况下一个正弦值可对应两个角,往往要依据角 的范围讨论解的情况.
新知初探
1.余弦定理 三角形中任何一边的平方等于其他两边的平方的和减 去这两边与它们的夹角的余弦的积的两倍.即
2.余弦定理的推论 余弦定理揭示了三角形中两边及其夹角与对边之间的 关系,它的另一种表达形式是 b2+c2-a2 cosA=_____________ , 2bc
a2+c2-b2 2ac cosB=_____________ , a2+b2-c2 2ab cosC=_____________.
类型二 [例2]
判断三角形的形状 在△ABC中,已知(a+b+c)(b+c-a)=3bc且
sinA=2sinBcosC,试确定△ABC的形状. [分析] 首先根据条件(a+b+c)(b+c-a)=3bc,利
用余弦定理求出一个角,再利用另一个条件,得到另外两 个角的关系,即可判断.
[解]
∵(a+b+c)(b+c-a)=3bc,
须知余弦定理是勾股定理的推广,勾股定理是余弦定
2 2 2 a > b + c 理的特例.角A为钝角⇔_____________,角A为直角⇔ 2 2 2 2 2 2 a = b + c a < b + c ____________,角A为锐角⇔____________.
3.利用余弦定理可解决的两类问题 余弦定理的每一个等式中都包含四个不同的量,它们 分别是三角形的三边和一个角,知道其中的三个量,代入 等式,便可求出第四个量来. 利用余弦定理可以解决以下两类解斜三角形的问题:
1.1.2 余弦定理 (共36张PPT)

当C为锐角时,a2 b2 c2 ; 当C为钝角时,a2 b2 c2 .
证明:当C为锐角时,cosC 0,由余弦定理,得 c2 a2 b2 2bccosC a2 b2,即 a2 b2 c2
同理可证, 当C为钝角时,a2 b2 c2 .
数学应用:
例3.如图所示,有两条直线AB和CD 相交成80 °角,交点
数学建构
总结:利用余弦定理,可以解决以下两 类解斜三角形的问题:
(1)已知三边,求三个角 (2)已知两边和它们的夹角,
求第三边和其它两个角
数学应用:
例1. 如图,在△ABC中,已知a=5,b=4,
∠C=120°,求c.
A
c
解:由余弦定理,得
b 120
C
a
B
c2 a2 b2 2abcos120
因此 c 52 42 254(12) 61
B
80° P A 122 13.52 21213.5cos80
O
16.4(km)
D
数学应用:
例4.在长江某渡口处,江水以5km/h的速度 向东流。一渡船在江南岸的A码头出发,预定
要在0.1h后到达江北岸B码头,设AN为正北 方向,已知B码头在A码头的北偏东15°,
并与A码头相距1.2km.该渡船应按什么方向 航行?速度是多少千米/小时?(角度精确到
N
D
B
答:渡船按北偏西9.4 °的
方向,并以11.7km/h的
速度航行.
15 A
C
数学应用:
例5.在ΔABC中,已知s inA 2sinBcosC,
试判断该三角形的形状. 解:由正弦定理和余弦定理,得
sin A a
a2 b2 c2
, cos C
证明:当C为锐角时,cosC 0,由余弦定理,得 c2 a2 b2 2bccosC a2 b2,即 a2 b2 c2
同理可证, 当C为钝角时,a2 b2 c2 .
数学应用:
例3.如图所示,有两条直线AB和CD 相交成80 °角,交点
数学建构
总结:利用余弦定理,可以解决以下两 类解斜三角形的问题:
(1)已知三边,求三个角 (2)已知两边和它们的夹角,
求第三边和其它两个角
数学应用:
例1. 如图,在△ABC中,已知a=5,b=4,
∠C=120°,求c.
A
c
解:由余弦定理,得
b 120
C
a
B
c2 a2 b2 2abcos120
因此 c 52 42 254(12) 61
B
80° P A 122 13.52 21213.5cos80
O
16.4(km)
D
数学应用:
例4.在长江某渡口处,江水以5km/h的速度 向东流。一渡船在江南岸的A码头出发,预定
要在0.1h后到达江北岸B码头,设AN为正北 方向,已知B码头在A码头的北偏东15°,
并与A码头相距1.2km.该渡船应按什么方向 航行?速度是多少千米/小时?(角度精确到
N
D
B
答:渡船按北偏西9.4 °的
方向,并以11.7km/h的
速度航行.
15 A
C
数学应用:
例5.在ΔABC中,已知s inA 2sinBcosC,
试判断该三角形的形状. 解:由正弦定理和余弦定理,得
sin A a
a2 b2 c2
, cos C
余弦定理PPT课件

c
C
aB
探索探究
联系已经学过的知识和方法,可用 什么途径来解决这个问题?
即:如图,在△ABC中,
设BC=a, AC=b, AB=c.
A
已知a, b和∠C,求边c? b
c
C
aB
探索探究
联系已经学过的知识和方法,可用 什么途径来解决这个问题?
用向量来研究这问题. A
即:如图,在△C ABC中, B
设BC=a, AC=b, AB=c.
巩经典固例知题识 典型例题
例 在△ABC中,a = 6,b = 7,c = 10,求△ABC 中的 最大角和最小角(精确到1°).
解 由于a<b<c,所以C最大,A最小,由公式(1.12),有
cos C a2 b2 c2 62 72 102 0.1786,
2ab
267
所以 C ≈ 100°,
a2 b2 c2 2cbcos A. b2 a2 c2 2ac cos B,c2 a2 b2 2ab cosC.
可以证明,上述结论对于任意三角形都成立.于是得到余弦 定理.
思考2:
a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B c2 a2 b2 2ab cos C
1.3.2余弦定理
复习引入
运用正弦定理能解怎样的三角形?
A C
B
复习引入
运用正弦定理能解怎样的三角形?
①已知三角形的任意两角及其一边;
②已知三角形的任意两边A 与其中一边
的对角.
C B
情境设置
问题1:
如果已知三角形的两边及其夹角, 根据三角形全等的判定方法,这个三
A
角形是大小、形状完全确定的三角形. C
3-6第六节 正弦定理和余弦定理(55张PPT)

备考这样做 1.理解正弦定理、余弦定理的意义和作用. 2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数 性质相结合.
D 读教材· 抓基础
回扣教材 扫除盲点
课 本 导 读 1.正弦定理 b c a sinB = sinC =2R. sinA= 其中 2R 为△ABC 外接圆直径. 变式:a= 2RsinA ,b= 2RsinB ,c= 2RsinC . A:b:c=
●两个注意点 A B C 1.应熟悉掌握和运用内角和定理:A+B+C=π,2 + 2 + 2 = π 2中互补和互余的情况,结合诱导公式可以减少角的种数. 2.正、余弦定理的公式应注意灵活运用,如由正、余弦定理 结合得 sin2A=sin2B+sin2C-2sinB· sinC· cosA,可以进行化简或证 明.
答案 C
4.已知△ABC 三边满足 a2+b2=c2- 3ab,则此三角形的最 大内角为__________.
解析
2 2 2 a + b - c 3 ∵a2+b2-c2=- 3ab,∴cosC= 2ab =- 2 ,
故 C=150° 为三角形的最大内角.
答案 150°
π 5.在△ABC 中,若 a=3,b= 3,A= ,则 C 的大小为 3 ________.
听 课 记 录
(1)sinA = sin75° = sin(30° + 45° ) = sin30° cos45°
2+ 6 +sin45° cos30° = 4 . 由 a=c= 6+ 2可知,C=A=75° , 1 所以 B=30° ,则 sinB=2. 2+ 6 1 a 由正弦定理得 b=sinA· sinB= × =2. 2+ 6 2 4
3.三角形常用面积公式 1 (1)S=2a· ha(ha 表示 a 边上的高). 1 1 1 abc (2)S=2absinC=2acsinB=2bcsinA= 4R . 1 (3)S=2r(a+b+c)(r 为内切圆半径).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提示:能.已知三角形两边与一角有如图所示的两种 情况:
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
图①中已知角A和边a,b,可先由正弦定理先求角B和 角C,继而可求边c. 图②中已知角A和边b,c,可先由余弦定理求边a,继 而可由正弦定理求角B和角C.
人教A版· 数学· 必修5
系列丛书
第一章
解三角形
第一章
解三角形
进入导航
系列丛书
1.1 正弦定理和余弦定理
第一章
解三角形
进入导航
系列丛书
1.1.2
课前自主预习
余弦定理
课堂互动探究
随堂知能训练
课时作业
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
目标了然于胸,让讲台见证您的高瞻远瞩
1.了解余弦定理的推导过程,掌握余弦定理及其推论. 2.能利用余弦定理解三角形,并判断三角形的形状.
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
类型三 [例3]
正、余弦定理的综合应用 如图所示,在四边形ABCD中,AD⊥CD,AD
=10,AB=14,∠BDA=60° ,∠BCD=135° ,求BC的 长.
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
课 堂 互 动 探 究
例 练 结 合 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·素 能 提 升
人教A版· 数学· 必修5
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
3.怎样用余弦定理判断三角形的形状?
提示:(1)在△ABC中,若a2<b2+c2,则0° <A<90° ;反 之,若0° <A<90° ,则a2<b2+c2. (2)在△ABC中,若a2=b2+c2,则A=90° ;反之,若A =90° ,则a2=b2+c2. (3)在△ABC中,若a2>b2+c2,则90° <A<180° ;反之, 若90° <A<180° ,则a2>b2+c2.
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
课 前 自 主 预 习
课 前 预 习 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·明 确 目 标
人教A版· 数学· 必修5
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
变式训练3
如图所示,在△ABC中,已知BC=15,
4 3 AB:AC=7:8,sinB= 7 ,求BC边上的高AD的长.
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
解:在△ABC中,由已知设AB=7x,AC=8x, 7x 8x 由正弦定理,得sinC=sinB, 7xsinB 7 4 3 3 ∴sinC= 8x =8× 7 = 2 . ∴C=60° (C=120° 舍去,由8x>7x,知B也为钝角,不 符合要求).
∴C为钝角. 由余弦定理,得 a2+b2-c2 cosC= 2ab k2+k+22-k+42 = 2kk+2 k2-4k-12 = <0. 2kk+2
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
∴k2-4k-12<0,得-2<k<6. 又k为三角形的边长, ∴k>0. 综上所述,0<k<6. [错因分析] 忽略了三边k,k+2,k+4构成三角形的 条件.
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
类型二 [例2]
判断三角形的形状 在△ABC中,已知(a+b+c)(b+c-a)=3bc且
sinA=2sinBcosC,试确定△ABC的形状. [分析] 首先根据条件(a+b+c)(b+c-a)=3bc,利
用余弦定理求出一个角,再利用另一个条件,得到另外两 个角的关系,即可判断.
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
由余弦定理得(7x)2=(8x)2+152-2×8x· 15cos60° , ∴x2-8x+15=0. ∴x=3或x=5,∴AB=21或AB=35. 4 3 在△ABD中,AD=ABsinB= 7 AB, ∴AD=12 3或AD=20 3.
进入导航
第一章 1.1 1.1.2
系列丛书
2.在解三角形的过程中,求某一个角有时既可以用余 弦定理,也可以用正弦定理,两种方案有什么利弊呢?
提示:用余弦定理求角时,运算量较大,但角与余弦 值是一一对应的,无须讨论;而用正弦定理求角时,运算 量较小,但由于在区间(0,π)上角与正弦值不是一一对应 的,一般情况下一个正弦值可对应两个角,往往要依据角 的范围讨论解的情况.
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
3.利用余弦定理可解决的两类问题 余弦定理的每一个等式中都包含四个不同的量,它们 分别是三角形的三边和一个角,知道其中的三个量,代入 等式,便可求出第四个量来. 利用余弦定理可以解决以下两类解斜三角形的问题:
各角 ; (1)已知三边,求_____
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
[点评]
判断三角形形状的方法
(1)利用正、余弦定理化角成边,利用代数运算求出三 边的关系; (2)由正、余弦定理化边为角,通过恒等变形及内角和 定理得到内角关系,从而判定形状.
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
进入导航
第一章 1.1 1.1.2
系列丛书
新知初探
1.余弦定理 三角形中任何一边的平方等于其他两边的平方的和减 去这两边与它们的夹角的余弦的积的两倍.即
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
若a,b,c分别是△ABC的顶点A,B,C所对的边 长,则 a2=__________________ b2+c2-2bccosA ,
a2+c2-b2 2ac cosB=_____________ , a2+b2-c2 2ab cosC=_____________.
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
须知余弦定理是勾股定理的推广,勾股定理是余弦定
2 2 2 a > b + c 理的特例.角A为钝角⇔_____________,角A为直角⇔ 2 2 2 2 2 2 a = b + c a < b + c ____________,角A为锐角⇔____________.
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
[点评]
1.解三角形时,应先分析题设条件,如本题属
于“SAS”型,先用余弦定理求a,在此基础上,可以利用余 弦定理计算角B或C的余弦值,也可以利用正弦定理计算角 B或C的正弦值. 2.常用余弦定理解答两类题目“SAS”型及“SSS”型.
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
[正解]
∵c>b>a,且△ABC为钝角三角形,
∴C为钝角. 由余弦定理,得 a2+b2-c2 k2-4k-12 cosC= 2ab = <0. 2kk+2 ∴k2-4k-12<0,得-2<k<6. 由两边之和大于第三边,得k+(k+2)>k+4. ∴k>2. 综上所述,2<k<6.
系列丛书
b+c 变式训练2 在△ABC中,已知cos 2 = 2c (a,b,c分
2A
别为角A,B,C的对边),判断△ABC的形状.
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
b+c 解:在△ABC中,由已知cos 2 = 2c 得
2A
1+cosA b+c b 2 = 2c ,∴cosA=c . b2+c2-a2 b 根据余弦定理得 = , 2bc c ∴b2+c2-a2=2b2,即a2+b2=c2. ∴△ABC是直角三角形.
2 2 a + c -2accosB , b =__________________
2
2 2 a + b -2abcosC c =__________________.
2
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
2.余弦定理的推论 余弦定理揭示了三角形中两边及其夹角与对边之间的 关系,它的另一种表达形式是 b2+c2-a2 cosA=_____________ , 2bc
进入导航
第一章 1.1 1.1.2
系列丛书
典例导悟
类型一 [例1] 利用余弦定理解三角形 在△ABC中,已知b=3,c=2 3,A=30° ,求
边a、角C和角B.
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
[解]