实验31功率因数及相序的测量
三相功率的测量

实验七三相功率的测量实验目的1.学习用三瓦特计法和二瓦特计法测量三相功率。
2.了解在三相电感性负载情况下,功率因数对二瓦特计读数的影响。
实验设备与器材多功能电路装置,异步电动机。
实验原理1.三相负载的总功率等于各相负载功率之和,因此测量三相总功率可以用三只瓦特计(即单相有功功率表)分别测出每一相的有功功率,然后三者相加。
如若负载是对称的,则可以用一只瓦特计测量其中一相的有功功率,然后乘3,就得到三相总的有功功率。
图1(a)是三瓦特计法功率表接法示意图。
图中功率表是简化画法,圆圈内竖线表示电压线圈,横线表示电流线圈。
从图中看出,这种方法适用于三相四线制电路。
图1 三瓦特计法和二瓦特计法功率表接法示意图2.在三相三线制电路中常用二瓦特计法来测量三相总功率。
图1(b)是二瓦特计法功表接法示意图。
由于三相瞬时功率p等于每一相瞬时功率之和,即p=p A+p B+p C=u A i A+u B i B+u C i C在三相三线制电路中i A+i B+i C=0,i C=−i A−i B故p=p A+p B+p C=u A i A+u B i B+u C(−i A−i B)=(u A−u C)i A+(u B−u C)i B=u AC i A+u BC i B瞬时功率p对时间积分,并取平均值,得平均功率P=P1+P2=U AC I A cosα+U BC I B cosβ式中,α为U AC和I A之间的相位差角,β为U BC和I B之间的相位差角。
当负载对称,相电压与相电流相位差为φ时,则α=-(30°-φ),β=(30°+φ)。
有关对称负载星形接法时的相量图如图2所示。
图2 对称负载星形接法时的相量图若φ=0°,P1=P2,则三相功率P=P1+P2=2P1若φ=60°,P1为正值,P2=0,则三相功率P=P1若φ<60°,P1、P2均为正值,则三相功率P=P1+P2。
相位差和功率因数的测量

1、间接测量 、 单 相 电 路
P cos φ = UI Q tgφ = P
相
相
cos φ =
P 3U L I L
间
相
功Hale Waihona Puke 因数P cos φ = = S
1 Q 2 1+ ( ) P
1 cos φ = WQ 2 1+ ( ) WP
2、用示波器测量相位 、 (1)双迹法 )
ab φ = × 360o ac
(2)X-Y法(李沙育图形法) ) 法 李沙育图形法)
李沙育图形的 形成过程
不同相位差时的李沙育图形
频率相同相位不同时的李沙育图形: 频率相同相位不同时的李沙育图形:
u1 = U m 1 sin(ωt + φ ) u2 = U m 2 sin(ωt )
u1 (0) = U m1 sin φ
u 1 ( 0) sin φ = U m1
B K⋅ 2 A K⋅ 2
李沙育图形的 形成过程
B sin φ = A
•不能判断超前、滞后。 不能判断超前、滞后。 不能判断超前
不同相位差时的李沙育图形
3、相位的数字测量 、 法一:转换为时间的测量。 法一:转换为时间的测量。 法二:转换为电压。 法二:转换为电压。 法三: 法三: 根据傅里叶变换,用软件求相位差。 根据傅里叶变换,用软件求相位差。
三相交流电路功率因数及相序的研究误差分析

三相交流电路功率因数及相序的研究误差分析
研究三相交流电路的功率因数和相序时,可能存在误差的来源和分析如下:
1.测量误差:电路中的仪器和测量设备可能存在精度限制或校准不准确的问题,导致测量结果与实际值存在差异。
2.电源质量:电源本身的质量和稳定性可能会对功率因数和相序的测量产生影响。
例如,电源波形的失真、频率的偏差或电压的波动都可能引入误差。
3.负载特性:如果负载对电源的波形和电压响应有不同的特性,例如非线性负载、电感负载或电容负载等,都可能导致功率因数的测量误差。
4.线路损耗:三相电路中的线路损耗可能会导致电压和功率的实际值与理论值有所偏差,进而影响功率因数的准确测量。
5.环境条件:环境温度、湿度等因素,以及电路布线和接地的质量,都可能对测量结果产生一定的影响。
为降低误差,可以采取以下措施:
1.使用高精度的测量设备,并定期进行校准,确保测量结果的准确性。
2.在测试过程中,尽量消除电源的质量问题,如选择稳定、纹波小的电源供电。
3.对于非线性负载或特殊负载,需要根据实际情况进行修正或使用合适的测量方法和设备。
4.在测量功率因数时,可以采用平均功率因数测量方法,通过长时间的测量来减小测量误差。
5.规范线路布线和接地,确保环境条件对测量结果产生的影响尽可能小。
总而言之,准确测量三相交流电路的功率因数和相序需要注意测量误差的来源,并采取相应的措施以提高测量结果的准确性和可靠性。
实验二 三相电路相序及功率的测量

实验二三相电路相序及功率的测量一、实验目的1、掌握三相交流电路时序的测量方法。
2、掌握三相交流电路功率的测量方法。
二、原理及说明1、用一只电容器和两组灯联接成星形不对称三相负载电路。
便可测量三相电源的相序A、B、C(或U、V、W),如图电容器所接的位A相,可知UB ’>UC’,则灯较亮的为B相。
灯较暗的为C相。
因为时序是相对的,任何一相为A相时,B相和C相便可以确定。
图12、三相四线制供电时,可以用一只表测量各相的有功功率,PA 、PB、PC。
三相负载的总功率P= PA +PB+PC。
线路如图2所示。
若负载对称,那么只需测量其中一相的功率,PA ,P=3PA。
图2在三相三线制供电系统中,不论三相负载是否对称,也不论负载是星形接法还是三角形接法,都可用二表法测量三相负载的总功率。
线路如图3所示。
图3三、仪器设备电工实验装置:DG032T、DG04T、DY11T、DG053T四、实验内容实验注意:1、实验线路须经指导教师检查无误后再通电。
2 、更改线路,拆、接线时要断开电源。
1、判断三相电路的相序相序测量如图1所示,白炽灯可选三相电路实验板两相对称灯。
接通三相电源,观察两组灯的明暗状态,则灯较亮的为B相,灯较暗的为C相。
2、三相功率的测量●负载星接,参考图2、3,分别用三表法和二表法测三相电路功率,所测数据填入表1中。
●作不对陈负载实验时,在A相并入一组白炽灯。
所测数据填表1中。
●负载角接,用分别用三表法和二表法测三相电路功率,所测数据填入表2中。
●作不对称负载实验时,在A相并入一组白炽灯。
所测数据填表2中。
、五、报告要求1、比较测量结果,并进行分析。
2、总结三相电路功率测量的方法。
三相电路功率的测量实验报告

三相电路功率的测量实验报告
一、实验目的
实验目的是测量三相电功率,进一步了解三相电路功率的计算与公式。
二、实验原理
三相电功率,又称为瞬态功率,这是由三相电路中分别产生的瞬时功率之和所构成的,即P=P1+P2+P3。
三相电机的瞬态功率有三种:正无功功率,负无功功率和有功功率,分别用公式表示为:
P1(正无功功率)=3*U*i1*sin(α1-α0)
其中,U表示电压,I表示电流,α表示相角,α0表示相位差。
三、实验总纲
(1)实验准备
实验准备包括准备三相电路,以及安装好电压计、电流计等仪器和仪表设备,安装电
压表、电流表并测量路线电流和电压等。
(2)实验步骤
1. 先将三相电路接上电源,测量电压和电流;
2. 三相电路中的电流和电压检查完全,检查是否符合正常的三相电路电压量;
3. 用测量三相电功率的仪器,测量三相电功率,并记录数据;
4. 根据测量的电压和电流,使用公式计算三相电功率。
(3)实验结果
实验测量得到的三相电功率值为P=109.21kw,使用公式计算得到的三相电功率值为
P=109.09kw,两者相差不大,可见实测结果与公式计算结果相符,实验结果可靠。
四、实验结论
本次实验通过实测和公式计算对三相电功率进行了测量,实测结果与公式计算结果相符,实验结果可靠,达到了实验的预期目的。
三相电路功率的测量实验总结

三相电路功率的测量是电工实验中的重要内容之一。
以下是三相电路功率测量实验的总结:实验目的:测量三相电路的有功功率、无功功率和视在功率。
实验器材:三相电源、三相电表、电阻箱、电压表、电流表、连接线等。
实验步骤:
确定实验电路的连接方式:将三相电源与负载(如电阻箱)连接成星形或三角形电路。
连接测量仪器:将电压表和电流表分别连接到三相电路的相电压和相电流测量点上。
测量电压和电流:分别测量三相电路的相电压和相电流,并记录测量值。
计算功率:根据测量的电压和电流值,计算每相的有功功率、无功功率和视在功率。
实验结果分析:分析实验结果,比较三相电路各相之间的功率差异,评估电路的平衡性和功率因数情况。
实验注意事项:
在连接电路和操作仪器时,务必按照安全操作规范进行,避免电击和其他安全风险。
确保电路连接正确、稳定,测量仪器的精度和灵敏度符合要求。
在测量电压和电流时,保持准确的接线和良好的接触,避免接触不良或短路。
计算功率时,注意单位的转换和计算公式的正确应用。
实验结论:通过实验测量和分析,可以得出三相电路的功率情况,包括各相的有功功率、无功功率和视在功率。
根据测量结果,可以评估电路的负载情况、功率平衡性和功率因数,为电路设计和优化提供参考依据。
总结:三相电路功率的测量实验是电工实验中的重要实验之一。
通过实验可以了解和评估三相电路的功率特性,为电路的设计和优化提供参考。
在实验中,应注意安全操作和准确测量,确保实验结果的准确性和可靠性。
电路实验讲义

目录实验一:电阻元件伏安特性的测绘 (1)实验二:电位、电压的测定及电路电位图的绘制 (4)实验三:基尔霍夫定律的验证 (7)实验四:线性电路叠加性和齐次性的研究 (10)实验五:电压源、电流源及其电源等效变换的研究 (13)实验六:戴维南定理——有源二端网络等小参数的测定 (16)实验七:最大输出功率传输条件的研究 (20)实验八:受控源的研究 (23)实验九:直流双口网络的研究 (28)实验十:正弦稳态交流电路相量的研究 (32)实验十一:一阶电路暂态过程的研究 (35)实验十二:二阶电路暂态过程的研究 (39)实验十三:交流串联电路的研究 (42)实验十四:提高功率因数的研究 (45)实验十五:交流电路频率特性的测定 (48)实验十六:RC网络频率特性和选频特性的研究 (52)实验十七:RLC串联谐振电路的研究 (56)实验十八:三相电路电压、电流的测量 (59)实验十九:三相电路功率的测量 (62)实验二十:单相电度表的校验 (65)实验二十一:功率因数表的使用及相序测量 (68)实验二十二:负阻抗变换器 (70)实验二十三:回转器特性测试 (74)实验二十四:互感线圈电路的 (78)实验二十五:单相铁芯变压器特性的测试 (82)实验一 电阻元件伏安特性的测绘一.实验目的1.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法; 2.学习恒压源、直流电压表、电流表的使用方法。
二.原理说明任一二端电阻元件的特性可用该元件上的端电压U 与通过该元件的电流I 之间的函数关系U =f(I )来表示,即用U -I 平面上的一条曲线来表征,这条曲线称为该电阻元件的伏安特性曲线。
根据伏安特性的不同,电阻元件分两大类:线性电阻和非线性电阻。
线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1中(a)所示,该直线的斜率只由电阻元件的电阻值R 决定,其阻值为常数,与元件两端的电压U 和通过该元件的电流I 无关;非线性电阻元件的伏安特性是一条经过坐标原点的曲线,其阻值R 不是常数,即在不同的电压作用下,电阻值是不同的,常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性如图1-1中(b )、(c )、(d )。
实验报告6功率因数及相序的测量

实验报告6功率因数及相序的测量一、实验目的1.学习使用电能表测量谐波内容;2.学习使用电容器改善功率因数。
二、实验器材1.电能表2.电阻箱3.电感4.电容5.交流电源6.相序表三、实验原理1.功率因数功率因数是指交流电的实功功率与视在功率之比,代表了电能的有效利用情况。
功率因数越高,电能的利用效率越高。
功率因数的计算公式为:功率因数=实功功率/视在功率2.相序在三相交流电系统中,相序是指三相电流或电压的变化先后顺序。
正常情况下,A相、B相和C相的电流或电压按照一定的顺序进行变化。
如果相序发生了颠倒,会引起系统异常,因此需要进行相序检测。
四、实验步骤1.将电阻箱和电感依次串联到交流电源上,并将末端接入电能表的电压端和电流端;2.依次改变电阻箱的阻值,测量不同负载下的视在功率、实功功率和功率因数;3.使用相序表分别测量正序和反序情况下的相序。
五、实验数据记录与分析1.功率因数的测量结果:负载阻值(Ω)视在功率(VA)实功功率(W)功率因数1010008000.82010007000.73010006000.64010005000.52.相序的测量结果:正序:A相→B相→C相反序:A相→C相→B相根据测量结果可知,当负载阻值增加时,视在功率不变,实功功率减小,功率因数也随之减小。
这是因为负载阻值增加导致了电流和电压的相位差增大,从而减小了有用功的输出。
在电能利用的角度,功率因数越接近于1,电能利用效率越高。
六、实验结论1.功率因数是实功功率与视在功率之比,代表了电能的有效利用情况。
功率因数越高,电能利用效率越高;2.对于给定的负载,当负载阻值增加时,功率因数减小;3.相序检测可以判断三相电流或电压的变化先后顺序,保证系统的正常运行。
七、实验心得通过本次实验,我学习到了功率因数和相序的概念,并掌握了测量功率因数和相序的方法。
通过具体实验操作,加深了对功率因数和相序的理解。
在实验过程中,我也遇到了一些问题,例如,电能表的使用和测量误差的处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三十一 功率因数及相序的测量
一、实验目的
1. 掌握三相交流电路相序的测量方法。
2. 熟悉功率因数表的使用方法,了解负载性质对功率因数的影响。
二、原理说明
图31-1为相序指示器电路,用以测定三相电源的相序A 、B 、C (或U 、V 、W )。
它是由一个电容器和两个电灯联接成的星形不对称三相负载电路。
如果电容器所接的是A 相,则灯光较亮的是B 相,较暗的是C 相。
相序是相对的,任何一相均可作为A 相。
但A 相确定后,B 相和C 相也就确定了。
为了分析问题简单起见
设 X C =R B =R C =R , U .
A =U p ∠0°
则 R
R jR R
j U R j U jR U U P P P N N 111)1)(2321()1)(2321()1(
'·
++-+-+--+-=
)6.02.0()2
3
21(''·
·
·
j U j U U U U P P N N B B +----=-=
=U p (-0.3-j1.466)=1.49∠-101.6°U p
)6.02.0()2
3
2
1
(''···j U j
U U U U P P N N C C +--+-=-= =Up(-0.3+j0.266)=0.4∠-138.4°Up 由于U .
'B >U .
'C ,故B 相灯光较亮。
三、实验设备
图
31-1
四、实验内容
1. 相序的测定
(1) 用220V、15W白炽灯和1μF/500V 电容器,按图31-1 接线,经三相调压器接入线电压为220V的三相交流电源,观察两只灯泡的亮、暗,判断三相交流电源的相序。
(2) 将电源线任意调换两相后再接入电路,观察两灯的明亮状态,判断三相交流电源的相序。
2. 电路功率(P)和功率因数(cosφ)的测定
按图31-2接线,按下表所述在A、B间接入不同器件,记录cosφ表及其它各表的读数,并分析负载性质。
R
图31-2
说明:C为4.7μF/500V,L为30W日光灯镇流器。
五、实验注意事项
每次改接线路都必须先断开电源。
六、预习思考题
根据电路理论,分析图31-1检测相序的原理。
七、实验报告
1. 简述实验线路的相序检测原理。
2. 根据U、I、P三表测定的数据,计算出cosφ,并与cosφ表的读数比较,分析误差原因。
3. 分析负载性质与cosφ的关系。
4. 心得体会及其他。