曲线梁桥计算模型的探讨

合集下载

曲线桥梁的设计计算

曲线桥梁的设计计算

曲线桥梁的设计计算摘要:随着贵阳市的快速发展和道路等级的提高,曲线桥梁的应用越来越广泛,结合工程实践,对曲线桥梁设计计算进行分析,叙述箱梁构造,对几个重要荷载做计算以及结果分析、总结,以期为后续类似工程提供参考。

关键词:曲线桥梁;设计;计算1.工程概况贵阳市新建林城东路延伸段的立交节点—新添大道立交匝道桥,本匝道桥采用螺旋形,内外幅设置,本文以外幅第一联27.963+2x27m为工程实例,本联平曲线为半径50m的圆曲线加缓和曲线,竖曲线为凸曲线,上部结构为预应力混凝土现浇箱梁,中支墩固结,边支点采用支座,中支墩高度为70m和77m,桥墩采用3x5m矩形空心墩,承台桩基础。

1.结构计算上部结构箱梁按单箱单室设计,顶板宽10.2m,底板宽5.35m,悬臂长2m,腹板倾角76°,箱梁顶、底板平行设置,梁高2.2m。

端横梁宽度为1.2m,中横梁宽度为3.0m。

采用Midas/civil计算,并以《公路桥涵设计通用规范》(JTG D60-2015)和《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG 3362-2018)为标准,按部分预应力(A类)混凝土结构进行验算。

横断面尺寸图2.1 本文针对在设计过程中的几个荷载做计算分析:1.风荷载由于桥墩最大墩高为77m,风荷载对上部结构箱梁和下部桥墩影响较大,现以此桥墩墩高计算。

根据《公路桥梁抗风设计规范》(JTG/T 3360-01-2018)规定,横桥向风作用下主梁单位长度上的顺风向等效静阵风荷载为,1)——空气密度,2)——等效静阵风风速,,——等效静阵风系数,本联水平加载长度L=27.963+2x27=82m,根据本匝道桥的建设地点,地表类别判定为C类,根据表5.2.1, =1.465;——桥梁或构件基准高度Z处的设计基准风速,或——抗风风险系数,基本风速 =28m/s,根据表4.2.6-1, =1.02, Z=77+2.2=79.2m;根据表4.2.1,, ,根据表4.2.4,,,得出,;——地形条件系数,取 =1.2,——地表类别转换及风速高度修正系数,根据表4.2.6-2,得出, =1.238,得出,,取大值,3)——主梁横向力系数,可按下式计算,,B——主梁的特征宽度,B=10.2m,D——主梁梁体的投影高度,D=3.38m,得出, =1.8;桥梁的主梁截面带有斜腹板时,横向力系数可根据腹板倾角角度折减,横向力系数的腹板倾角角度折减系数可按下式确定:,=14°,得出, =0.93。

曲线桥梁计算

曲线桥梁计算

目前解决曲线桥梁计算方法有以下几种:1、空间梁元模型法2、空间薄壁箱梁元模型法3、空间梁格模型法4、实体、板壳元模型法第一种方法,是不能考虑桥梁的横向效应的,使用时要求桥梁的宽跨比不易太大。

第二种方法,是第一种方法的改进,主要区别是采用了不同的单元模型,考虑了横向作用如翘曲和畸变。

第四种方法,是解决问题最有效的方法,能够考虑各种结构受力问题。

第三种方法,是目前设计及科研中常采用的方法,其特点是容易掌握,且对设计能保证足够的精度,其中采用比较多的方法是剪力-柔性梁格法,能充分考虑弯桥横向的受力特性。

剪力-柔性梁格法的原理是当梁格节点与结构重合的点承受相同挠度和转角时,由梁格产生的内力局部静力等效与结构的内力。

其实质是将传统的一维杆单元计算模式推进到二维计算模型,用一个二维的空间网格来模拟结构的受力特性。

对于梁格法的讨论这里也有不少帖子进行了讨论,实际与梁格之间的等效关系,主要表现在梁格各个构件的刚度计算上,理论上,原型和等效梁格承受相等的外荷载时,必须具有恒等的挠曲和扭转,等效梁格中每一构件的内力也必须等于该构件所代表的原型截面的,事实上这种理想状况是达不到的,模拟也是近似的,但事实是按梁格计算能把握住结构的总体性能,对于设计来说应该是能满足精度的。

梁格也是近似的模拟,只要计算者能够和好的模拟了横向纵向的特性,应该是可以作为设计依据的。

你在这里说的横向的切分使得预应力产生的次内力问题我不太清楚你指的什么,但是只要横向的刚度业等效了原型,对于计算应该不会出现逆所说的结构内力失真,这条可以通过结果验证。

当然任何结构,只要不怕麻烦都可以用实体单元来分析,只要正确模拟,实体分析也是最精确的,但是对于这种模型要准确模拟可不是一件容易的事,并且预应力的损失计算,施加等等都非常麻烦,还有最后结果的查看也不方便,因此除了结构局部的分析,一般是没有拿实体来进行全桥的整体分析的,至于说单梁我也说了,有些时候精度是可以的,但是对于这种结构相对于梁格来说单梁的精度是不如梁格的。

曲线桥坐标计算详解探讨

曲线桥坐标计算详解探讨

曲线桥墩台中心坐标计算与直线桥相比,曲线桥墩台中心坐标的计算要复杂的多,涉及的内容也较多,下面就有关内容分述如下。

1.梁和桥台在曲线上的布置形式的两个端点并不位于线路中心线上,而必须将梁的中线向曲线外侧移动一段距离。

根据线布置在同一条直线上,则台尾中心必然偏离到线路中线的外侧,如图16—13所示。

设其偏距为d,如果d≤10cm 时,则桥台就采用这种布置形式;否则,应旋转桥台,使台前的偏距与相邻梁跨的偏距相同,台尾的偏距为0,如图16—14所示。

前者布置形式称为直线布置,后者称为折线布置。

当采用折线形式布置桥台时,台尾偏角可能会出现负值,如图16—15(a)所示,如果出现这种情况,则台前和台尾采用相同的偏距,如图16—15(b)所示。

2.偏距E的计算在曲线桥上,梁的中线由弦线位置,向曲线外侧移动的一段距离称为偏距,并以ERL E 82= (16—13) 若为平分中矢布置,其偏距为:RL E 162= (16—14) 在缓和曲线上,切线布置的梁,其偏距为:28l l R L E i⋅= (16—15) 若为平分中矢布置,则偏距为:216l l R L E i⋅= (16—16) 式中,L 为交点距、R 为圆曲线半径、l i 为ZH (或HZ )至计算点的距离、l 0为缓和曲线长。

曲线桥梁设计中,桥墩的中心选在桥梁工作线的转折点上,其纵轴线位于工作线转折角的角平分线上,横轴线与纵轴线垂直。

由偏距的计算公式可以看出,当相邻两孔梁的跨距不等,或虽然跨距相等,但位于缓和曲线上时,所求得的偏距E 值不等,导致相邻两孔梁中线的交点不在两孔梁的正中间,这就造成两孔梁在墩上不能对称放置。

为了避免这种情况的发生,规定了当相邻梁跨都小于16m 时,按较小跨度梁的要求计算偏距E 值,而大于20m 时,按较大跨度梁的要求计算偏距E 值。

3. 交点距L 的计算考虑到梁体的制造误差、架设误差、梁在受力后的伸长、温度变化对梁长的影响、墩台施工误差和测量误差等,相邻两跨梁的梁端之间、桥台胸墙线与相邻梁端之间应留有一定的间隙。

连续曲线梁桥的设计探讨

连续曲线梁桥的设计探讨
出设 计 经验 。
主桥平 面位于 R= 2 1 0 0 m 的圆曲线上 , 箱梁纵桥
向采 用 直腹 板 型式 , 桥 梁 平 面线 形 通 过 箱 梁翼 缘 板 长
度 的变化来 拟合。全桥 的过 渡墩和引桥 的墩 台中心
线 采 用径 向布 置 。
1 . 2 上部 结 构
关键词 : 曲线梁桥 ; 设计; 探 讨 中 图分类 号 : U 4 4 8 文献 标 识码 : A
桥梁上部结构采用 三跨预应力 混凝土 变截面连
Di s c u s s i o n o n de s i g n o f c o nt i nu o us c ur v e b e a m b r i dg e
续箱梁 , 箱梁 采用单箱双室直腹板截 面 , 箱梁顶板宽
连 续 曲线 梁 桥 的 设 计 探 讨
杨 剑 , 戴秋 鹤 ( 南 昌市公 路 勘 察 设计 院 , 江西 南昌 3 3 0 0 7 7 )
摘要 : 在 南 昌市 某连 续 曲线梁桥 设 计 的基 础 上 , 对 此 类梁 桥设 计 的 一 些 问题 进 行 了探 讨 , 从 而 总 结
应力混凝 土变截面连续箱 梁 , 主桥右 幅为 ( 4 2 . 4 0 5+
6 0+ 3 3 . 9 7 2 ) m预应 力混凝 土变截面连 续箱梁 ; 左 引
桥为( 4× 2 5+ 2 × 3 0 ) m组合箱梁 ; 右引桥为 ( 3× 2 5+ 3× 2 5 ) m组合 箱梁 , 全桥 共 5联 1 5跨。桥梁下部 结
2 设 计 探 讨
2 . 1 曲线 梁桥 受 力 特点
构主桥桥墩 为矩形截面实体墩 , 钻孑 L 灌注桩基础 ; 引
4 . 8 m, 右 幅主 墩 墩 身 高 4 . 4 5 m。桥 墩 承 台 平 面 为 矩 形, 尺 寸为 5 4 0 c m× 1 5 0 0 c m, 厚度为 2 0 0 c m。桥 墩 基础 为 2 x 4 q b l 2 0 c m 双排 钻 孔 灌注 桩 基础 。

曲线梁桥设计理论研究奚政锋

曲线梁桥设计理论研究奚政锋

曲线梁桥设计理论研究奚政锋发布时间:2022-06-30T10:10:12.198Z 来源:《建筑模拟》2022年第4期作者:奚政锋[导读] 按照曲线形状的不同曲线梁桥可以分为圆曲线、缓和曲线、圆曲线与缓和曲线组合型曲线桥。

我们通常将曲率半径小于 100m的曲线桥称为“小半径曲线桥”奚政锋重庆交通大学1. 曲线梁桥的分类按照曲线形状的不同曲线梁桥可以分为圆曲线、缓和曲线、圆曲线与缓和曲线组合型曲线桥。

我们通常将曲率半径小于 100m的曲线桥称为“小半径曲线桥”。

2. 曲线梁桥的受力特点(1)弯扭耦合作用曲线梁桥由于曲率的存在,弯扭耦合效应产生的附加扭矩会加大结构的挠曲变形,因此对于曲线梁桥的设计应该予以额外重视。

(2)曲线梁内外侧受力不均匀由于偏载效应,曲线梁桥梁体可能产生较大的扭矩,使得其向外发生扭转。

(3)梁体横向爬移在整体升降温作用、制动力、离心力作用下,曲线梁桥会发生沿径向不可恢复的位移,过大的梁体爬移会导致最后梁体的倾覆。

(4)竖向挠曲变形在弯扭共同作用下曲线梁桥的挠曲变形将比相同跨径的直线梁桥大。

(5)支座布置形式不同的支承方式将直接影响到全桥的内力分布。

3. 曲线梁桥的分析计算理论及基本微分方程3.1曲线梁桥常用分析计算理论针对不同的曲线桥结构型式,大概可以分为解析法、半解析法和数值法。

3.2曲线梁桥的基本微分方程(1)曲线梁桥的平衡微分方程建立在弯曲与扭转共同作用下的曲线梁平衡微分方程,利用曲线梁微段的空间平衡条件,建立六个平衡方程式。

若令,并设,即成为我们熟知的直梁静力平衡方程。

(2)曲线梁的几何方程曲线梁的“弯扭稱合”效应使得其轴向位移u、径向位移v、竖向位移w和截面扭转角相互影响,为描述曲梁变形与位移分量之间的复杂关系,建立曲线梁的几何方程。

在方程中,若令,即成为我们熟知的直梁几何方程。

4. 混凝土曲线梁桥建模方法的概述4.1单根梁法、以直代曲法建模方法概述4.1.1单根梁法利用 Midas/Civil 对混凝土曲线梁建立单根梁桥模型时,软件不能直接模拟曲线梁桥,只能用直线微段来代替曲线形成整体上的曲线梁桥。

曲线梁桥的受力特点和分析方法

曲线梁桥的受力特点和分析方法

曲线梁桥的受力特点和分析方法摘要:由于在经济和审美上的优势,曲线梁桥被广泛应用于现代公路立交系统。

曲线梁的竖曲和扭转耦合,由于结构上的特点,相对于直梁桥而言,曲线梁的分析更为复杂。

本文对弯道梁桥的受力特点进行了介绍,并总结了分析弯道梁桥的有关理论。

关键词:曲线梁桥;弯扭耦合;支承体系;有限元法引言曲线梁桥是指主梁本身为弧形的弯曲桥梁。

由于其独特的线形,曲线梁桥突破了多种地形的限制,同时在高速公路、山地公路、城市桥梁等方面,由于其优美的曲线造型而得到了更快的发展。

曲线梁桥具有现实意义,发展前景非常看好,无论从几何角度、美学角度,还是从经济角度,都是如此。

1曲线桥梁受力特性1.1弯扭耦合作用由于受弯曲率的影响,当竖向弯曲时,曲线梁截面必然会产生扭转,而这种扭转又会导致梁的挠曲变形,这种挠曲变形被称为“弯扭耦合作用”。

对于弯道梁桥的设计,相对于直线型梁桥来说,要特别注意,因为弯道扭力耦合作用所产生的附加扭力,会使梁体结构产生较不利的受力条件,从而增加结构的挠曲变形。

值得注意的是,由于自重在使用荷载下占绝大多数,对于混凝土曲线箱梁桥而言,也会导致更明显的弯扭耦合。

由于弯道梁桥沿弯梁的线形布置支承不成直线,因此由于弯道外侧较重,导致桥体恒载重心相对于形心向外偏移。

曲线梁在自重的作用下,也会产生扭转和扭曲的变形,从而使曲线桥发生翻转,出现匍匐的现象,这就是曲线梁在自重的作用下产生的变形[1]。

1.2曲线梁内外侧受力不均匀曲线桥因弯曲和扭动耦合作用,变形大于同跨径的直线桥,且曲率半径越小、桥越宽,因此其简支曲线梁外缘的挠度比内缘大,这种变化趋势是显而易见的。

曲线梁桥体具有向外扭转的较大扭力、弯曲扭力耦合和偏载作用的可能。

扭转作用会越来越明显,曲率半径越小、跨度越大的曲线梁桥甚至会引起抗扭支座内侧支座产生空心现象,这种情况在抗扭转支座的内部支座上会产生空心现象,这种情况的发生曲线桥的支点反力与直线桥相比,有一种倾向,它的外侧会变大、内侧会变小,甚至在内侧产生负反力。

对曲线梁桥的研究总结报告

对曲线梁桥的研究总结报告

对曲线梁桥的研究总结报告摘要:曲线梁桥指的是平面线形呈某种曲线形状的梁桥。

从平面形状来看,曲线梁桥大多数位于圆曲线上,有时也会位于缓和曲线上。

根据孔跨布置和地面构筑物的要求,曲线梁桥分为扇形曲线梁桥或斜交曲线梁桥,由于斜交曲线梁桥受力更复杂,设计者往往尽量采用曲线梁桥。

本文就当前曲线梁桥的基本情况、受力特点、设计理论以及有限元模型的建立进行分析。

关键词:曲线梁桥、设计理论、有限元模型1概述城市现代化建设的发展使得城市交通系统的压力增大。

为保证城市交通顺畅,迫切需要更新原有的道路设施和开辟新的交通线。

以桥梁结构物布置为主的路线线型布设已无法满足高等级公路线型标准的要求,因此桥涵结构物的布置必须以路线线型布设为主,曲线梁桥由于能适应特殊线形需要且更具有曲线结构线条平顺、流畅、明快的美学价值,在现代化的公路立交及城市立交中的应用已十分普遍。

2曲线梁桥受力特点(1)弯桥梁截面在发生竖向弯曲时,必然产生扭转,而这种扭转作用又将导致梁的挠曲变形称为“弯-扭”耦合作用,使得弯桥的外边缘挠度大于内边缘挠度,且曲率半径越小、桥越宽,这一趋势越明显;(2)弯桥的支点反力与直线桥相比,有曲线外侧变大、内侧变小的倾向,内侧甚至产生负反力;(3)弯桥的中横梁,除具有直线桥中的功能外,还是保持全桥稳定的重要构件,与直线桥相比刚度较大;除影响直线桥受力特性的因素,与曲线桥受力特性有关的主要因素有:圆心角、桥宽与曲率半径之比、弯扭刚度比。

本文从圆心角和曲率半径两个方面对弯桥受力特性进行分析。

3曲线梁桥的设计理论3.1 纯扭转理论即将曲线梁桥结构作为集中在梁中心线处的弹性杆件来处理。

该理论概念清楚、计算简便,但未能考虑杆件截面翘曲、畸变的影响。

3.2 约束扭转理论1939-1940年,苏联学者乌曼斯基提出了闭合截面弹性薄壁杆件的计算理论,其基础是先假定截面周边不变形,其次假定可从自由扭转的纵向位移表达式中导出约束扭转位移表达式。

基于曲线梁桥的设计研究与分析

基于曲线梁桥的设计研究与分析

基于曲线梁桥的设计研究与分析摘要针对道路工程设计中常用的曲线桥梁设计与计算方法,目前常用的曲线桥梁计算方法有两种,第一种是单梁模型,第二种是梁格模型。

本文将着重介绍如何应用梁格模型来对曲线箱梁进行计算分析,对曲线箱梁的总体构造设计、支座布置、横梁设计、下部墩柱型式和抗震结构设计以及在设计中应注意的计算问题等进行了深入的研究和探讨。

本文旨在总结工程设计工作中取得经验的同时为曲线桥梁工程设计实践提供有益的帮助。

关键词曲线箱梁桥;计算;设计;抗震;横梁:问题随着城市的不断发展,城市交通问题在城市建设中越来越受到重视,为了缓解日益严重的交通拥堵问题,立交桥逐渐成为城市交通中必不可少的交通设施。

立交桥通常受已有道路和周围环境的制约以及满足未来道路交通的需要,平面内通常采用曲线形式。

与直线桥梁相比,因为曲线梁桥弯扭处存在耦合作用,所以其在受力上更加复杂。

最近几年,频繁出现的曲线梁桥整体侧移甚至垮塌的事故,其主要原因就是桥梁支座布置不合理,当然也有其他方面的一些原因。

因为桥梁支座的布置实质上决定了全桥的计算图式,进而影响了全桥的内力分布。

1 应用梁格法进行曲线箱梁空间分析曲线梁桥桥型的受力特点与传统的直线梁桥存在着很大的不同,工程师们进行曲线梁桥的设计时,需要重点考虑的问题有很多,例如如何确定结构合理的支撑体系、支座位置以及活载内力、偏心调整、偏载对结构受力产生的影响等。

设计曲线梁桥常用的计算方法主要有以下几种:梁格系分析法、变分原理解析法和数值分析有限元法。

在实际设计过程中,梁格法凭借其易于操作和理解以及易于程序化的特点而得到了广泛的应用。

它的基本设计思路是对桥梁上部结构进行离散分解,并设计一个刚度接近等效的梁格体系来代替桥梁上部结构,完成对这种等效梁格的分析后,再将分析结果还原到原结构中,进而取得需要的计算结果。

在工程实践中,梁格法以其高效、简便的特点在建筑空间分析方面得到了很多应用。

梁格法用等效的梁格来模拟建筑上部的梁结构,对于钢筋混凝土结构来说,通常按纵横两个方向进行配筋,并且混凝土具有较小的泊松比,依据梁格法计算出来的纵、横两个方向的弯矩完全可以满足结构设计的精度要求;此外当梁格的网格设计的足够密时,经计算得出的翘曲效应可以对实际情况进行等效的反映。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


70 7
二一 — — 一
— 一 ~ — 一 一 一


,一



… — j …


心设 置 , 以达到调整扭矩 的作用 。 但为 了分析 的
方便 , 本桥在建模时支座设定 没有偏 心布置 , 均
布置在桥梁轴线上。 3 荷载分析
删蛳螂 螂 慨螂

l 1 20 0 O 8 5 0
载的横 向分布是不 同的 , 目前仍然用荷 载横 但 向分布 的说法 。本 文在计 算时将活载处理 为等
效节点力 , 结合横 向分 布系数 , 直接作用在 结构 上, 计算出活载作用下的结构内力 。 4 结果分析 比较
为了便 于 比较分析 ,本文在进行 内力 比较
时取边跨跨 中 、 支点 、 边跨 中跨跨 中和 中跨 边支
6 0 0 0埘 瑚 戡 l
罔4 恒载n 甩下边跨支点
本文所 用例子为厦 门海沧保 税港 区一期 区 种情 况适用于 圆曲线和复 曲线 ; 另一种 是曲线 内集疏运通道工程 屿 电厂专用通道部分 ) 梁桥各部分位移都切于弯 曲半 径 , 种适用于 中 这 电厂运灰 通道跨线桥 , 桥为 52m,箱型截 圆曲线。本桥在支座布置 时采用 的是第一种方 该 x0
计 算, 再通过 分析比较 , 讨论 曲线 梁桥 内力及位 移与 曲线半径的 关系, 找到 曲线半径 对整个结构受力的影响规律 , 出在平常设 计 中“ 得 以直代 曲” 简化设计思想 , 的 指导设计工作。 关键词 : 曲线梁桥 , 直线梁 , 限元 , D SC V L , 有 MIA / I IL 以直代 曲 中图分类号 : 4 U4 文献标识码 : A
的分析结果 , 在进行单 元划分时 , 尽量使单元 尺 半径 的增 加 , 这方面的影响是趋于减小 的 , 可以 寸较接近 , 以免产生较大误差 。 为更好的进行分 不予考虑 。 析 比较 ,建模 曲率 半径 按照公路规范互通立 交 设计 中的匝道圆曲线半径一般值要求 , 分别 取
3 活载分析 . 2
点为 比较截面 。
2O 9 9
25 9 8 舢 l
仅要考虑弯矩 , 而且还 有弯矩和扭矩 的耦合作 用, 这给工程设 计带来 了极大的不便 。 影响曲线 梁桥 内力 的因素较多 ,其 中最主要 的因素即为 体模 型如 图 2所示 。 曲率半径 的影响。下面就 曲线梁桥 的计算模 型 图 2 桥梁平面梁单元模型 进行探讨 ,系统 地分析和讨论连续 曲线 梁桥 在 不 同曲率半 径下的 内力 ,并给 出了曲线 梁桥简 化为直梁桥分析 的条件及相应加强措施 。
随着高等级公路及 城市立交桥 、高架道路 的发展 , 曲线梁桥 的修建也越来越 多。 曲线梁桥 具有很好 的适应线 路走向的能力 ,不用 因为跨 越一处障碍 而改 变整个线路 ,从而节省 了大 量
的人力和物力 。由于曲线梁桥具有 比直梁桥更 复杂 的几何特 陛 ,因此决 定了 曲线梁桥 的受 力 及变形行为 比直梁 桥更为复杂 。曲线梁桥 中不

印 l 舯
1 { 自 52 0 j 蛀 0
目 t }} 5 煳 十} I 搬弯 随 的 他 自 R堑
6 蝴

辍 夸 h瞳 ∞他 自矩h R 蔓
L—里一j … …

… 一 一一 一 L—
3 恒载分析 . 1 曲线梁桥 的恒 载计算 总体上与直梁桥没有
从 图 3 图 6 以看 出 ,各种 曲率半径 下 至 可
曲线 桥活载的计算采用考虑 荷载横向分布
6m、0m、 0 0 10 1 m和 20 5 8m,最后再 用直梁桥 计 的影 响线加载的方法 。理论分析 和实验结果均
算。 证实 ,曲线 桥控制截面 的控制 内力 与变形的精 本 文 采 用 桥 梁 专 用 有 限 元 分 析 软 件 确影 响面一般在纵 、横方 向均具有各 自相似 的 MD S II IA / VL建模分析 , C 采用平 面梁 单元 来模 变 化规律 , 因此可以仿照直线桥 的做法 , 采用荷 拟 整个结 构 , MIA CV L 立的单梁模 型 载横 向分布方法进行 曲线 桥计算 。由于弯扭耦 由 D S II 建 / 从图 7 至图 1 0中可 以看 出, 恒载作用下 ,
1 有限元模型的建立 2 支承布置 曲线梁桥支座布置与直线梁 桥不同。在设
鞠 伯 鞠0 T 25 9 6
计 曲线梁桥位移时有二种设想 , 一种是 曲线梁 桥的各部 分位移都 朝 向一个 设定 的固定点 , 这
20 %
∞ l l 2 直 ∞ _ 8 线 0 0
圈 3 恒载作用下边踌畴中

C ia N w e h oo i r d cs
工 程 技 术
曲线 梁桥 计算模 型 的探讨
赵怡 琳
( 门中平公路勘察设计院有限公 司, 厦 福建 厦 门 3 10 ) 6 00
摘 要: 文章通过对多个曲线半径、 相同跨径的钢筋混凝土曲线梁桥和相同跨径的直线梁桥运用有限元分析软件 MIA / I IL进行结构 D SC VL
面, 横断面图如 图 1 载为公路一l , 荷 级。 式 , 中跨设 置 固定 支座 , 跨设 置单 向支座 , 在 边 在桥台则设置单 向和双 向两种 支座。在工程实

… … — —
纵向弯 M 随 R的 矩 x 变化
纵向 弯矩 M 随 R x 的变化
际中 ,曲线桥通常在 中间处 的支座予 以横 向偏
图 1 设计截 面
区别 , 但是 由于 曲线 的存 在 , 曲线桥 的恒 载 的弯矩 大小差 别不大 , 使得 并且随着半径 的增 大 , 其 相对 于桥梁 轴线 并不是对称分布 的。在 曲率 半
进行结构分 析时 ,不考虑钢筋和混凝土 的 径较小 时 , 中应 予以考虑此部分 , 计算 有支座 偏 非 线性影响 ,仅进行钢筋 混凝 土结构整体 的弹 心 的曲线 桥更不可忽略 。本文采用将结 构划 分 性 分析 , 出的结果 也是弹性 的。 得 为了得到较好 较多 的单 元来克服这部分 的影 响,而 随着 曲率
相关文档
最新文档