贵州省六盘水市2014年中考数学试题(word版,含解析)

合集下载

贵州六盘水中考数学试题解析版.doc

贵州六盘水中考数学试题解析版.doc

贵州省六盘水市2011年中考数学试卷一、选择题(每小题3分,满分30分)1、(2011•六盘水)下列实数中,无理数是()A、﹣2B、0C、πD、2、(2011•六盘水)把不等式组的解集表示在数轴上,正确的是()A、B、C、D、3、(2011•六盘水)如图是正方体的一个平面展开图,如果叠成原来的正方体,与“创”字相对的字是()A、都B、美C、好D、凉4、(2011•六盘水)已知两圆的半径分别为1和2,圆心距为5,那么这两个圆的位置关系是()A、内切B、相交C、外离D、外切5、(2011•六盘水)下列运算中,结果正确的是()A、(a﹣b)2=a2﹣b2B、(﹣a4)3=a7C、2a+4b=6abD、﹣(1﹣a)=a﹣16、(2011•六盘水)下列事件是必然事件的是()A、若a>b,则ac>bcB、在正常情况下,将水加热到100℃时水会沸腾C、投掷一枚硬币,落地后正面朝上D、长为3cm、3cm、7cm的三条线段能围成一个三角形7、(2011•六盘水)如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A、B、C、D、8、(2011•六盘水)若点(﹣3,y1)、(﹣2,y2)、(1,y3)在反比例函数的图象上,则下列结论正确的是()A、y1>y2>y3B、y2>y1>y3C、y3>y1>y2D、y3>y2>y19、(2011•六盘水)“标准对数视力表”对我们来说并不陌生,如图是视力表的一部分,其中最上面较大的“E”与下面四个较小“E”中的哪一个是位似图形()A、左上B、左下C、右上D、右下10、(2011•六盘水)如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P 在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A、3B、4C、5D、6二、填空题(每小题4分,满分32分)11、(2011•六盘水)如果上升10米记作+10米,那么下降5米记作_________米.12、(2011•六盘水)通过第六次全国人口普查得知,六盘水市人口总数约为2851180人,这个数用科学记数法表示是_________人(保留两个有效数字).13、(2011•六盘水)请写出两个既是轴对称图形又是中心对称图形的平面几何图形名称_________(写出两个即可)14、(2011•六盘水)在平面直角坐标系中,点P(2,3)与点P'(2a+b,a+2b)关于原点对称,则a﹣b 的值为_________.15、(2011•六盘水)一个正方形的面积是20,通过估算,它的边长在整数_________与_________之间.16、(2011•六盘水)小明将两把直尺按如图所示叠放,使其中一把直尺的一个顶点恰好落在另一把直尺的边上,则∠1+∠2=_________度.17、(2011•六盘水)从美学角度来说,人的上身长与下身长之比为黄金比时,可以给人一种协调的美感.某女老师上身长约61.80cm,下身长约93.00cm,她要穿约_________cm的高跟鞋才能达到黄金比的美感效果(精确到0.01cm).18、(2011•六盘水)有一列数:,,,…,则它的第7个数是_________;第n个数是_________.三、解答题(本大题共7道题,满分88分,请在答题卷中作答,必须写出运算步骤,推理过程,文字说明或作图痕迹)19、(2011•六盘水)计算:.20、(2011•六盘水)先化简代数式:,再从你喜欢的数中选择一个恰当的作为x的值,代入求出代数式的值.21、(2011•六盘水)在我市举行的“祖国好,家乡美”唱红歌比赛活动中,共有40支参赛队.市教育局对本次活动的获奖情况进行了统计,并根据收集的数据绘制了图1、图2两幅不完整的统计图,请你根据图中提供的信息解答下面的问题:(1)获一、二、三等奖各有多少参赛队?(2)在答题卷上将统计图图1补充完整;(3)计算统计图图2中“没获将”部分所对应的圆心角的度数;(4)求本次活动的获奖概率.22、(2011•六盘水)小明家有一块长8m、宽6m的矩形空地,妈妈准备在该空地上建造一个花园,并使花园面积为空地面积的一半,小明设计了如下的四种方案供妈妈挑选,请你选择其中的一种方案帮小明求出图中的x值.23、(2011•六盘水)如图,已知:△ABC是⊙O的内接三角形,D是OA延长线上的一点,连接DC,且∠B=∠D=30°.(1)判断直线CD与⊙O的位置关系,并说明理由.(2)若AC=6,求图中弓形(即阴影部分)的面积.24、(2011•六盘水)某一特殊路段规定:汽车行驶速度不超过36千米/时.一辆汽车在该路段上由东向西行驶,如图所示,在距离路边10米O处有一“车速检测仪”,测得该车从北偏东60°的A点行驶到北偏东30°的B点,所用时间为1秒.(1)试求该车从A点到B点的平均速度.(2)试说明该车是否超速.(、)25、(2011•六盘水)如图所示,Rt△ABC是一张放在平面直角坐标系中的纸片,点C与原点O重合,点A 在x轴的正半轴上,点B在y轴的正半轴上,已知OA=3,OB=4.将纸片的直角部分翻折,使点C落在AB 边上,记为D点,AE为折痕,E在y轴上.(1)在如图所示的直角坐标系中,求E点的坐标及AE的长.(2)线段AD上有一动点P(不与A、D重合)自A点沿AD方向以每秒1个单位长度向D点作匀速运动,设运动时间为t秒(0<t<3),过P点作PM∥DE交AE于M点,过点M作MN∥AD交DE于N点,求四边形PMND的面积S与时间t之间的函数关系式,当t取何值时,S有最大值?最大值是多少?(3)当t(0<t<3)为何值时,A、D、M三点构成等腰三角形?并求出点M的坐标.答案与评分标准一、选择题(每小题3分,满分30分)1、(2011•六盘水)下列实数中,无理数是()A、﹣2B、0C、πD、考点:无理数。

2014年贵州省六盘水市中考数学试题(有答案)

2014年贵州省六盘水市中考数学试题(有答案)

贵州省六盘水市2014年中考数学试卷一、选择题(共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2014•六盘水)下列说法正确的是()A .﹣3的倒数是B.﹣2的倒数是﹣2C .﹣(﹣5)的相反数是﹣5 D.x 取任意实数时,都有意义考点:分式有意义的条件;相反数;倒数.分析:根据倒数的定义,相反数的定义以及分式有意义的条件对各选项分析判断利用排除法求解.解答:解:A、﹣3的倒数是﹣,故本选项错误;B、﹣2的倒数是﹣,故本选项错误;C、﹣(﹣5)的相反数是﹣5,故本选项正确;D、应为x取任意不等于0的实数时,都有意义,故本选项错误.故选C.点评:本题考查了分式有意义,分母不等于0,相反数的定义以及倒数的定义,是基础题,熟记概念是解题的关键.2.(3分)(2014•六盘水)如图是由几个小立方体快所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的小数,这个几何体的主视图是()A .B.C.D.考点:由三视图判断几何体;简单组合体的三视图.分析:根据俯视图可确定主视图的列数和小正方体的个数,即可解答.解答:解:由俯视图可得主视图有2列组成,左边一列由4个小正方体组成,右边一列由2个小正方体组成.故选:B.点评:本题考查了由三视图判断几何体的知识,由几何体的俯视图可确定该几何体的主视图和左视图,要熟练掌握.3.(3分)(2014•六盘水)某商场对上月笔袋销售的情况进行统计如下表所示:颜色白色黄色蓝色紫色红色数量(个)56 128 520 210 160经理决定本月进笔袋时多进一些蓝色的,经理的这一决定应用了哪个统计知识()A .平均数B.方差C.中位数D.众数考点:统计量的选择.分析:经理最值得关注的应该是爱买哪种颜色笔袋的人数最多,即众数.解答:解:由于销售最多的颜色为蓝色,且远远多于其他颜色,所以选择多进蓝色笔袋的主要根据众数.故选:D.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.4.(3分)(2014•六盘水)下面图形中,是中心对称图形的是()A .B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念对各选项分析判断利用排除法求解.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选C.点评:本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3分)(2014•六盘水)下列运算正确的是()A .(﹣2mn)2=4m2n2B.y2+y2=2y4C.(a﹣b)2=a2﹣b2D.m2+m=m3考点:幂的乘方与积的乘方;合并同类项;完全平方公式.分析:运用积的乘方,合并同类项及完全平方公式计算即可.解答:解:A、(﹣2mn)2=4m2n2 故A选项正确;B、y2+y2=2y2,故B选项错误;C、(a﹣b)2=a2+b2﹣2ab故C选项错误;D、m2+m不是同类项,故D选项错误.故选:A.点评:本题主要考查了积的乘方,合并同类项及完全平方公式,熟记计算法则是关键.6.(3分)(2014•六盘水)将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()A .B.C.D.考点:剪纸问题.分析:对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.解答:解:严格按照图中的顺序向右上翻折,向左上角翻折,剪去左上角,展开得到结论.故选:B.点评:本题考查的是剪纸问题,此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.7.(3分)(2014•六盘水)青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞20只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,请你估计一下这个池塘里有多少只青蛙?()A .100只B.150只C.180只D.200只考点:用样本估计总体.分析:从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,即在样本中有标记的所占比例为,而在整体中有标记的共有20只,根据所占比例即可解答.解答:解:∵从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,∴在样本中有标记的所占比例为,∴池塘里青蛙的总数为20÷=200.故选D.点评:此题主要考查了用样本去估计总体,统计的思想就是用样本的信息来估计总体的信息.8.(3分)(2014•六盘水)六盘水市“琼都大剧院”即将完工,现需选用同一批地砖进行装修,以下不能镶嵌的地板是()A .正五边形地砖B.正三角形地砖C.正六边形地砖D.正四边形地砖考点:平面镶嵌(密铺).分析:几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.360°为正多边形一个内角的整数倍才能单独镶嵌.解答:解:A、正五边形每个内角是180°﹣360°÷5=108°,不是360°的约数,不能镶嵌平面,符合题意;B、正三角形的一个内角度数为180﹣360÷3=60°,是360°的约数,能镶嵌平面,不符合题意;C、正六边形的一个内角度数为180﹣360÷6=120°,是360°的约数,能镶嵌平面,不符合题意;D、正四边形的一个内角度数为180﹣360÷4=90°,是360°的约数,能镶嵌平面,不符合题意.故选:A.点评:本题考查了平面密铺的知识,注意掌握只用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.9.(3分)(2014•六盘水)如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为()A .3 B.27 C.9 D.1考点:代数式求值.专题:图表型.分析:根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.解答:解:第1次,×81=27,第2次,×27=9,第3次,×9=3,第4次,×3=1,第5次,1+2=3,第6次,×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2014是偶数,∴第2014次输出的结果为1.故选D.点评:本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.10.(3分)(2014•六盘水)“横看成岭侧成峰”从数学的角度解释为()A.从不同的方向观察同一建筑物时,看到的图形不一样B.从同一方向观察同一建筑物时,看到的图形不一样C.从同一的方向观察不同的建筑物时,看到的图形一样D.以上答案都不对考点:简单组合体的三视图.分析:根据三视图,可得答案.解答:解:三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为三视图,故选:A.点评:本题考查了简单组合体的三视图,从不同方向观察物体得到的图形不同.二、填空题(共8小题,每小题4分,满分32分)11.(4分)(2014•六盘水)绝对值最小的实数是0 .考点:实数的性质.分析:根据绝对值的定义,绝对值是数轴上表示一个数的点到原点的距离,距离是非负数进行解答.解答:解:绝对值最小的实数是0.故答案为:0.点评:本题考查了绝对值的定义,是基础题,比较简单.12.(4分)(2014•六盘水)PM2.5是指大气中的直径小于或等于0.0000025米(2.5微米)的有毒有害物质.0.0000025米用科学记数法表示为: 2.5×10﹣6米.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:将0.0000025米用科学记数法表示为:2.5×10﹣6.故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13.(4分)(2014•六盘水)分解因式:m3﹣2m2n+mn2= m(m﹣n)2.考点:提公因式法与公式法的综合运用.分析:首先提取公因式m,进而利用完全平方公式分解因式得出即可.解答:解:m3﹣2m2n+mn2=m(m2﹣2mn+n2)=m(m﹣n)2.故答案为:m(m﹣n)2.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用公式是解题关键.14.(4分)(2014•六盘水)在△ABC中,点D是AB边的中点,点E是AC边的中点,连接DE,若BC=4,则DE= 2 .考点:三角形中位线定理.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得DE=BC.解答:解:∵点D是AB边的中点,点E是AC边的中点,∴DE是△ABC的中位线,∴DE=BC=×4=2.故答案为:2.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.15.(4分)(2014•六盘水)黄金比>(用“>”、“<”“=”填空)考点:实数大小比较.分析:根据分母相同,比较分子的大小即可,因为2<<3,从而得出﹣1>1,即可比较大小.解答:解:∵2<<3,∴1<﹣1<2,∴>,故答案为>.点评:本题考查了实数的大小比较,解题的关键是熟练掌握在哪两个整数之间,再比较大小.16.(4分)(2014•六盘水)如图,一次函数y1=k1x+b(k1≠0)的图象与反比例函数y2=k2x+b(k2≠0)的图象交于A,B两点,观察图象,当y1>y2时,x的取值范围是﹣1<x<0或x>2 .考点:反比例函数与一次函数的交点问题.分析:当一次函数的值反比例函数的值时,直线在双曲线的上方,直接根据图象写出一次函数的值大于反比例函数的值x的取值范围.解答:解;y1>y2时,一次函数图象在上方的部分是不等式的解,故答案为:﹣1<x<0或x>2.点评:本题考查了反比例函数与一次函数的交点问题,一次函数图象在反比例函数图象上方的部分是不等式的解集.17.(4分)(2014•六盘水)如图,在△ABC中,∠A=90°,AB=6,AC=8,分别以点B和C为圆心的两个等圆外切,则图中阴影部分面积为π(结果保留π)考点:扇形面积的计算;勾股定理;相切两圆的性质.分析:根据勾股定理求出斜边长,求出两圆的半径,根据扇形面积公式求出即可.解答:解:设两圆的半径为r,在Rt△BAC中,∠A=90°,AB=6,AC=8,由勾股定理得;BC=10,即2r=10,r=5,∵∠A=90°,∴∠B+∠C=90°,∴阴影部分的面积是=π,故答案为:π.点评:本题考查了扇形的面积,勾股定理,直角三角形的性质的应用,解此题的关键是能正确运用扇形面积公式进行计算,题目比较好,难度适中.18.(4分)(2014•六盘水)如图是长为40cm,宽为16cm的矩形纸片,M点为一边上的中点,沿过M的直线翻折.若中点M所在边的一个顶点不能落在对边上,那么折痕长度为10或8cm.考点:翻折变换(折叠问题).分析:过F作ME⊥AD于E,可得出四边形ABME为矩形,利用矩形的性质得到AE=BF,AB=EM,分两种情况考虑:(i)当G在AB上,B′落在AE上时,如图1所示,由折叠的性质得到B′M=BM,BG=B′G,在直角三角形EMB′中,利用勾股定理求出B′E的长,由AE﹣B′E求出AB′的长,设AG=x,由AB﹣AG表示出BG,即为B′G,在直角三角形AB′G中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出AG的长,进而求出BG的长,在直角三角形GBM中,利用勾股定理即可求出折痕MG的长;(ii)当G在AE上,B′落在ED上,如图2所示,同理求出B′E的长,设A′G=AG=y,由AE+B′E﹣AG表示出GB′,在直角三角形A′B′G中,利用勾股定理列出关于y的方程,求出方程的解得到y的值,求出AG的长,由AE﹣AG求出GE的长,在直角三角形GEM中,利用勾股定理即可求出折痕MG的长,综上,得到所有满足题意的折痕MG的长.解解:分两种情况考虑:答:(i)如图1所示,过M作ME⊥AD于E,G在AB上,B′落在AE上,可得四边形ABME 为矩形,∴EM=AB=16,AE=BM,又∵BC=40,M为BC的中点,∴由折叠可得:B′M=BM=BC=20,在Rt△EFB′中,根据勾股定理得:B′E==12,∴AB′=AE﹣B′E=20﹣12=8,设AG=x,则有GB′=GB=16﹣x,在Rt△AGB′中,根据勾股定理得:GB′2=AG2+AB′2,即(16﹣x)2=x2+82,解得:x=6,∴GB=16﹣6=10,在Rt△GBF中,根据勾股定理得:GM==10;(ii)如图2所示,过F作FE⊥AD于E,G在AE上,B′落在ED上,可得四边形ABME为矩形,∴EM=AB=16,AE=BM,又BC=40,M为BC的中点,∴由折叠可得:B′M=BM=BC=20,在Rt△EMB′中,根据勾股定理得:B′E==12,∴AB′=AE﹣B′E=20﹣12=8,设AG=A′G=y,则GB′=AB′﹣AG=AE+EB′﹣AG=32﹣y,A′B′=AB=16,在Rt△A′B′G中,根据勾股定理得:A′G2+A′B′2=GB′2,即y2+162=(32﹣y)2,解得:y=12,∴AG=12,∴GE=AE﹣AG=20﹣12=8,在Rt△GEF中,根据勾股定理得:GM==8,综上,折痕FG=10或8.故答案为:10或8.点评:此题考查了翻折变换﹣折叠问题,涉及的知识有:矩形的判定与性质,勾股定理,利用了方程、转化及分类讨论的思想,是一道综合性较强的试题.三、解答题(共8小题,满分88分.答题时写出必要的文字说明,证明过程或演算步骤)19.(8分)(2014•六盘水)计算:|1﹣|+(π﹣2014)0﹣2sin45°+()﹣2.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果解答:解:原式=﹣1+1﹣+4 =4.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(8分)(2014•六盘水)先化简代数式(﹣)÷,再从0,1,2三个数中选择适当的数作为a的值代入求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a=1代入计算即可求出值.解答:解:原式=•=•=2a+8,当a=1时,原式=2+8=10.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.(8分)(2014•六盘水)如图,在△ABC中,利用尺规作图,画出△ABC的外接圆或内切圆(任选一个.不写作法,必须保留作图痕迹)考点:作图—复杂作图;三角形的外接圆与外心;三角形的内切圆与内心.分析:分别利用三角形外心的确定方法以及内心的确定方法得出圆心位置,进而得出即可.解答:解:如图所示:点评:此题主要考查了复杂作图,正确把握三角形内心和外心位置确定方法是解题关键.22.(10分)(2014•六盘水)如图是某数学兴趣小组参加“奥数”后所得成绩绘制成的频数,频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题(成绩取整数,满分为100分)分组 0﹣19.5 19.5﹣39.5 39.5﹣59.559.5﹣79.579.5﹣100合计频数 1 5 6 30 b 50频率 0.02 a 0.12 0.60 0.16 1(1)频数、频率分布表中a= 0.1 ,b= 8 .(2)补全频数分布直方图.(3)若在80分以上的小组成员中选3人参加下一轮竞赛,小明本次竞赛的成绩为90分,他被选中的概率是多少?(4)从该图中你还能获得哪些数学信息?(填写一条即可)考点:频数(率)分布直方图;频数(率)分布表;概率公式.分析:(1)根据频数分布图中每一组内的频数总和等于总数据个数,得到总人数,再计算故a的值;根据频率=频数÷数据总数计算b的值;(2)据(1)补全直方图;(3)在80分以上的小组成员共8人,小明是其中一个,选3人参加下一轮竞赛,故小明被选上的概率是:;(4)答案不唯一,只要合理即可.解答:解:(1)根据频数分布图中每一组内的频数总和等于总数据个数,且知总人数为50人,故b=50﹣1﹣5﹣6﹣30=8,根据频数与频率的关系可得:a==0.1;(2)如图:(3)小明本次竞赛的成绩为90分,在80分以上的共8人,选3人参加下一轮竞赛故小华被选上的概率是:3÷8=.(4)如:在19.5﹣39.5之间的人数比在39.5﹣59.5之间的人数少多少人?6﹣5=1(人).答:在19.5﹣39.5之间的人数比在39.5﹣59.5之间的人数少1人.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.用到的知识点为:概率=所求情况数与总情况数之比.23.(12分)(2014•六盘水)(1)三角形内角和等于180°.(2)请证明以上命题.考点:三角形内角和定理;平行线的性质.专题:证明题.分析:(1)直接根据三角形内角和定理得出结论即可;(2)画出△ABC,过点C作CF∥AB,再根据平行线的性质得出∠2=∠A,∠B+∠BCF=180°,再通过等量代换即可得出结论.解答:解:(1)三角形内角和等于180°.故答案为:180°;(2)已知:如图所示的△ABC,求证:∠A+∠B+∠C=180°.证明:过点C作CF∥AB,∵CF∥AB,∴∠2=∠A,∠B+∠BCF=180°,∵∠1+∠2=∠BCF,∴∠B+∠1+∠2=180°,∴∠B+∠1+∠A=180°,即三角形内角和等于180°.点评:本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.24.(12分)(2014•六盘水)某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:(1)参赛学生人数x在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?考点:分式方程的应用;一元一次不等式组的应用.分析:(1)设参赛学生人数有x人,根据每位参赛学生购买1顶,只能按零售价付款,需用900元,如果多购买45顶,那么可以按批发价付款,同样需用900元,列出不等式,求出不等式的解即可;(2)根据参赛学生为x人和按批发价购买15顶与按零售价购买12顶的款相同,列出方程,求出方程的解即可.解答:解:(1)设参赛学生人数有x人,由题意得,x<200且x+45≥200,解得:155≤x<200;答:参赛学生人数在155≤x<200范围内;(2)根据题意得:+12=+15,解得:x=180,经检验x=180是原方程的解.答:参赛学生人数是180人.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.25.(14分)(2014•六盘水)为践行党的群众路线,六盘水市教育局开展了大量的教育教学实践活动,如图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形.活动中测得的数据如下:①小明的身高DC=1.5m②小明的影长CE=1.7cm③小明的脚到旗杆底部的距离BC=9cm④旗杆的影长BF=7.6m⑤从D点看A点的仰角为30°请选择你需要的数据,求出旗杆的高度.(计算结果保留到0.1,参考数据≈1.414.≈1.732)考点:解直角三角形的应用-仰角俯角问题.分析:分①②④和①③⑤两种情况,在第一种情况下证明△ABF∽△DCE,根据相似三角形的对应边的比相等即可求解;在第二种情况下,过点D作DG⊥AB于点G,在直角△AGD中利用三角函数求得AG 的长,则AB即可求解.解答:解:情况一,选用①②④,∵AB⊥FC,CD⊥FC,∴∠ABF=∠DCE=90°,又∵AF∥DE,∴∠AFB=∠DEC,∴△ABF∽△DCE,∴,又∵DC=1.5m,FB=7.6m,EC=1.7m,∴AB=6.7m.即旗杆高度是6.7m;情况二,选①③⑤.过点D作DG⊥AB于点G.∵AB⊥FC,DC⊥FC,∴四边形BCDG是矩形,∴CD=BG=1.5m,DG=BC=9m,在直角△AGD中,∠ADG=30°,∴tan30°=,∴AG=3,又∵AB=AG+GB,∴AB=3+1.5≈6.7m.即旗杆高度是6.7m.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.26.(16分)(2014•六盘水)如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式.(2)求函数图象的顶点坐标及D点的坐标.(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE 的面积.(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=S△BCD?若存在,请求出P点的坐标;若不存在.请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出b,c即可求出二次函数解析式,(2)把二次函数式转化可直接求出顶点坐标,由A对称关系可求出点D的坐标.(3)由待定系数法可求出BC所在的直线解析式,与抛物线组成方程求出点E的坐标,利用△BDE的面积=△CDB的面积+△CDE的面积求出△BDE的面积.(4)设点P到x轴的距离为h,由S△ADP=S△BCD求出h的值,根据h的正,负值求出点P的横坐标即可求出点P的坐标.解答:解:(1)∵二次函数y=x2+bx+c的图象过A(2,0),B(8,6)∴,解得∴二次函数解析式为:y=x2﹣4x+6,(2)由y=x2﹣4x+6,得y=(x﹣4)2﹣2,∴函数图象的顶点坐标为(4,﹣2),∵点A,D是y=x2+bx+c与x轴的两个交点,又∵点A(2,0),对称轴为x=4,∴点D的坐标为(6,0).(3)∵二次函数的对称轴交x轴于C点.∴C点的坐标为(4,0)∵B(8,6),设BC所在的直线解析式为y=kx+b,∴解得∴BC所在的直线解析式为y=x﹣6,∵E点是y=x﹣6与y=x2﹣4x+6的交点,∴x﹣6=x2﹣4x+6解得x1=3,x2=8(舍去),当x=3时,y=﹣,∴E(3,﹣),∴△BDE的面积=△CDB的面积+△CDE的面积=×2×6+×2×=7.5.(4)存在,设点P到x轴的距离为h,∵S△BCD=×2×6=6,S△ADP=×4×h=2h∵S△ADP=S△BCD∴2h=6×,解得h=,当P在x轴上方时,=x2﹣4x+6,解得x1=4+,x2=4﹣,当当P在x轴下方时,﹣=x2﹣4x+6,解得x1=3,x2=5,∴P1(4+,),P2(4﹣,),P3(3,﹣),P4(5,﹣).点评:本题主要考查了二次函数的综合题,解题的关键是利用待定系数的方法求出函数解析式以及三角形面积的转化.。

2014年贵州省六盘水市中考数学试题及参考答案(word解析版)

2014年贵州省六盘水市中考数学试题及参考答案(word解析版)

2014年贵州省六盘水市中考数学试题及参考答案与解析一、选择题(共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是()A.﹣3的倒数是13B.﹣2的倒数是﹣2C.﹣(﹣5)的相反数是﹣5 D.x取任意实数时,4x都有意义2.如图是由几个小立方体快所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的小数,这个几何体的主视图是()A.B.C.D.3.某商场对上月笔袋销售的情况进行统计如下表所示:160经理决定本月进笔袋时多进一些蓝色的,经理的这一决定应用了哪个统计知识()A.平均数B.方差C.中位数D.众数4.下面图形中,是中心对称图形的是()A.B.C.D.5.下列运算正确的是()A.(﹣2mn)2=4m2n2B.y2+y2=2y4C.(a﹣b)2=a2﹣b2D.m2+m=m36.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()A .B .C .D .7.青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞20只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,请你估计一下这个池塘里有多少只青蛙?( )A .100只B .150只C .180只D .200只8.六盘水市“琼都大剧院”即将完工,现需选用同一批地砖进行装修,以下不能镶嵌的地板是( ) A .正五边形地砖 B .正三角形地砖 C .正六边形地砖 D .正四边形地砖9.如图是一个运算程序的示意图,若开始输入x 的值为81,则第2014次输出的结果为( )A .3B .27C .9D .110. “横看成岭侧成峰”从数学的角度解释为( ) A .从不同的方向观察同一建筑物时,看到的图形不一样 B .从同一方向观察同一建筑物时,看到的图形不一样 C .从同一的方向观察不同的建筑物时,看到的图形一样 D .以上答案都不对二、填空题(本大题共8小题,每小题4分,满分32分) 11.绝对值最小的实数是 .12. PM2.5是指大气中的直径小于或等于0.0000025米(2.5微米)的有毒有害物质.0.0000025米用科学记数法表示为: 米. 13.分解因式:m 3﹣2m 2n+mn 2= .14.在△ABC 中,点D 是AB 边的中点,点E 是AC 边的中点,连接DE ,若B C=4,则DE= .15 12(用“>”、“<”“=”填空)16.如图,一次函数y 1=k 1x+b (k 1≠0)的图象与反比例函数22k y x=(k 2≠0)的图象交于A ,B 两点,观察图象,当y 1>y 2时,x 的取值范围是 .17.如图,在△ABC 中,∠A=90°,AB=6,AC=8,分别以点B 和C 为圆心的两个等圆外切,则图中阴影部分面积为 (结果保留π)18.如图是长为40cm ,宽为16cm 的矩形纸片,M 点为一边上的中点,沿过M 的直线翻折.若中点M 所在边的一个顶点不能落在对边上,那么折痕长度为 cm .三、解答题(本大题8小题,满分88分.答题时写出必要的文字说明,证明过程或演算步骤)19.(8分)计算:()21120142sin 452π-⎛⎫+--︒+ ⎪⎝⎭.20.(8分)先化简代数式23224aa a a a a ⎛⎫-÷ ⎪-+-⎝⎭,再从0,1,2三个数中选择适当的数作为a 的值代入求值.21.(8分)如图,在△ABC 中,利用尺规作图,画出△ABC 的外接圆或内切圆(任选一个.不写作法,必须保留作图痕迹)22.(10分)如图是某数学兴趣小组参加“奥数”后所得成绩绘制成的频数,频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题(成绩取整数,满分为100分)(1)频数、频率分布表中a= ,b= . (2)补全频数分布直方图.(3)若在80分以上的小组成员中选3人参加下一轮竞赛,小明本次竞赛的成绩为90分,他被选中的概率是多少?(4)从该图中你还能获得哪些数学信息?(填写一条即可)23.(12分)(1)三角形内角和等于.(2)请证明以上命题.24.(12分)某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:(1)参赛学生人数x在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?25.(14分)为践行党的群众路线,六盘水市教育局开展了大量的教育教学实践活动,如图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形.活动中测得的数据如下:①小明的身高DC=1.5m②小明的影长CE=1.7cm③小明的脚到旗杆底部的距离BC=9cm④旗杆的影长BF=7.6m⑤从D点看A点的仰角为30°请选择你需要的数据,求出旗杆的高度.(计算结果保留到0.1)26.(16分)如图,二次函数y=12x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式.(2)求函数图象的顶点坐标及D点的坐标.(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=12S△BCD?若存在,请求出P点的坐标;若不存在.请说明理由.参考答案与解析一、选择题(共10小题,每小题3分,满分30分。

贵州省黔东南州2014年中考数学试卷及答案(解析word版)

贵州省黔东南州2014年中考数学试卷及答案(解析word版)

2014年贵州省黔东南州中考数学试卷一、选择题:每个小题4分,10个小题共40分1.(4分)(2014年贵州黔东南)=()A. 3 B.﹣3 C.D.﹣考点:绝对值.分析:按照绝对值的性质进行求解.解答:解:根据负数的绝对值是它的相反数,得:|﹣|=.故选C.点评:绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4分)(2014年贵州黔东南)下列运算正确的是()A.a2•a3=a6B.(a2)3=a6C.(a+b)2=a2+b2D.+=考点:完全平方公式;实数的运算;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式利用幂的乘方运算法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式不能合并,错误.解答:解:A、原式=a5,错误;B、原式=a6,正确;C、原式=a2+b2+2ab,错误;D、原式不能合并,错误,故选B点评:此题考查了完全平方公式,实数的运算,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握公式及法则是解本题的关键.3.(4分)(2014年贵州黔东南)如图,在四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是()A.AB∥DC,AD=BC B.A B∥DC,AD∥BC C.AB=DC,AD=BC D.OA=OC,OB=OD考点:平行四边形的判定.分析:根据平行四边形的判定定理分别进行分析即可.解答:解:A、“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;B、根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C、根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;D、根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;故选:A.点评:此题主要考查了平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.4.(4分)(2014年贵州黔东南)掷一枚质地均匀的硬币10次,下列说法正确的是()A.可能有5次正面朝上B.必有5次正面朝上C.掷2次必有1次正面朝上D.不可能10次正面朝上考点:随机事件.分析:根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.解答:解:A、是随机事件,故A正确;B、不是必然事件,故B错误;C、不是必然事件,故C错误;D、是随机事件,故D错误;故选:A.点评:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(4分)(2014年贵州黔东南)如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠B=60°,则CD的长为()A.0.5 B. 1.5 C. D. 1考点:旋转的性质.分析:解直角三角形求出AB,再求出CD,然后根据旋转的性质可得AB=AD,然后判断出△ABD是等边三角形,根据等边三角形的三条边都相等可得BD=AB,然后根据CD=BC ﹣BD计算即可得解.解答:解:∵∠B=60°,∴∠C=90°﹣60°=30°,∵AC=,∴AB=×=1,∴BC=2AB=2,由旋转的性质得,AB=AD,∴△ABD是等边三角形,∴BD=AB=1,∴CD=BC﹣BD=2﹣1=1.故选D.点评:本题考查了旋转的性质,等边三角形的判定与性质,解直角三角形,熟记性质并判断出△ABD是等边三角形是解题的关键.6.(4分)(2014年贵州黔东南)如图,已知⊙O的直径CD垂直于弦AB,∠ACD=22.5°,若CD=6cm,则AB的长为()A.4cm B.3cm C.2cm D.2cm考点:圆周角定理;等腰直角三角形;垂径定理.专题:计算题.分析:连结OA,根据圆周角定理得∠AOD=2∠ACD=45°,由于3⊙O的直径CD垂直于弦AB,根据垂径定理得AE=BE,且可判断△OAE为等腰直角三角形,所以AE=OA=,然后利用AB=2AE进行计算.解答:解:连结OA,如图,∵∠ACD=22.5°,∴∠AOD=2∠ACD=45°,∵⊙O的直径CD垂直于弦AB,∴AE=BE,△OAE为等腰直角三角形,∴AE=OA,∵CD=6,∴OA=3,∴A E=,∴AB=2AE=3(cm).故选B.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.7.(4分)(2014年贵州黔东南)已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D. 2015考点:抛物线与x轴的交点.分析:把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.解答:解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.点评:本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.8.(4分)(2014年贵州黔东南)如图,正比例函数y=x与反比例函数y=的图象相交于A、B两点,BC⊥x轴于点C,则△ABC的面积为()A.1 B.2C.D.考点:反比例函数系数k的几何意义.专题:计算题.分析:由于正比例函数y=x与反比例函数y=的图象相交于A、B两点,则点A与点B 关于原点对称,所以S△AOC=S△BOC,根据反比例函数比例系数k的几何意义得到S△BOC=,所以△ABC的面积为1.解答:解:∵正比例函数y=x与反比例函数y=的图象相交于A、B两点,∴点A与点B关于原点对称,∴S△AOC=S△BOC,∵BC⊥x轴,∴△ABC的面积=2S△BOC=2××|1|=1.故选A.点评:本题考查了反比例函数比例系数k的几何意义:在反比例函数y=的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.9.(4分)(2014年贵州黔东南)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=﹣1时,x=2时二次函数的值的情况进行推理,进而对所得结论进行判断.解答:解:由二次函数的图象开口向上可得a>0,根据二次函数的图象与y轴交于正半轴知:c>0,由对称轴直线x=2,可得出b与a异号,即b<0,则abc<0,故①正确;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c,由函数图象可以看出当x=﹣1时,二次函数的值为正,即a+b+c>0,则b<a+c,故②选项正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,由函数图象可以看出当x=2时,二次函数的值为负,即4a+2b+c<0,故③选项错误;由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,故④D选项正确;故选B.点评:本题考查二次函数图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=4a+2b+c,然后根据图象判断其值.10.(4分)(2014年贵州黔东南)如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为()A. 6 B.12 C.2D. 4考点:翻折变换(折叠问题).分析:设BE=x,表示出CE=16﹣x,根据翻折的性质可得AE=CE,然后在Rt△ABE中,利用勾股定理列出方程求出x,再根据翻折的性质可得∠AEF=∠CEF,根据两直线平行,内错角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根据等角对等边可得AE=AF,过点E作EH⊥AD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.解答:解:设BE=x,则CE=BC﹣BE=16﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=16﹣x,在Rt△ABE中,AB2+BE2=AE2,即82+x2=(16﹣x)2,解得x=6,∴AE=16﹣6=10,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=10,过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=8,AH=BE=6,∴FH=AF﹣AH=10﹣6=4,在Rt△EFH中,EF===4.故选D.点评:本题考查了翻折变换的性质,矩形的判定与性质,勾股定理,熟记各性质并作利用勾股定理列方程求出BE的长度是解题的关键,也是本题的突破口.二、填空题:每个小题4分,6个小题共24分11.(4分)(2014年贵州黔东南)cos60°=.考点:特殊角的三角函数值.分析:根据特殊角的三角函数值计算.解答:解:cos60°=.点评:本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要掌握特殊角度的三角函数值.12.(4分)(2014年贵州黔东南)函数y=自变量x的取值范围是x>1.考点:函数自变量的取值范围.分析:根据二次根式被开方数非负、分母不等于0列式计算即可得解.解答:解:有意义的条件是x﹣1≥0,解得x≥1;又分母不为0,x﹣1≠0,解得x≠1.∴x>1.故答案为:x>1.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.(4分)(2014年贵州黔东南)因式分解:x3﹣5x2+6x=x(x﹣3)(x﹣2).考点:因式分解-十字相乘法等;因式分解-提公因式法.分析:先提取公因式x,再利用十字相乘法分解因式.解答:解:x3﹣5x2+6x=x(x2﹣5x+6)=x(x﹣3)(x﹣2).故答案是:x(x﹣3)(x﹣2).点评:本题考查了用提公因式法和十字相乘法分解因式,一个多项式有公因式首先提取公因式,然后用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(4分)(2014年贵州黔东南)若一元二次方程x2﹣x﹣1=0的两根分别为x1、x2,则+=﹣1.考点:根与系数的关系.分析:欲求+的值,先把此代数式变形为两根之积或两根之和的形式,再代入数值计算即可.解答:解:∵一元二次方程x2﹣x﹣1=0的两根分别为x1、x2,∴x1+x2=1,x1x2=﹣1,∴+===﹣1.故答案为﹣1.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.15.(4分)(2014年贵州黔东南)在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n,则n的最小值为5.考点:由三视图判断几何体.分析:易得此几何体有三行,三列,判断出各行各列最少有几个正方体组成即可.解答:解:底层正方体最少的个数应是3个,第二层正方体最少的个数应该是2个,因此这个几何体最少有5个小正方体组成,故答案为5.点评:本题考查了由三视图判断几何体的知识,解决本题的关键是利用“主视图疯狂盖,左视图拆违章”找到所需最少正方体的个数.16.(4分)(2014年贵州黔东南)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为.考点:轴对称-最短路线问题;一次函数图象上点的坐标特征.分析:利用一次函数图象上点的坐标性质得出OA′=1,进而利用勾股定理得出即可.解答:解:如图所示:作A点关于直线y=x的对称点A′,连接A′B,交直线y=x于点P,此时PA+PB最小,由题意可得出:OA′=1,BO=2,PA′=PA,∴PA+PB=A′B==.故答案为:.点评:此题主要考查了利用轴对称求最短路线以及一次函数图象上点的特征等知识,得出P点位置是解题关键.三、解答题:8个小题,共86分17.(8分)(2014年贵州黔东南)计算:2tan30°﹣|1﹣|+(2014﹣)0+.考点:实数的运算;零指数幂;特殊角的三角函数值.分析:本题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=2×﹣(﹣1)+1+=﹣+1+1+=2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、绝对值、特殊角的三角函数值、二次根式化简等考点的运算.18.(8分)(2014年贵州黔东南)先化简,再求值:÷﹣,其中x=﹣4.考点:分式的化简求值.专题:计算题.分析:原式第一项利用除法法则变形,约分后利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•﹣=﹣=,当x=﹣4时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(10分)(2014年贵州黔东南)解不等式组,并写出它的非负整数解.考点:解一元一次不等式组;一元一次不等式组的整数解.分析:分别求出各不等式的解集,再求出其公共解集,找出符合条件的x的非负整数解即可.解答:解:,由①得,x>﹣,由②得,x<,故此不等式组的解集为:﹣<x<,它的非负整数解为:0,1,2,3.点评:本题解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.20.(12分)(2014年贵州黔东南)黔东南州某校为了解七年级学生课外学习情况,随机抽取了部分学生作调查,通过调查将获得的数据按性别绘制成如下的女生频数分布表和如图所示的男生频数分布直方图:学习时间t(分钟)人数占女生人数百分比0≤t<30 4 20%30≤t<60 m 15%60≤t<90 5 25%90≤t<120 6 n120≤t<150 2 10%根据图表解答下列问题:(1)在女生的频数分布表中,m=3,n=0.3.(2)此次调查共抽取了多少名学生?(3)此次抽样中,学习时间的中位数在哪个时间段?(4)从学习时间在120~150分钟的5名学生中依次抽取两名学生调查学习效率,恰好抽到男女生各一名的概率是多少?考点:频数(率)分布直方图;频数(率)分布表;中位数;列表法与树状图法.分析:(1)根据第一段中有4人,占20%,即可求得女生的总人数,然后根据频率的计算公式求得m、n的值;(2)把直方图中各组的人数相加就是男生的总人数,然后加上女生总人数即可;(3)求得每段中男女生的总数,然后根据中位数的定义即可判断;(4)利用列举法即可求解.解答:解:(1)女生的总数是:4÷20%=20(人),则m=20×15%=3(人),n==0.3;(2)男生的总人数是:6+5+12+4+3=30(人),则此次调查的总人数是:30+20=50(人);(3)在第一阶段的人数是:4+6=10(人),第二阶段的人数是:3+5=8(人),第三阶段的人数是:5+12=17(人),则中位数在的时间段是:60≤t<90;(4)如图所示:共有20种等可能的情况,则恰好抽到男女生各一名的概率是=.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(12分)(2014年贵州黔东南)已知:AB是⊙O的直径,直线CP切⊙O于点C,过点B 作BD⊥CP于D.(1)求证:△ACB∽△CDB;(2)若⊙O的半径为1,∠B CP=30°,求图中阴影部分的面积.考点:切线的性质;扇形面积的计算;相似三角形的判定与性质.分析:(1)由CP是⊙O的切线,得出∠BCD=∠BAC,AB是直径,得出∠ACB=90°,所以∠ACB=∠CDB=90°,得出结论△ACB∽△CDB;(2)求出△OCB是正三角形,阴影部分的面积=S扇形OCB﹣S△OCB=π﹣.解答:(1)证明:∵直线CP是⊙O的切线,∴∠BCD=∠BAC,∵AB是直径,∴∠ACB=90°,又∵BD⊥CP∴∠CDB=90°,∴∠ACB=∠CDB=90°∴△ACB∽△CDB;(2)解:如图,连接OC,∵直线CP是⊙O的切线,∠BCP=30°,∴∠COB=2∠BCP=60°,∴△OCB是正三角形,∵⊙O的半径为1,∴S△OCB=,S扇形OCB==π,∴阴影部分的面积=S扇形OCB﹣S△OCB=π﹣.点评:本题主要考查了切线的性质及扇形面积,三角形的面积,解题的关键是利用弦切角找角的关系.22.(10分)(2014年贵州黔东南)黔东南州某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1,参考数据:≈1.41,≈1.73)考点:解直角三角形的应用-仰角俯角问题.分析:过点A作AM⊥EF于M,过点C作CN⊥EF于N,则MN=0.25m.由小明站在B 点测得旗杆顶端E点的仰角为45°,可得△AEM是等腰直角三角形,继而得出得出AM=ME,设AM=ME=xm,则CN=(x+6)m,EN=(x﹣0.25)m.在Rt△CEN中,由tan∠ECN==,代入CN、EN解方程求出x的值,继而可求得旗杆的高EF.解答:解:过点A作AM⊥EF于M,过点C作CN⊥EF于N,∴MN=0.25m,∵∠EAM=45°,∴AM=ME,设AM=ME=xm,则CN=(x+6)m,EN=(x﹣0.25)m,∵∠ECN=30°,∴tan∠ECN===,解得:x≈8.8,则EF=EM+MF≈8.8+1.5=10.3(m).答:旗杆的高EF为10.3m.点评:本题考查了解直角三角形的问题.该题是一个比较常规的解直角三角形问题,建立模型比较简单,但求解过程中涉及到根式和小数,算起来麻烦一些.23.(12分)(2014年贵州黔东南)黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设每件甲种玩具的进价是x元,每件乙种玩具的进价是y元,根据“5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元”列出方程组解决问题;(2)分情况:不大于20件;大于20件;分别列出函数关系式即可;(3)设购进玩具x件(x>20),分别表示出甲种和乙种玩具消费,建立不等式解决问题.解答:解:(1)设每件甲种玩具的进价是x元,每件乙种玩具的进价是y元,由题意得,解得,答:件甲种玩具的进价是30元,每件乙种玩具的进价是27元;(2)当0<x≤20时,y=30x;当x>20时,y=20×30+(x﹣20)×30×0.7=21x+180;(3)设购进玩具x件(x>20),则乙种玩具消费27x元;当27x=21x+180,则x=30所以当购进玩具正好30件,选择购其中一种即可;当27x>21x+180,则x>30所以当购进玩具超过30件,选择购甲种玩具省钱;当27x<21x+180,则x<30所以当购进玩具少于30件,选择购乙种玩具省钱.点评:此题考查二元一次方程组,一次函数,一元一次不等式的运用,理解题意,正确劣势解决问题.24.(14分)(2014年贵州黔东南)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A (,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC为直角三角形时点P的坐标.考点:二次函数综合题.分析:(1)已知B(4,m)在直线y=x+2上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.(2)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.(3)根据直线AB的解析式,可求得直线AC的解析式y=﹣x+b,已知了点A的坐标,即可求得直线AC的解析式,联立抛物线的解析式,可求得C点的坐标;解答:解:(1)∵B(4,m)在直线线y=x+2上,∴m=4+2=6,∴B(4,6),∵A(,)、B(4,6)在抛物线y=ax2+bx﹣4上,∴,∵c=6,∴a=2,b=﹣8,∴y=2x2﹣8x+6.(2)设动点P的坐标为(n,n+2),则C点的坐标为(n,2n2﹣8n+6),∴PC=(n+2)﹣(2n2﹣8n+6),=﹣2n2+9n﹣4,=﹣2(n﹣)2+,∵PC>0,∴当n=时,线段PC最大且为.(3)设直线AC的解析式为y=﹣x+b,把A(,)代入得:=﹣+b,解得:b=3,∴直线AC解析式:y=﹣x+3,点C在抛物线上,设C(m,2m2﹣8m+6),代入y=﹣x+3得:2m2﹣8m+6=﹣m+3,整理得:2m2﹣7m+3=0,解得;m=3或m=,∴P(3,0)或P(,).点评:此题主要考查了二次函数解析式的确定、二次函数最值的应用以及直角三角形的判定、函数图象交点坐标的求法等知识;。

贵州省中考数学试卷及答案word解析版

贵州省中考数学试卷及答案word解析版

2014年贵州省铜仁市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)铜仁)的相反数是(2014?)1.(4分)(A.B.C.D.﹣﹣分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:的相反数是﹣,故选:D.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(4分)(2014?铜仁)下列计算正确的是()326224623A.B.3a﹣a=2a C.D.(﹣a)=﹣a 4a+a=5a a÷a=a考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:根据合并同类项,可判断A、B,根据同底数的除法,可判断C,根据积的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、系数相加字母部分不变,故B正确;C、底数不变指数相减,故C错误;D、负1的平方是1,故D错误;故选:B.点评:本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.3.(4分)(2014?铜仁)有一副扑克牌,共52张(不包括大、小王),其中梅花、方块、心黑桃四种花色各1张把扑克牌充分洗匀后随意抽取一张抽得红心的概率.C.D A.B.考率公式分析有一副扑克牌,5张(不包括大、小王,其中梅花、方块、红心、黑桃四种色各1张,直接利用概率公式求解即可求得答案解答:解:∵有一副扑克牌,共52张(不包括大、小王),其中梅花、方块、红心、黑桃四种花色各有13张,∴随意抽取一张,抽得红心的概率是:=.故选B.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.(4分)(2014?铜仁)下列图形中,∠1与∠2是对顶角的是()A.B.C.D.考点:对顶角、邻补角.分析:根据对顶角的定义,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角,进而得出答案.解答:解:利用对顶角的定义可得出:符合条件的只有C,故选:C.点评:本题考查了顶角的概念,一定要紧扣概念中的关键词语,如:两条直线相交,有一个公共顶点.反向延长线等.5.(4分)(2014?铜仁)代数式有意义,则x的取值范围是()x≠1 A.x≥﹣1且x≠1 B.C.x≥1且x≠﹣1 D.x≥﹣1考点:二次根式有意义的条件;分式有意义的条件.分析:此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.解答:解:依题意,得x+1≥0且x﹣1≠0,解得x≥﹣1且x≠1.故选:A.点评:本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;)当函数表达式是分式时,考虑分式的分母不能)当函数表达式是二次根式时,被开方数非负分201铜仁)正比例函y=2的大致图象是考点:正比例函数的图象.分析:正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.解答:解:∵正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.∴正比例函数y=2x的大致图象是B..B故选:点评:此题比较简单,主要考查了正比例函数的图象特点:是一条经过原点的直线.7.(4分)(2014?铜仁)如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是()26°116°128°154°A.B.C.D.考点:圆周角定理.分析:根据圆周角定理直接解答即可.解答:解:∵∠A=64°,∴∠BOC=2∠A=2×64°=128°.故选C.点评:本题考查了圆周角定理,知道同弧所对的圆周是圆心角的一半是解题的关键.8.(4分)(2014?铜仁)如图所示,所给的三视图表示的几何体是()A.三棱锥B.圆锥C.正三棱柱D.直三棱柱考点:由三视图判断几何体.分析左视图和俯视图可得此几何体为柱体根据主视图是三角形可判断出此几何体为三棱柱解答:∵左视图和俯视图都是长方形∴此几何体为柱体∵主视图是一个三角形∴此几何体为直三棱柱故选点评查了由三视图判断几何体用到的知识点为由左视图和俯视图可得几何体是柱体锥体还是球体,由主视图可确定几何体的具体形状2个单位,所得的12个单位,再向下平移2014?铜仁)将抛物线y=x向右平移(9.4分)()抛物线是(2222 C .B.A.D.1 )﹣x+2+1 (=x+2)y=+1 2x﹣2x=y(﹣)1 =y(﹣)(y 二次函数图象与几何变换.:考点据二次函数图象左加右减,上加下减的平移规律进行求解.根分析:22解答:解:抛物线y=x向右平移2个单位,得:y=(x﹣2);2再向下平移1个单位,得:y=(x﹣2)﹣1.故选:A.点评:主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.10.(4分)(2014?铜仁)如图所示,在矩形ABCD中,F是DC上一点,AE平分∠BAF交BC于点E,且DE⊥AF,垂足为点M,BE=3,AE=2,则MF的长是()1 C.D.B.A.相似三角形的判定与性质;角平分线的性质;勾股定理;矩形的性质.考点:分析:,△MD=a,MF=x,利用ADM∽△DFM,得到∴,△∽DCE利用△DMF设∴.得到a与x的关系式,化简可得x的值,得到D选项答案.解答:解:∵AE平分∠BAF交BC于点E,且DE⊥AF,∠B=90°,∴AB=AM,BE=EM=3,又∵AE=2,∴,,设MD=a,MF=x,在△ADM和△DFM中,∴△ADM∽△DFM,,2?MF,=AM∴DM∴,在△DMF和△DCE中,,∴.∴,,∴.解之得:,故答案选:D.点评:本题考查了角平分线的性质以及三角形相似的判定方法,解题的关键在于利用三角形相似构造方程求得对应边的长度.二、填空题(本题共共8小题,每小题4分,共32分)11.(4分)(2014?铜仁)cos60°=.考点:特殊角的三角函数值.分析:根据特殊角的三角函数值计算.解答:解:cos60°=.点评:本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要掌握特殊角度的三角函数值.22)?22=2,则(﹣11b=b﹣ab,如:?2=2﹣1×定义一种新运算:.12(4分)(2014?铜仁)a?.?3=﹣9有理数的混合运算.考点:定义.专题:新即可.,然后计算再根据新定义计算6?3分析:先根据新定义计算出﹣1?2=62解答:,)×2=6解:﹣1?2=2﹣(﹣12.3=﹣96?3=3﹣6×.﹣9?12)?3=所以(﹣.故答案为﹣9题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从本点评:左到右的顺序进行计算;如果有括号,要先做括号内的运算铜仁)在圆、平行四边形、矩形、菱形、正方形、等腰三角形等图案中,2014?4分)((13..是中心对称图形但不是轴对称图形的是平行四边形心对称图形;轴对称图形考据轴对称图形与中心对称图形的概念结合几何图形的特点进行判断分析:矩形、菱形、正方形、圆是轴对称图形,也是中心对称图形,不符合题意解答等腰三角形是轴对称图形,不是中心对称图形,不符合题意平行四边形不是轴对称图形,是中心对称图形,符合题意故答案为:平行四边形题考查了中心对称图形与轴对称图形的概念点评:)如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图(1 形,这条直线叫做对称轴.后能够与自身重合,那么这个图形就叫做中心180°)如果一个图形绕某一点旋转(2 对称图形,这个点叫做对称中心.铜仁)分式方程:=1的解是x=2014?.14.(4分)(考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x+1=3﹣x,移项合并得:3x=2,解得:x=,经检验x=是分式方程的解.故答案为:x=点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.2k3x+k=0有两个不相等的实数根,则x的一元二次方程x﹣.(4分)(2014?铜仁)关于15 .的取值范围是k<根的判别式.考点:2分析:0,然后解不等式即可.﹣4k>根据判别式的意义得到△=(﹣3)2解答:,4k﹣>0:根据题意得△=(﹣3)解<.解得k <.故答案为:k22点评:,方0:当△>)的根的判别式△=b﹣4ac本题考查了一元二次方程ax+bx+c=0(a≠0,方程没有0△<程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当实数根.某选手得到评委打出的分数分别是:四青年歌手大赛中,在某市五?(2014?铜仁)16.(4分).9.5,则这组数据的中位数9.69.3,9.4,9.6,9.8,,9.7,9.6考位数分析据中位数的定义,把把这组数据从小到大排列,找出最中间的数即可解答:把这组数据从小到大排列为9.9.9.9.9.9.9.,最中间的数9.,则中位数9.故答案为9.点评:本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).17.(4分)(2014?铜仁)已知圆锥的底面直径为20cm,母线长为90cm,则圆锥的表面积2是1000πcm.(结果保留π)考点:圆锥的计算.分析:根据圆锥表面积=侧面积+底面积=底面周长×母线长+底面积计算.2解答:.cmπ=1000π90+100×π=10:圆锥的表面积解..1000π故答案为:题考查了圆锥的计算,解决本题的关键记准圆锥的侧面面积和底面面积公式.本点评:(4分)(2014?铜仁)一列数:0,﹣1,3,﹣6,10,﹣18.15,21,…,按此规律第n的数n1﹣1).为(﹣考点:规律型:数字的变化类.分析:首先发现奇数位置为正,偶数位置为负;且对应数字依次为0,0+1=1,0+1+2=3,0+1+2+3=6,0+1+2+3+4=0+10,0+1+2+3+4+5=15,0+1+2+3+4+5+6=21,…第n个数字为0+1+2+3+…+(n﹣1)=,由此得出答案即可.解答:1n﹣解:第n个数字为0+1+2+3+…+(1,符号为(﹣)n﹣1)=,1n﹣.n个数为(﹣1)所以第1n﹣.故答案为:(﹣1)点评:此题考查数字的变化规律,从数的绝对值的和正负情况两个方面考虑求解是解题的关键.三、解答题(本题共4小题,每小题10分,共40分)0201419.(10分)(2014?铜仁)(1)2014﹣(﹣1)+﹣|﹣3|(2)先化简,再求值:?﹣,其中x=﹣2.考点:分式的化简求值;实数的运算;零指数幂.专算题分析)原式第一项利用零指数幂法则计算,第二项利用乘方的意义化简,第三项化最简二次根式,最后一项利用绝对值的代数意义化简,计算即可得到结果)原式第一项约分后两项通分并利用同分母分式的减法法则计算得到最简结果的值代入计算即可求出值解答:解:(1)原式=1﹣1+2﹣3=﹣;(2)原式=?﹣=﹣=﹣,当x=﹣2时,原式=.点评:此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(10分)(2014?铜仁)为了了解学生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:A.只愿意就读普通高中;B.只愿意就读中等职业技术学校;C.就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了尚不完整的统计图如下,请根据相关信息,解答下列问题:(1)本次活动共调查了多少名学生?(2)补全图一,并求出图二中B区域的圆心角的度数;(3)若该校八、九年级学生共有2800名,请估计该校学生只愿意就读中等职业技术学校的概率.考点:条形统计图;扇形统计图;概率公式.专题:计算题.分析:(1)根据C的人数除以占的百分比,求出调查的学生总数即可;(2)求出B的人数,补全图1,求出B占的百分比,乘以360即可得到结果;(3)求出B占的百分比,乘以2800即可得到结果.解答:解:(1)根据题意得:80÷=800(名),则调查的学生总数为800名;(2)B的人数为800﹣(480+80)=240(名),B占的度数为×360°=108°,补全统计图,如图所示:(3)根据题意得:=0.3,则估计该校学生只愿意就读中等职业技术学校的概率0.3.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.(10分)(2014?铜仁)如图所示,已知∠1=∠2,请你添加一个条件,证明:AB=AC.(1)你添加的条件是∠B=∠C;)请写出证明过程.2(.考点:全等三角形的判定与性质.分析:(1)此题是一道开放型的题目,答案不唯一,如∠B=∠C或∠ADB=∠ADC等;(2)根据全等三角形的判定定理AAS推出△ABD≌△ACD,再根据全等三角形的性质得出即可.解答:解:(1)添加的条件是∠B=∠C,故答案为:∠B=∠C;(2)证明:在△ABD和△ACD中,∴△ABD≌△ACD(AAS),∴AB=AC.点评:本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等,对应边相等.22.(10分)(2014?铜仁)如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:=.考似三角形的判定与性质专明题分析AB是钝AB的BA上的高,可得DE=9,又ACDBC,即可证ACBC,然后由相似三角形的对应边成比例,得结论解答明:AB是钝AB的BA上的高∴∠D=∠E=90°,∵∠ACD=∠BCE,∴△ACD∽△BCE,.=∴.点评:此题考查了相似三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.四、(本大题满分12分)23.(12分)(2014?铜仁)某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?考点:二元一次方程组的应用.分析:(1)本题中的等量关系为:45×45座客车辆数+15=游客总数,60×(45座客车辆数﹣1)=游客总数,据此可列方程组求出第一小题的解;(2)需要分别计算45座客车和60座客车各自的租金,比较后再取舍.解答:解:(1)设这批游客的人数是x人,原计划租用45座客车y辆.根据题意,得,解这个方程组,得.答:这批游客的人数240人,原计划租45座客车5辆;(2)租45座客车:240÷45≈5.3(辆),所以需租6辆,租金为220×6=1320(元),租60座客车:240÷60=4(辆),所以需租4辆,租金为300×4=1200(元).答:租用4辆60座客车更合算.点评:此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.五、(本大题满分12分)24.(12分)(2014?铜仁)如图所示,△ABC内接于⊙O,AB是⊙O的直径,D是AB延长线上一点,连接DC,且AC=DC,BC=BD.(1)求证:DC是⊙O的切线;(2)作CD的平行线AE交⊙O于点E,已知DC=10,求圆心O到AE的距离.考点:切线的判定.分析:(1)连接OC,根据等腰三角形的性质求出∠CAD=∠D=∠BCD,求出∠ABC=∠D+∠BCD=2∠CAD,设∠CAD=x°,则∠D=∠BCD=x°,∠ABC=2x°,求出∠ACB=90°,推出x+2x=90,求出x,求出∠OCD=90°,根据切线的判定得出即可;OF度角的直角三角形性质求出30,根据含OAE长,求出∠OA,得出OC)求出2(.即可.解答:(1)证明:连接OC,∵AC=DC,BC=BD,∴∠CAD=∠D,∠D=∠BCD,∴∠CAD=∠D=∠BCD,∴∠ABC=∠D+∠BCD=2∠CAD,设∠CAD=x°,则∠D=∠BCD=x°,∠ABC=2x°,∵AB是⊙O的直径,∴∠ACB=90°,∴x+2x=90,x=30,即∠CAD=∠D=30°,∠CBO=60°,∵OC=OB,∴△BCO是等边三角形,∴∠COB=60°,∴∠OCD=180°﹣30°﹣60°=90°,即OC⊥CD,∵OC为半径,∴DC是⊙O的切线;(2)解:过O作OF⊥AE于F,∵在Rt△OCD中,∠OCD=90°,∠D=30°,CD=10,,tan30°=10∴OC=CD×OD=2OC=20,∴OA=OC=10,CD,∵AE∥,∠∴∠FAO=D=30°×=5,sin30∴OF=AO×°=1A的距离即圆心度角的直角三角形性质,解直角三角形,等腰三角形30题考查了切线的判定,含本点评:的性质,圆周角定理,三角形外角性质,解直角三角形的应用,主要考查学生综合运用定理进行推理和计算的能力,题目比较好.六、(本大题满分14分)225.(14分)(2014?铜仁)已知:直线y=ax+b与抛物线y=ax﹣bx+c的一个交点为A(0,2),同时这条直线与x轴相交于点B,且相交所成的角β为45°.(1)求点B的坐标;2(2)求抛物线y=ax﹣bx+c的解析式;2(3)判断抛物线y=ax﹣bx+c与x轴是否有交点,并说明理由.若有交点设为M,N(点M在点N左边),将此抛物线关于y轴作轴反射得到M的对应点为E,轴反射后的像与原像相交于点F,连接NF,EF得△DEF,在原像上是否存在点P,使得△NEP的面积与△NEF的面积相等?若存在,请求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)根据等腰直角三角形的性质即可求得;(2)利用待定系数法即可求得解析式;2(3)利用b﹣4ac确定抛物线有没有交点,因为轴反射后的像与原像相交于点F,点即点,OF=,由NE的面积NE的面积相等且同底,所2x+即可求得y的纵坐标或,代,且相交所轴相交于,同时这条直线y=ax+解答)∵直4的OA=O,(时∴时,)代入直线y=ax+b得;B),(﹣2,0,)把(2A(02,解得:把A(0,2),B(2,0)代入直线y=ax+b ,得解得:,2,)2,0(A过bx+c﹣y=ax∵抛物线∴c=2,22 x+2x+2.y=x+2x+2或y=﹣∴抛物线的解析式为:3)存在.(22 x轴没有交点,2<0,抛物线与1y=x+2x+2时,b﹣4ac=4﹣4××如图,抛物线为22轴有两个交点;>0,抛物线与x﹣4×(﹣1)×2时,抛物线为y=﹣x+2x+2b﹣4ac=4∵轴反射后的像与原像相交于点F,则F点即为A点,∴F(0,2)∵△NEP的面积与△NEF的面积相等且同底,∴P点的纵坐标为2或﹣2,2当y=2时,﹣x﹣2x+2=2,解得:x=﹣2或x=0(与点F重合,舍去);2当y=﹣2时,﹣x﹣2x+2=﹣2,解得:x=﹣1+,x=﹣1﹣,∴存在满足条件的点P,点P坐标为:(﹣2,2),(﹣1+,﹣2),(﹣1﹣,﹣2).点评:本题考查了待定系数法求解析式,二次函数的交点问题以及三角形面积的求解方法,问题考虑周全是本题的难点.。

贵州省六盘水市中考数学真题试题(含解析)-人教版初中九年级全册数学试题

贵州省六盘水市中考数学真题试题(含解析)-人教版初中九年级全册数学试题

某某省六盘水市2020年中考数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每小题3分,共30分.1.(3分)计算(﹣3)×2的结果是()A.﹣6 B.﹣1 C.1 D.6【分析】原式利用乘法法则计算即可求出值.【解答】解:原式=﹣3×2=﹣6.故选:A.【点评】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.2.(3分)下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()A.B.C.D.【分析】各选项袋子中分别共有10个小球,若要使摸到红球可能性最大,只需找到红球的个数最多的袋子即可得出答案.【解答】解:在四个选项中,D选项袋子中红球的个数最多,所以从D选项袋子中任意摸出一个球,摸到红球可能性最大,故选:D.【点评】本题主要考查可能性的大小,解题的关键是掌握随机事件发生的可能性(概率)的计算方法.3.(3分)2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A.直接观察B.实验C.调查D.测量【分析】直接利用调查数据的方法分析得出答案.【解答】解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C.【点评】此题主要考查了调查收集数据的过程与方法,正确掌握基本调查方法是解题关键.4.(3分)如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是()A.150°B.120°C.60°D.30°【分析】根据对顶角相等求出∠1,再根据互为邻补角的两个角的和等于180°列式计算即可得解.【解答】解:∵∠1+∠2=60°,∠1=∠2(对顶角相等),∴∠1=30°,∵∠1与∠3互为邻补角,∴∠3=180°﹣∠1=180°﹣30°=150°.故选:A.【点评】本题考查了对顶角相等的性质,邻补角的定义,是基础题,熟记概念与性质并准确识图是解题的关键.5.(3分)当x=1时,下列分式没有意义的是()A.B.C.D.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:A、,当x=1时,分式有意义不合题意;B、,当x=1时,x﹣1=0,分式无意义符合题意;C、,当x=1时,分式有意义不合题意;D、,当x=1时,分式有意义不合题意;故选:B.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.6.(3分)下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.【分析】根据平行投影的特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.【解答】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.7.(3分)菱形的两条对角线长分别是6和8,则此菱形的周长是()A.5 B.20 C.24 D.32【分析】根据题意画出图形,由菱形的性质求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长.【解答】解:如图所示:∵四边形ABCD是菱形,AC=8,BD=6,∴AB=BC=CD=AD,OA=AC=4,OB=BD=3,AC⊥BD,∴AB===5,∴此菱形的周长=4×5=20;故选:B.【点评】本题考查了菱形的性质以及勾股定理;熟练掌握菱形的性质,由勾股定理求出菱形的边长是解题的关键.8.(3分)已知a<b,下列式子不一定成立的是()A.a﹣1<b﹣1 B.﹣2a>﹣2bC.a+1<b+1 D.ma>mb【分析】根据不等式的基本性质进行判断.【解答】解:A、在不等式a<b的两边同时减去1,不等号的方向不变,即a﹣1<b﹣1,原变形正确,故此选项不符合题意;B、在不等式a<b的两边同时乘以﹣2,不等号方向改变,即﹣2a>﹣2b,原变形正确,故此选项不符合题意;C、在不等式a<b的两边同时乘以,不等号的方向不变,即a<b,不等式a<b的两边同时加上1,不等号的方向不变,即a+1<b+1,原变形正确,故此选项不符合题意;D、在不等式a<b的两边同时乘以m,不等式不一定成立,即ma>mb,或ma<mb,或ma=mb,原变形不正确,故此选项符合题意.故选:D.【点评】此题主要考查了不等式的基本性质,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.(3分)如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE =BD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A.无法确定B.C.1 D.2【分析】如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.【解答】解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.【点评】本题考查作图﹣基本作图,垂线段最短,角平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.(3分)已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,这两个整数根是()A.﹣2或0 B.﹣4或2 C.﹣5或3 D.﹣6或4【分析】根据题目中的函数解析式和二次函数与一元二次方程的关系,可以得到关于x 的方程ax2+bx+c+n=0 (0<n<m)的两个整数根,从而可以解答本题.【解答】解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,函数y=ax2+bx+c的图象开口向下,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴这两个整数根是﹣4或2,故选:B.【点评】本题考查抛物线与x轴的交点、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的关系解答.二、填空题:每小题4分,共20分.11.(4分)化简x(x﹣1)+x的结果是x2.【分析】先根据单项式乘以多项式法则算乘法,再合并同类项即可.【解答】解:x(x﹣1)+x=x2﹣x+x=x2,故答案为:x2.【点评】本题考查了单项式乘以多项式和合并同类项法则,能灵活运用法则进行计算是解此题的关键.12.(4分)如图,点A是反比例函数y=图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为 3 .【分析】根据反比例函数y=的图象上点的坐标性得出|xy|=3,进而得出四边形OBAC.【解答】解:∵过点A分别作x轴,y轴的垂线,垂足为B,C,∴AB×AC=|k|=3,则四边形OBAC的面积为:3.故答案为:3.【点评】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.13.(4分)在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.【分析】随着试验次数的增多,变化趋势接近于理论上的概率.【解答】解:在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.故答案为:.【点评】本题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.14.(4分)如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是120 度.【分析】连接OA,OB,根据已知条件得到∠AOB=120°,根据等腰三角形的性质得到∠OAB =∠OBA=30°,根据全等三角形的性质得到∠DOA=∠BOE,于是得到结论.【解答】解:连接OA,OB,∵△ABC是⊙O的内接正三角形,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵∠CAB=60°,∴∠OAD=30°,∴∠OAD=∠OBE,∵AD=BE,∴△OAD≌△OBE(SAS),∴∠DOA=∠BOE,∴∠DOE=∠DOA+∠AOE=∠AOB=∠AOE+∠BOE=120°,故答案为:120.【点评】本题考查了三角形的外接圆与外心,等边三角形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.15.(4分)如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为4.【分析】延长BD到F,使得DF=BD,根据等腰三角形的性质与判定,勾股定理即可求出答案.【解答】解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C点作CH∥AB,交BF于点H∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=HC,∵CH∥AB,∴∠ABE=∠CHE,∠BAE=∠ECH,∴EH=CE,∵EA=EB,∴AC=BH,∵BD=8,AC=11,∴DH=BH﹣BD=AC﹣BD=3,∴HF=HC=8﹣3=5,在Rt△CDH,∴由勾股定理可知:CD=4,在Rt△BCD中,∴BC==4,故答案为:4【点评】本题考查勾股定理,解题的关键是熟练运用等腰三角形的性质与判定,本题属于中等题型.三、解答题:本大题10小题,共100分.16.(8分)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.【分析】(1)构造边长3,4,5的直角三角形即可.(2)构造直角边为2,斜边为4的直角三角形即可(答案不唯一).(3)构造三边分别为2,,的直角三角形即可.【解答】解:(1)如图①中,△ABC即为所求.(2)如图②中,△ABC即为所求.(3)△ABC即为所求.【点评】本题考查作图﹣应用与设计,无理数,勾股定理,勾股定理的逆定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(10分)2020年2月,某某省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 2 3 4人数/人 2 6 6 10 m 4 (1)本次共调查的学生人数为50 ,在表格中,m=22 ;(2)统计的这组数据中,每天听空中黔课时间的中位数是 3.5h ,众数是 3.5h ;(3)请就疫情期间如何学习的问题写出一条你的看法.【分析】(1)根据2小时的人数和所占的百分比求出本次调查的学生人数,进而求得m 的值;(2)根据中位数、众数的定义分别进行求解即可;(3)如:认真听课,独立思考(答案不唯一).【解答】解:(1)本次共调查的学生人数为:6÷12%=50(人),m=50×44%=22,故答案为:50,22;(2)由条形统计图得,2个1.5,6个2,6个2.5,10个3,22个3.5,4个4,∵第25个数和第26个数都是3.5h,∴中位数是3.5h;∵3.5h出现了22次,出现的次数最多,∴众数是3.5h,故答案为:3.5h,3.5h;(3)就疫情期间如何学习的问题,我的看法是:认真听课,独立思考(答案不唯一).【点评】本题考查扇形统计图、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.18.(10分)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF =BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.【分析】(1)先根据矩形的性质得到AD∥BC,AD=BC,然后证明AD=EF可判断四边形AEFD是平行四边形;(2)连接DE,如图,先利用勾股定理计算出AE=2,再证明△ABE∽△DEA,利用相似比求出AD,然后根据平行四边形的面积公式计算.【解答】(1)证明:∵∠四边形ABCD是矩形,∴AD∥BC,AD=BC,∵BE=CF,∴BE+EC=EC+CF,即BC=EF,∴AD=EF,∴四边形AEFD是平行四边形;(2)解:连接DE,如图,∵四边形ABCD是矩形,∴∠B=90°,在Rt△ABE中,AE==2,∵AD∥BC,∴∠AEB=∠EAD,∵∠B=∠AED=90°,∴△ABE∽△DEA,∴AE:AD=BE:AE,∴AD==10,∵AB=4,∴四边形AEFD的面积=AB×AD=4×10=40.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的判定和矩形的性质.19.(10分)如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.【分析】(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式,即可求解;(2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,联立①②即可求解;(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x﹣6﹣0,则△=25+24k<0,解得:k<﹣,即可求解.【解答】解:(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式并解得:k=2×3=6,故反比例函数表达式为:y=①;(2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,联立①②并解得:,故交点坐标为(﹣2,﹣3)或(3,2);(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x﹣6=0,∵两个函数没有公共点,故△=25+24k<0,解得:k<﹣,故可以取k=﹣2(答案不唯一),故一次函数表达式为:y=﹣2x+5(答案不唯一).【点评】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.20.(10分)“2020第二届某某市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3X大小一样,背面完全相同的卡片,3X卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一X,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一X卡片,记下内容后不放回,再随机抽出一X卡片,请用列表或画树状图的方法,求恰好抽到2X卡片都是《辞海》的概率;(2)再添加几X和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一X,使得抽到《消防知识手册》卡片的概率为,那么应添加多少X《消防知识手册》卡片?请说明理由.【分析】(1)画出树状图,由概率公式即可得出答案;(2)设应添加xX《消防知识手册》卡片,由概率公式得出方程,解方程即可.【解答】解:(1)把《消防知识手册》《辞海》《辞海》分别记为A、B、C,画树状图如图:共有6个等可能的结果,恰好抽到2X卡片都是《辞海》的结果有2个,∴恰好抽到2X卡片都是《辞海》的概率为=;(2)设应添加xX《消防知识手册》卡片,由题意得:=,解得:x=4,经检验,x=4是原方程的解;答:应添加4X《消防知识手册》卡片.【点评】本题考查了列表法或画树状图法以及概率公式;列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.(8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1m).【分析】(1)根据题意得到AG⊥EF,EG=∠AEG=∠ACB=35°,解直角三角形即可得到结论;(2)过E作EH⊥CB于H,设EH=x,解直角三角形即可得到结论.【解答】解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,EF∥BC,∴AG⊥EF,EG=EF,∠AEG=∠ACB=35°,在Rt△AGE中,∠AGE=90°,∠AEG=35°,∵tan∠AEG=tan35°=,EG=6,∴AG=6×0.7=4.2(米);答:屋顶到横梁的距离AG约为4.2米;(2)过E作EH⊥CB于H,设EH=x,在Rt△EDH中,∠EHD=90°,∠EDH=60°,∵tan∠EDH=,∴DH=,在Rt△ECH中,∠EHC=90°,∠ECH=35°,∵tan∠ECH=,∴CH=,∵CH﹣DH=CD=8,∴﹣=8,解得:x≈9.52,∴AB=AG+BG=13.72≈14(米),答:房屋的高AB约为14米.【点评】本题考查了解直角三角形的应用,轴对称图形,解题的关键是借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.(10分)第33个国际禁毒日到来之际,某某市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?【分析】(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据总共的费用为(1300﹣378)元列方程解答即可;(2)设笔记本的单价为a元,根据总共的费用为(1300﹣378)元列方程解求出方程的解,再根据a的取值X围以及一次函数的性质求出x的值,再把x的值代入方程的解即可求出a的值.【解答】解:(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据题意,得:6x+10(100﹣x)=1300﹣378,解得x=19.5,因为钢笔的数量不可能是小数,所以学习委员搞错了;(2)设笔记本的单价为a元,根据题意,得:6x+10(100﹣x)+a=1300﹣378,整理,得:x=,因为0<a<10,x随a的增大而增大,所以19.5<x<22,∵x取整数,∴x=20,21.当x=20时,a=4×20﹣78=2;当x=21时,a=4×21﹣78=6,所以笔记本的单价可能是2元或6元.【点评】本题考查了一元一次方程解实际问题的运用,一次函数的运用,理清题意,找出相应的等量关系是解答本题的关键.23.(10分)如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O 的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.【分析】(1)根据圆周角定理得∠ABD=∠ACD,进而得∠ACD=∠CAD,便可由等腰三角形判定定理得AD=CD;(2)证明△ADF≌△ADE,得AE=AF,DE=DF,由勾股定理求得AF,由三角形面积公式求得AD,进而求得DE,BE,再证明△BEC∽△AED,得BC,进而求得sin∠BAC便可.【解答】解:(1)证明:∵∠CAD=∠ABD,又∵∠ABD=∠ACD,∴∠ACD=∠CAD,∴AD=CD;(2)∵AF是⊙O的切线,∴∠FAB=90°,∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠FAD=90°,∴∠ABD=∠FAD,∵∠ABD=∠CAD,∴∠FAD=∠EAD,∵AD=AD,∴△ADF≌△ADE(ASA),∴AF=AE,DF=DE,在Rt△ADE中,∵AB=4,BF=5,∴AF=,∴AE=AF=3,∵,∴,∴DE=,∴BE=BF﹣2DE=,∵∠AED=∠BEC,∠ADE=∠BCE=90°,∴△BEC∽△AED,∴,∴,∴,∵∠BDC=∠BAC,在Rt△ACB中,∠ACB=90°∴.【点评】本题主要考查了圆的切线的性质,圆周角定理,相似三角形的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,解直角三角形的应用,勾股定理,关键是证明三角形全等与相似.24.(12分)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)时间x(分钟)0 1 2 3 4 5 6 7 8 9 9~15 人数y(人)0 170 320 450 560 650 720 770 800 810 810 (1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?【分析】(1)分两种情况讨论,利用待定系数法可求解析式;(2)设第x分钟时的排队人数为w人,由二次函数的性质和一次函数的性质可求当x=7时,w的最大值=490,当9<x≤15时,210≤w<450,可得排队人数最多时是490人,由全部考生都完成体温检测时间×每分钟检测的人数=总人数,可求解;(3)设从一开始就应该增加m个检测点,由“在12分钟内让全部考生完成体温检测”,列出不等式,可求解.【解答】解:(1)由表格中数据的变化趋势可知,①当0≤x≤9时,y是x的二次函数,∵当x=0时,y=0,∴二次函数的关系式可设为:y=ax2+bx,由题意可得:,解得:,∴二次函数关系式为:y=﹣10x2+180x,②当9<x≤15时,y=810,∴y与x之间的函数关系式为:y=;(2)设第x分钟时的排队人数为w人,由题意可得:w=y﹣40x=,①当0≤x≤9时,w=﹣10x2+140x=﹣10(x﹣7)2+490,∴当x=7时,w的最大值=490,②当9<x≤15时,w=810﹣40x,w随x的增大而减小,∴210≤w<450,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810﹣40x=0,解得:x=20.25,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)设从一开始就应该增加m个检测点,由题意得:12×20(m+2)≥810,解得m≥,∵m是整数,∴m≥的最小整数是2,∴一开始就应该至少增加2个检测点.【点评】本题考查了二次函数的应用,二次函数的性质,一次函数的性质,一元一次不等式的应用,理解题意,求出y与x之间的函数关系式是本题的关键.25.(12分)如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO 的数量关系是PQ=BO ,位置关系是PQ⊥BO;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.【分析】(1)由正方形的性质得出BO⊥AC,BO=CO,由中位线定理得出PQ∥OC,PQ=OC,则可得出结论;(2)连接O'P并延长交BC于点F,由旋转的性质得出△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,证得∠O'EP=∠FCP,∠PO'E=∠PFC,△O'PE≌△FPC(AAS),则O'E=FC=O'A,O'P=FP,证得△O'BF为等腰直角三角形.同理△BPO'也为等腰直角三角形,则可得出结论;(3)延长O'E交BC边于点G,连接PG,O'P.证明△O'GP≌△BCP(SAS),得出∠O'PG =∠BPC,O'P=BP,得出∠O'PB=90°,则△O'PB为等腰直角三角形,由直角三角形的性质和勾股定理可求出O'A和O'B,求出BQ,由三角形面积公式即可得出答案.【解答】解:(1)∵点O为对角线AC的中点,∵P为BC的中点,Q为BO的中点,∴PQ∥OC,PQ=OC,∴PQ⊥BO,PQ=BO;故答案为:PQ=BO,PQ⊥BO.(2)△PQB的形状是等腰直角三角形.理由如下:连接O'P并延长交BC于点F,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵将△AOB绕点A按顺时针方向旋转45°得到△AO'E,∴△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,∴∠O'EP=∠FCP,∠PO'E=∠PFC,又∵点P是CE的中点,∴CP=EP,∴△O'PE≌△FPC(AAS),∴O'E=FC=O'A,O'P=FP,∴AB﹣O'A=CB﹣FC,∴BO'=BF,∴△O'BF为等腰直角三角形.∴△BPO'也为等腰直角三角形.又∵点Q为O'B的中点,∴PQ⊥O'B,且PQ=BQ,∴△PQB的形状是等腰直角三角形;(3)延长O'E交BC边于点G,连接PG,O'P.∵四边形ABCD是正方形,AC是对角线,∴∠ECG=45°,由旋转得,四边形O'ABG是矩形,∴O'G=AB=BC,∠EGC=90°,∴△EGC为等腰直角三角形.∵点P是CE的中点,∴PC=PG=PE,∠CPG=90°,∠EGP=45°,∴△O'GP≌△BCP(SAS),∴∠O'PG=∠BPC,O'P=BP,∴∠O'PG﹣∠GPB=∠BPC﹣∠GPB=90°,∴∠O'PB=90°,∴△O'PB为等腰直角三角形,∵点Q是O'B的中点,∴PQ=O'B=BQ,PQ⊥O'B,∵AB=1,∴O'A=,∴O'B===,∴BQ=.∴S△PQB=BQ•PQ=×=.【点评】本题是四边形综合题,考查了正方形的性质,旋转的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,中位线定理,矩形的判定与性质,勾股定理,三角形的面积等知识,熟练掌握正方形的性质及全等三角形的判定与性质是解题的关键.。

【精校】2014年贵州省六盘水市中考真题数学

2014年贵州省六盘水市中考真题数学一、选择题(共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列说法正确的是( )A. -3的倒数是B. -2的绝对值是-2C. -(-5)的相反数是-5D. x取任意实数时,都有意义解析:A、-3的倒数是-,故A选项错误;B、-2的绝对值是2,故B选项错误;C、-(-5)的相反数是-5,故C选项正确;D、应为x取任意不等于0的实数时,都有意义,故D选项错误.答案:C.2.(3分)如图是由几个小立方体快所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是( )A.B.C.D.解析:由俯视图可得主视图有2列组成,左边一列由4个小正方体组成,右边一列由2个小正方体组成.答案:B.3.(3分)某商场对上月笔袋销售的情况进行统计如下表所示:经理决定本月进笔袋时多进一些蓝色的,经理的这一决定应用了哪个统计知识( )A. 平均数B. 方差C. 中位数D. 众数解析:由于销售最多的颜色为蓝色,且远远多于其他颜色,所以选择多进蓝色笔袋的主要根据众数.答案:D.4.(3分)下面图形中,是中心对称图形的是( )A.B.C.D.解析:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.答案:C.5.(3分)下列运算正确的是( )A. (-2mn)2=4m2n2B. y2+y2=2y4C. (a-b)2=a2-b2D. m2+m=m3解析:A、(-2mn)2=4m2n2 故A选项正确;B、y2+y2=2y2,故B选项错误;C、(a-b)2=a2+b2-2ab故C选项错误;D、m2+m不是同类项,故D选项错误.答案:A.6.(3分)将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是( )A.B.C.D.解析:严格按照图中的顺序向右上翻折,向左上角翻折,剪去左上角,展开得到结论. 答案:B.7.(3分)青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞20只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,请你估计一下这个池塘里有多少只青蛙?( )A. 100只B. 150只C. 180只D. 200只解析:∵从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,∴在样本中有标记的所占比例为,∴池塘里青蛙的总数为20÷=200.答案:D.8.(3分)六盘水市“琼都大剧院”即将完工,现需选用同一批地砖进行装修,以下不能镶嵌的地板是( )A. 正五边形地砖B. 正三角形地砖C. 正六边形地砖D. 正四边形地砖解析:A、正五边形每个内角是180°-360°÷5=108°,不是360°的约数,不能镶嵌平面,符合题意;B、正三角形的一个内角度数为180-360÷3=60°,是360°的约数,能镶嵌平面,不符合题意;C、正六边形的一个内角度数为180-360÷6=120°,是360°的约数,能镶嵌平面,不符合题意;D、正四边形的一个内角度数为180-360÷4=90°,是360°的约数,能镶嵌平面,不符合题意.答案:A.9.(3分)如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为( )A. 3B. 27C. 9D. 1解析:第1次,×81=27,第2次,×27=9,第3次,×9=3,第4次,×3=1,第5次,1+2=3,第6次,×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2014是偶数,∴第2014次输出的结果为1.答案:D.10.(3分)“横看成岭侧成峰”从数学的角度解释为( )A. 从不同的方向观察同一建筑物时,看到的图形不一样B. 从同一方向观察同一建筑物时,看到的图形不一样C. 从同一的方向观察不同的建筑物时,看到的图形一样D. 以上答案都不对解析:三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为三视图,答案:A.二、填空题(共8小题,每小题4分,满分32分)11.(4分)绝对值最小的实数是.解析:绝对值最小的实数是0.答案:0.12.(4分)PM2.5是指大气中的直径小于或等于0.0000025米(2.5微米)的有毒有害物质.0.0000025米用科学记数法表示为:米.解析:将0.0000025米用科学记数法表示为:2.5×10-6.答案:2.5×10-6.13.(4分)分解因式:m3-2m2n+mn2= .解析:m3-2m2n+mn2=m(m2-2mn+n2)=m(m-n)2.答案:m(m-n)2.14.(4分)在△ABC中,点D是AB边的中点,点E是AC边的中点,连接DE,若BC=4,则DE= .解析:∵点D是AB边的中点,点E是AC边的中点,∴DE是△ABC的中位线,∴DE=BC=×4=2.答案:2.15.(4分)黄金比>(用“>”、“<”“=”填空)解析:∵2<<3,∴1<-1<2,∴>,答案:>.16.(4分)如图,一次函数y1=k1x+b(k1≠0)的图象与反比例函数y2=(k2≠0)的图象交于A,B两点,观察图象,当y1>y2时,x的取值范围是 .解析:y1>y2时,一次函数图象在上方的部分是不等式的解,答案:-1<x<0或x>2.17.(4分)如图,在△ABC中,∠A=90°,AB=6,AC=8,分别以点B和C为圆心的两个等圆外切,则图中阴影部分面积为(结果保留π)解析:设两圆的半径为r,在Rt△BAC中,∠A=90°,AB=6,AC=8,由勾股定理得;BC=10,即2r=10,r=5,∵∠A=90°,∴∠B+∠C=90°,∴阴影部分的面积是=π,答案:π.18.(4分)如图是长为40cm,宽为16cm的矩形纸片,M点为一边上的中点,沿过M的直线翻折.若中点M所在边的一个顶点不能落在对边上,那么M点在(填“长”或“宽”)上,若M点所在边的一个顶点能落在对边上,那么折痕长度为 cm.解析:(1)∵若点M在宽上,则×16cm=8cm,∴沿过M的直线翻折不能落在对边上;(2)分两种情况考虑:(i)如图1所示,过M作ME⊥AD于E,G在AB上,B′落在AE上,可得四边形ABME为矩形,∴EM=AB=16,AE=BM,又∵BC=40,M为BC的中点,∴由折叠可得:B′M=BM=BC=20,在Rt△EFB′中,根据勾股定理得:B′E==12,∴AB′=AE-B′E=20-12=8,设AG=x,则有GB′=GB=16-x,在Rt△AGB′中,根据勾股定理得:GB′2=AG2+AB′2,即(16-x)2=x2+82,解得:x=6,∴GB=16-6=10,在Rt△GBF中,根据勾股定理得:GM==10;(ii)如图2所示,过F作FE⊥AD于E,G在AE上,B′落在ED上,可得四边形ABME为矩形,∴EM=AB=16,AE=BM,又BC=40,M为BC的中点,∴由折叠可得:B′M=BM=BC=20,在Rt△EMB′中,根据勾股定理得:B′E==12,∴AB′=AE-B′E=20-12=8,设AG=A′G=y,则GB′=AB′-AG=AE+EB′-AG=32-y,A′B′=AB=16,在Rt△A′B′G中,根据勾股定理得:A′G2+A′B′2=GB′2,即y2+162=(32-y)2,解得:y=12,∴AG=12,∴GE=AE-AG=20-12=8,在Rt△GEF中,根据勾股定理得:GM==8,综上,折痕FG=10或8.答案:宽,10或8.三、解答题(共8小题,满分88分.答题时写出必要的文字说明,证明过程或演算步骤)19.(8分)计算:|1-|+(π-2014)0-2sin45°+()-2.解析:本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果答案:原式=-1+1-+4=4.20.(8分)先化简代数式(-)÷,再从0,1,2三个数中选择适当的数作为a的值代入求值.解析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a=1代入计算即可求出值.答案:原式=·=·=2a+8,当a=1时,原式=2+8=10.21.(8分)如图,在△ABC中,利用尺规作图,画出△ABC的外接圆或内切圆(任选一个.不写作法,必须保留作图痕迹)解析:分别利用三角形外心的确定方法以及内心的确定方法得出圆心位置,进而得出即可.答案:解:如图所示:22.(10分)如图是某数学兴趣小组参加“奥数”后所得成绩绘制成的频数,频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题(成绩取整数,满分为100分)(1)频数、频率分布表中a= ,b= .(2)补全频数分布直方图.(3)若在80分以上的小组成员中选3人参加下一轮竞赛,小明本次竞赛的成绩为90分,他被选中的概率是多少?(4)从该图中你还能获得哪些数学信息?(填写一条即可)解析:(1)根据频数分布图中每一组内的频数总和等于总数据个数,得到总人数,再计算故a的值;根据频率=频数÷数据总数计算b的值;(2)据(1)补全直方图;(3)在80分以上的小组成员共8人,小明是其中一个,选3人参加下一轮竞赛,故小明被选上的概率是:;(4)答案不唯一,只要合理即可.答案:(1)根据频数分布图中每一组内的频数总和等于总数据个数,且知总人数为50人,故b=50-1-5-6-30=8,根据频数与频率的关系可得:a==0.1;(2)如图:(3)小明本次竞赛的成绩为90分,在80分以上的共8人,选3人参加下一轮竞赛故小华被选上的概率是:3÷8=.(4)如:在19.5-39.5之间的人数比在39.5-59.5之间的人数少多少人?6-5=1(人).答:在19.5-39.5之间的人数比在39.5-59.5之间的人数少1人.23.(12分)(1)三角形内角和等于.(2)请证明以上命题.解析:(1)直接根据三角形内角和定理得出结论即可;(2)画出△ABC,过点C作CF∥AB,再根据平行线的性质得出∠2=∠A,∠B+∠BCF=180°,再通过等量代换即可得出结论.答案:(1)三角形内角和等于180°.故答案为:180°;(2)已知:如图所示的△ABC,求证:∠A+∠B+∠C=180°.证明:过点C作CF∥AB,∵CF∥AB,∴∠2=∠A,∠B+∠BCF=180°,∵∠1+∠2=∠BCF,∴∠B+∠1+∠2=180°,∴∠B+∠1+∠A=180°,即三角形内角和等于180°.24.(12分)某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:(1)参赛学生人数x在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?解析:(1)设参赛学生人数有x人,根据每位参赛学生购买1顶,只能按零售价付款,需用900元,如果多购买45顶,那么可以按批发价付款,同样需用900元,列出不等式,求出不等式的解即可;(2)根据参赛学生为x人和按批发价购买15顶与按零售价购买12顶的款相同,列出方程,求出方程的解即可.答案:(1)设参赛学生人数有x人,由题意得,x<200且x+45≥200,解得:155≤x<200;答:参赛学生人数在155≤x<200范围内;(2)根据题意得:×12=×15,解得:x=180,经检验x=180是原方程的解.答:参赛学生人数是180人.25.(14分)为践行党的群众路线,六盘水市教育局开展了大量的教育教学实践活动,如图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形.活动中测得的数据如下:①小明的身高DC=1.5m②小明的影长CE=1.7cm③小明的脚到旗杆底部的距离BC=9cm④旗杆的影长BF=7.6m⑤从D点看A点的仰角为30°请选择你需要的数据,求出旗杆的高度.(计算结果保留到0.1,参考数据≈1.414.≈1.732)解析:分①②④和①③⑤两种情况,在第一种情况下证明△ABF∽△DCE,根据相似三角形的对应边的比相等即可求解;在第二种情况下,过点D作DG⊥AB于点G,在直角△AGD中利用三角函数求得AG的长,则AB即可求解.答案:情况一,选用①②④,∵AB⊥FC,CD⊥FC,∴∠ABF=∠DCE=90°,又∵AF∥DE,∴∠AFB=∠DEC,∴△ABF∽△DCE,∴,又∵DC=1.5m,FB=7.6m,EC=1.7m,∴AB=6.7m.即旗杆高度是6.7m;情况二,选①③⑤.过点D作DG⊥AB于点G.∵AB⊥FC,DC⊥FC,∴四边形BCDG是矩形,∴CD=BG=1.5m,DG=BC=9m,在直角△AGD中,∠ADG=30°,∴tan30°=,∴AG=3,又∵AB=AG+GB,∴AB=3+1.5≈6.7m.即旗杆高度是6.7m.26.(16分)如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式.(2)求函数图象的顶点坐标及D点的坐标.(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=S△BCD?若存在,请求出P点的坐标;若不存在.请说明理由.解析:(1)利用待定系数法求出b,c即可求出二次函数解析式,(2)把二次函数式转化可直接求出顶点坐标,由A对称关系可求出点D的坐标.(3)由待定系数法可求出BC所在的直线解析式,与抛物线组成方程求出点E的坐标,利用△BDE的面积=△CDB的面积+△CDE的面积求出△BDE的面积.(4)设点P到x轴的距离为h,由S△ADP=S△BCD求出h的值,根据h的正,负值求出点P 的横坐标即可求出点P的坐标.答案:(1)∵二次函数y=x2+bx+c的图象过A(2,0),B(8,6),∴,解得∴二次函数解析式为:y=x2-4x+6,(2)由y=x2-4x+6,得y=(x-4)2-2,∴函数图象的顶点坐标为(4,-2),∵点A,D是y=x2+bx+c与x轴的两个交点,又∵点A(2,0),对称轴为x=4,∴点D的坐标为(6,0).(3)∵二次函数的对称轴交x轴于C点.∴C点的坐标为(4,0)∵B(8,6),设BC所在的直线解析式为y=kx+b,∴解得∴BC所在的直线解析式为y=x-6,∵E点是y=x-6与y=x2-4x+6的交点,∴x-6=x2-4x+6,解得x1=3,x2=8(舍去),当x=3时,y=-,∴E(3,-),∴△BDE的面积=△CDB的面积+△CDE的面积=×2×6+×2×=7.5.(4)存在,设点P到x轴的距离为h,∵S△BCD=×2×6=6,S△ADP=×4×h=2h∵S△ADP=S△BCD∴2h=6×,解得h=,当P在x轴上方时,=x2-4x+6,解得x1=4+,x2=4-,当当P在x轴下方时,-=x2-4x+6,解得x1=3,x2=5,∴P1(4+,),P2(4-,),P3(3,-),P4(5,-).考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

2014年数学中考试题及答案word版

15.已知y=x-1,则(x-y)2+(y-x)+1的值为__________.
16.在1×2的正方形网格格点上放三枚棋子,按图8所示的位置已放置了两枚棋子,
若第三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直
角三角形的概率为_______.
17.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报(+1),第2位同学报(+1),第1位同学报(+1)……这样得到的20个数的积为___________.
C.必有5次正面向上D.不可能有10次正面向上
7.如图3,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,FG是()
A.以点C为圆心,OD为半径的弧
B.以点C为圆心,DM为半径的弧
C.以点E为圆心,OD为半径的弧
D.以点E为圆心,DM为半径的弧
8.用配方法解方程x2+4x+1=0,配方后的方程是()
2014数学中考复习资料
数学试卷
卷Ⅰ(选择题,共30分)
一、选择题(本大题共12个小题;1~6小题,每小题2分,7~12小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列各数中,为负数的是()
A.0B.-2C.1D.
2.计算(ab)3的结果是()A.ab3B.a3bC.a3b3D.3ab
19.(本小题满分8分)
计算:|-5|-(-3)0+6×(-)+(-1)2.
20.(本小题满分8分)
如图10,某市A,B两地之间有两条公路,一条是市区公路AB,另一条是外环公路AD-DC-CB这两条公路围成等腰梯形ABCD,其中CD∥AB,AB︰AD︰DC=10︰5︰2.

【真题】六盘水市中考数学试卷及答案解析(word版)

贵州省六盘水市中考数学试题(解析版)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.大米包装袋上100.1kg 的标识表示此袋大米重( ) A.9.910.1kg ~B.10.1kgC.9.9kgD.10kg【考点】正数和负数.【分析】利用相反意义量的定义计算即可得到结果.【解答】解:+0.1表示比标准10千克超出0.1千克;—0.1表示比标准10千克不足0.1千克。

故此袋大米重 故选A .2.国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形( ) A.BB.JC. 4D. 0【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、是轴对称图形,不是中心对称图形,故此选项错误; B 、不是轴对称图形,不是中心对称图形,故此选项错误;C 、不是轴对称图形,不是中心对称图形,故此选项错误;D 、是轴对称图形,又是中心对称图形,故此选项正确. 故选:D .3.下列式子正确的是( ) A.7887m n m n B.7815m n mn C.7887m n n mD.7856m n mn【考点】整式的加减.【分析】根据整式的加减运算法则求解. 【解答】解:C 、利用加法的交换律,故此选项正确; 故选:C4.如图,梯形ABCD 中,AB CD ∥,D ∠( )A.120°B.135°C.145°D.155°【考点】平行线的性质.【分析】由两直线平行,同旁内角互补即可得出结果. 【解答】解:∵AB ∥CD ,∠A=45°, ∴∠ADC=180°-∠A=135°; 故选:B .【点评】本题考查了平行线的性质;熟记两直线平行,同旁内角互补是解决问题的关键. 5.已知A 组四人的成绩分别为90、60、90、60,B 组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当( )A.平均数B.中位数C.众数D.方差【考点】方差;平均数;中位数;众数.【分析】根据A 组和B 组成绩,求出中位数,平均数,众数,方差差,即可做出判断. 【解答】解:A 组:平均数=75,中位数=75,众数=60或90,方差=225A 组:平均数=75,中位数=75,众数=70或80,方差=25故选D .6.不等式963≥+x 的解集在数轴上表示正确的是( )【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】根据解不等式的方法可以求得不等式963≥+x 的解集,从而可知哪个选项是正确的.【解答】解:133693963≥≥-≥≥+x x x x故选C .7.国产大飞机919C 用数学建模的方法预测的价格是(单位:美元):5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,这组数据的平均数是( ) A.5000.3B.4999.7C.4997D.5003【考点】平均数【分析】根据知识点:一组数据同时加上或减去某个数a ,平均数也相应加上或减去某个数a ,进行简化计算。

(历年中考)贵州省六盘水市中数学考试题 含答案

2016年贵州省六盘水市中考数学试卷一、选择题.(本大题共10小题,每小题3分,共30分)1.(3分)(2016•六盘水)如果盈利20元记作+20,那么亏本50元记作()A.+50元B.﹣50元C.+20元D.﹣20元2.(3分)(2016•六盘水)如图是由5个相同的小立方块组成的立体图形,则它的俯视图是()A.B.C.D.3.(3分)(2016•六盘水)下列运算结果正确的是()A.a3+a2=a5B.(x+y)2=x2+y2C.x8÷x2=x4D.(ab)2=a2b24.(3分)(2016•六盘水)图中∠1、∠2、∠3均是平行线a、b被直线c所截得到的角,其中相等的两个角有几对()A.1 B.2 C.3 D.45.(3分)(2016•六盘水)小颖随机抽样调查本班20名女同学所穿运动鞋尺码,并统计如决定应用了哪个统计知识()A.众数 B.中位数C.平均数D.方差6.(3分)(2016•六盘水)用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1 B.(x+2)2=7 C.(x+2)2=13 D.(x+2)2=197.(3分)(2016•六盘水)不等式3x+2<2x+3的解集在数轴上表示正确的是()A.B.C.D.8.(3分)(2016•六盘水)为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗,下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系()A.B.C.D.9.(3分)(2016•六盘水)2016年某市仅教育费附加就投入7200万元,用于发展本市的教育,预计到2018年投入将达9800万元,若每年增长率都为x,根据题意列方程()A.7200(1+x)=9800 B.7200(1+x)2=9800C.7200(1+x)+7200(1+x)2=9800 D.7200x2=980010.(3分)(2016•六盘水)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n的度数为()A.B.C.D.二、填空题.(本大题共8小题,每小题4分,共32分)11.(4分)(2016•六盘水)3的算术平方根是.12.(4分)(2016•六盘水)由38位科学家通过云计算得出:现在地球上约有3040000000000棵存活的树,将3040000000000用科学记数法表示为.13.(4分)(2016•六盘水)在一个不透明的袋中装有一红一白2个球,这些球除颜色外都相同,小刚从袋中随机摸出一个球,记下颜色后放回袋中,再从袋中随机摸出一个球,两次都摸到红球的概率是.14.(4分)(2016•六盘水)如图,EF为△ABC的中位线,△AEF的周长为6cm,则△ABC 的周长为cm.15.(4分)(2016•六盘水)若a与b互为相反数,c与d互为倒数,则a+b+3cd=.16.(4分)(2016•六盘水)如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD 的面积为.17.(4分)(2016•六盘水)如图,已知反比例函数y=的图象与正比例函数y=x的图象交于A、B两点,B点坐标为(﹣3,﹣2),则A点的坐标为()18.(4分)(2016•六盘水)我们知道:“两边及其中一边的对角分别相等的两个三角形不一定全等”.但是,小亮发现:当这两个三角形都是锐角三角形时,它们会全等,除小亮的发现之外,当这两个三角形都是时,它们也会全等;当这两个三角形其中一个三角形是锐角三角形,另一个是时,它们一定不全等.三、解答题.(本大题共8小题,共88分)19.(8分)(2016•六盘水)计算:+|1﹣|﹣2sin60°+(π﹣2016)0﹣.20.(8分)(2016•六盘水)为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a﹣b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?21.(10分)(2016•六盘水)甲队修路500米与乙队修路800米所用天数相同,乙队比甲队每天多修30米,问甲队每天修路多少米?数(单位:天)根据关系式列方程为:解得:检验:答:.22.(10分)(2016•六盘水)在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如图1,则有a2+b2=c2;若△ABC为锐角三角形时,小明猜想:a2+b2>c2,理由如下:如图2,过点A 作AD⊥CB于点D,设CD=x.在Rt△ADC中,AD2=b2﹣x2,在Rt△ADB中,AD2=c2﹣(a﹣x)2∴a2+b2=c2+2ax∵a>0,x>0∴2ax>0∴a2+b2>c2∴当△ABC为锐角三角形时,a2+b2>c2所以小明的猜想是正确的.(1)请你猜想,当△ABC为钝角三角形时,a2+b2与c2的大小关系.(2)温馨提示:在图3中,作BC边上的高.(3)证明你猜想的结论是否正确.23.(12分)(2016•六盘水)据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m)(1)求B,C的距离.(2)通过计算,判断此轿车是否超速.24.(12分)(2016•六盘水)为了贯彻落实健康第一的指导思想,促进学生全面发展,国家每年都要对中学生进行一次体能测试,测试结果分“优秀”、“良好”、“及格”、“不及格”四个等级,某学校从七年级学生中随机抽取部分学生的体能测试结果进行分析,并根据收集的数据绘制了两幅不完整的统计图,请根据这两幅统计图中的信息回答下列问题(1)本次抽样调查共抽取多少名学生?(2)补全条形统计图.(3)在扇形统计图中,求测试结果为“良好”等级所对应圆心角的度数.(4)若该学校七年级共有600名学生,请你估计该学校七年级学生中测试结果为“不及格”等级的学生有多少名?(5)请你对“不及格”等级的同学提一个友善的建议(一句话即可).25.(12分)(2016•六盘水)如图,在⊙O中,AB为直径,D、E为圆上两点,C为圆外一点,且∠E+∠C=90°.(1)求证:BC为⊙O的切线.(2)若sinA=,BC=6,求⊙O的半径.26.(16分)(2016•六盘水)如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.2016年贵州省六盘水市中考数学试卷参考答案与试题解析一、选择题.(本大题共10小题,每小题3分,共30分)1.(3分)(2016•六盘水)如果盈利20元记作+20,那么亏本50元记作()A.+50元B.﹣50元C.+20元D.﹣20元【分析】利用相反意义量的定义计算即可得到结果.【解答】解:亏本50元记作﹣50元,故选B.【点评】此题考查了正数与负数,熟练掌握相反意义量的定义是解本题的关键.2.(3分)(2016•六盘水)如图是由5个相同的小立方块组成的立体图形,则它的俯视图是()A.B.C.D.【分析】根据俯视图是从物体的上面看,所得到的图形解答即可.【解答】解:几何体的俯视图是C中图形,故选:C.【点评】本题考查的是几何体的三视图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形,本题应得到从上面看的图形.3.(3分)(2016•六盘水)下列运算结果正确的是()A.a3+a2=a5B.(x+y)2=x2+y2C.x8÷x2=x4D.(ab)2=a2b2【分析】由合并同类项、完全平方公式、同底数幂的除法法则得出A、B、C不正确,由积的乘方法则得出D正确即可.【解答】解:A、a3+a2=a5不正确;B、∵(x+y)2=x2+2xy+y2,∴选项B不正确;C、x8÷x2=x4不正确;D、(ab)2=a2b2正确;故选:D.【点评】本题考查了合并同类项、完全平方公式、同底数幂的除法法则、积的乘方法则;熟记有关公式和法则是解决问题的关键.4.(3分)(2016•六盘水)图中∠1、∠2、∠3均是平行线a、b被直线c所截得到的角,其中相等的两个角有几对()A.1 B.2 C.3 D.4【分析】根据平行线的性质即可得到结论.【解答】解:∵a∥b,∴∠1=∠3,2=∠3,∵∠1=∠2,∴相等的两个角有3对,故选C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.5.(3分)(2016•六盘水)小颖随机抽样调查本班20名女同学所穿运动鞋尺码,并统计如决定应用了哪个统计知识()A.众数 B.中位数C.平均数D.方差【分析】由表可知,运动鞋尺码为23.0cm的人数最多,故经理做决定应该是根据穿哪种尺码的运动鞋人数最多,即众数.【解答】解:由表可知,运动鞋尺码为23.0cm的人数最多,所以经理决定本月多进尺码为23.0cm的女式运动鞋主要根据众数.故选A.【点评】本题主要考查了统计量的选择的知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.6.(3分)(2016•六盘水)用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1 B.(x+2)2=7 C.(x+2)2=13 D.(x+2)2=19【分析】把方程两边加上7,然后把方程左边写成完全平方式即可.【解答】解:x2+4x=3,x2+4x+4=7,(x+2)2=7.故选B.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.7.(3分)(2016•六盘水)不等式3x+2<2x+3的解集在数轴上表示正确的是()A.B.C.D.【分析】根据解不等式的方法可以求得不等式3x+2<2x+3的解集,从而可知哪个选项是正确的.【解答】解:3x+2<2x+3移项及合并同类项,得x<1,故选D.【点评】本题考查解一元一次不等式、在数轴上表示一元一次不等式的解集,解题的关键是明确解不等式的方法.8.(3分)(2016•六盘水)为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗,下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系()A.B.C.D.【分析】设旗杆高h,国旗上升的速度为v,根据国旗离旗杆顶端的距离S=旗杆的高度﹣国旗上升的距离,得出S=h﹣vt,再利用一次函数的性质即可求解.【解答】解:设旗杆高h,国旗上升的速度为v,国旗离旗杆顶端的距离为S,根据题意,得S=h﹣vt,∵h、v是常数,∴S是t的一次函数,∵S=﹣vt+h,﹣v<0,∴S随v的增大而减小.故选A.【点评】本题考查了函数的图象,一次函数的性质,根据题意得出国旗离旗杆顶端的距离与时间的函数关系式是解题的关键.9.(3分)(2016•六盘水)2016年某市仅教育费附加就投入7200万元,用于发展本市的教育,预计到2018年投入将达9800万元,若每年增长率都为x,根据题意列方程()A.7200(1+x)=9800 B.7200(1+x)2=9800C.7200(1+x)+7200(1+x)2=9800 D.7200x2=9800【分析】根据题意,可以列出相应的方程,本题得以解决.【解答】解:设每年增长率都为x,根据题意得,7200(1+x)2=9800,故选B【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程.10.(3分)(2016•六盘水)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n的度数为()A.B.C.D.【分析】根据三角形外角的性质及等腰三角形的性质分别求出∠B1A2A1,∠B2A3A2及∠B3A4A3的度数,找出规律即可得出∠A n﹣1A n B n﹣1的度数.【解答】解:∵在△ABA1中,∠A=70°,AB=A1B,∴∠BA1A=70°,∵A1A2=A1B1,∠BA1A是△A1A2B1的外角,∴∠B1A2A1==35°;同理可得,∠B2A3A2=17.5°,∠B3A4A3=×17.5°=,∴∠A n﹣1A n B n﹣1=.故选:C.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠B1C2A1,∠B2A3A2及∠B3A4A3的度数,找出规律是解答此题的关键.二、填空题.(本大题共8小题,每小题4分,共32分)11.(4分)(2016•六盘水)3的算术平方根是.【分析】根据开平方的意义,可得算术平方根.【解答】解:3的算术平方根是,故答案为:.【点评】本题考查了算术平方根,注意一个正数的算术平方根只有一个.12.(4分)(2016•六盘水)由38位科学家通过云计算得出:现在地球上约有3040000000000棵存活的树,将3040000000000用科学记数法表示为 3.04×1012.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将3040000000000用科学记数法表示为3.04×1012.故答案为:3.04×1012.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(4分)(2016•六盘水)在一个不透明的袋中装有一红一白2个球,这些球除颜色外都相同,小刚从袋中随机摸出一个球,记下颜色后放回袋中,再从袋中随机摸出一个球,两次都摸到红球的概率是.【分析】先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到红球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有4种等可能的结果,两次都摸到红球的1种情况,∴两次都摸到红球的概率是,故答案为.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.14.(4分)(2016•六盘水)如图,EF为△ABC的中位线,△AEF的周长为6cm,则△ABC 的周长为12cm.【分析】根据三角形中位线定理可直接得出结论.【解答】解:∵EF为△ABC的中位线,△AEF的周长为6cm,∴BC=2EF,AB=2AE,AC=2AF,∴BC+AB+AC=2(EF+AE+AF)=12(cm).故答案为:12.【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.15.(4分)(2016•六盘水)若a与b互为相反数,c与d互为倒数,则a+b+3cd=3.【分析】根据互为相反数的两个数之和为0与互为倒数的两个数之积是1解答即可.【解答】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∴a+b+3cd=0+3×1=3.故答案为:3.【点评】本题主要考查相反数和倒数的知识,解答本题的关键在于掌握互为相反数的两个数之和为0;互为倒数的两个数乘积为1.16.(4分)(2016•六盘水)如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD 的面积为30.【分析】由在菱形ABCD中,对角线AC=6,BD=10,根据菱形的面积等于对角线积的一半,即可求得答案.【解答】解:∵在菱形ABCD中,对角线AC=6,BD=10,∴菱形ABCD的面积为:AC•BD=30.故答案为:30.【点评】此题考查了菱形的性质.注意菱形的面积等于对角线积的一半.17.(4分)(2016•六盘水)如图,已知反比例函数y=的图象与正比例函数y=x的图象交于A、B两点,B点坐标为(﹣3,﹣2),则A点的坐标为(3,2)【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【解答】解:根据题意,知点A与B关于原点对称,∵点B的坐标是(﹣3,﹣2),∴A点的坐标为(3,2).故答案是:3,2.【点评】本题考查了反比例函数图象的中心对称性,关于原点对称的两点的横、纵坐标分别互为相反数.18.(4分)(2016•六盘水)我们知道:“两边及其中一边的对角分别相等的两个三角形不一定全等”.但是,小亮发现:当这两个三角形都是锐角三角形时,它们会全等,除小亮的发现之外,当这两个三角形都是钝角三角形或直角三角形时,它们也会全等;当这两个三角形其中一个三角形是锐角三角形,另一个是钝角三角形时,它们一定不全等.【分析】过B作BD⊥AC于D,过B1作B1D1⊥B1C1于D1,得出∠BDA=∠B1D1A1=∠BDC=∠B1D1C1=90°,根据SAS证△BDC≌△B1D1C1,推出BD=B1D1,根据HL证Rt△BDA≌Rt△B1D1A1,推出∠A=∠A1,根据AAS推出△ABC≌△A1B1C1即可.【解答】解:已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C1,∠C=∠C1.求证:△ABC≌△A1B1C1.证明:过B作BD⊥AC于D,过B1作B1D1⊥A1C1于D1,则∠BDA=∠B1D1A1=∠BDC=∠B1D1C1=90°,在△BDC和△B1D1C1中,,∴△BDC≌△B1D1C1,∴BD=B1D1,在Rt△BDA和Rt△B1D1A1中,∴Rt△BDA≌Rt△B1D1A1(HL),∴∠A=∠A1,在△ABC和△A1B1C1中,∴△ABC≌△A1B1C1(AAS).同理可得:当这两个三角形都是钝角三角形或直角三角形时,它们也会全等,如图:△ACD与△ACB中,CD=CB,AC=AC,∠A=∠A,但:△ACD与△ACB不全等.,故当这两个三角形其中一个三角形是锐角三角形,另一个是钝角三角形时,它们一定不全等.故答案为:钝角三角形或直角三角形,钝角三角形.【点评】本题考查了全等三角形像的判定;SSA不能判定的原因是有锐角钝角三角形不能全等,把三角形分类后就能全等了.三、解答题.(本大题共8小题,共88分)19.(8分)(2016•六盘水)计算:+|1﹣|﹣2sin60°+(π﹣2016)0﹣.【分析】本题涉及负整数指数幂、绝对值、特殊角的三角函数值、零指数幂、立方根5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:+|1﹣|﹣2sin60°+(π﹣2016)0﹣=3+﹣1﹣2×+1﹣2=3+﹣1﹣+1﹣2=1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、绝对值、特殊角的三角函数值、零指数幂、立方根等考点的运算.20.(8分)(2016•六盘水)为确保信息安全,在传输时往往需加密,发送方发出一组密码a,b,c时,则接收方对应收到的密码为A,B,C.双方约定:A=2a﹣b,B=2b,C=b+c,例如发出1,2,3,则收到0,4,5(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码2,8,11时,则发送方发出的密码是多少?【分析】(1)根据题意可得方程组,再解方程组即可.(2)根据题意可得方程组,再解方程组即可.【解答】解:(1)由题意得:,解得:A=1,B=6,C=8,答:接收方收到的密码是1、6、8;(2)由题意得:,解得:a=3,b=4,c=7,答:发送方发出的密码是3、4、7.【点评】此题主要考查了方程组的应用,关键是正确理解题意,根据密文与明文之间的关系列出方程组.21.(10分)(2016•六盘水)甲队修路500米与乙队修路800米所用天数相同,乙队比甲队每天多修30米,问甲队每天修路多少米?数(单位:天)根据关系式列方程为:=解得:x=50检验:当x=50时x+30≠0,x=50是原分式方程的解答:甲队每天修路50m.【分析】设甲队每天修路xm,则乙队每天修(x+30)m,根据甲队修路500m与乙队修路800m所用天数相同,列出方程即可.【解答】解:设甲队每天修路xm,则乙队每天修(x+30)m,由题意得,=,解得:x=50.检验:当x=50时x+30≠0,x=50是原分式方程的解,答:甲队每天修路50m,故答案为:x+30,,=,x=50当x=50时x+30≠0,x=50是原分式方程的解,甲队每天修路50m.【点评】本题考查了由实际问题抽象出分式方程,解答本题的读懂题意,找出合适的等量关系,列出方程.22.(10分)(2016•六盘水)在△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如图1,则有a2+b2=c2;若△ABC为锐角三角形时,小明猜想:a2+b2>c2,理由如下:如图2,过点A 作AD⊥CB于点D,设CD=x.在Rt△ADC中,AD2=b2﹣x2,在Rt△ADB中,AD2=c2﹣(a﹣x)2∴a2+b2=c2+2ax∵a>0,x>0∴2ax>0∴a2+b2>c2∴当△ABC为锐角三角形时,a2+b2>c2所以小明的猜想是正确的.(1)请你猜想,当△ABC为钝角三角形时,a2+b2与c2的大小关系.(2)温馨提示:在图3中,作BC边上的高.(3)证明你猜想的结论是否正确.【分析】(1)根据题意可猜测:当△ABC为钝角三角形时,a2+b2与c2的大小关系为:a2+b2<c2;(2)根据题意可作辅助线:过点A作AD⊥BC于点D;(3)然后设CD=x,分别在Rt△ADC与Rt△ADB中,表示出AD2,即可证得结论.【解答】解:(1)当△ABC为钝角三角形时,a2+b2与c2的大小关系为:a2+b2<c2;(2)如图3,过点A作AD⊥BC于点D,(3)证明:如图3,设CD=x.在Rt△ADC中,AD2=b2﹣x2,在Rt△ADB中,AD2=c2﹣(a+x)2∴a2+b2=c2﹣2ax∵a>0,x>0∴2ax>0∴a2+b2<c2∴当△ABC为钝角三角形时,a2+b2<c2.【点评】此题属于三角形的综合题.考查了勾股定理以及三角形的面积问题.注意理解题意是解此题的关键.23.(12分)(2016•六盘水)据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m)(1)求B,C的距离.(2)通过计算,判断此轿车是否超速.【分析】(1)在直角三角形ABD与直角三角形ACD中,利用锐角三角函数定义求出BD 与CD的长,由BD﹣CD求出BC的长即可;(2)根据路程除以时间求出该轿车的速度,即可作出判断.【解答】解:(1)在Rt△ABD中,AD=24m,∠B=31°,∴tan31°=,即BD==40m,在Rt△ACD中,AD=24m,∠ACD=50°,∴tan50°=,即CD==20m,∴BC=BD﹣CD=40﹣20=20m,则B,C的距离为20m;(2)根据题意得:20÷2=10m/s<15m/s,则此轿车没有超速.【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.24.(12分)(2016•六盘水)为了贯彻落实健康第一的指导思想,促进学生全面发展,国家每年都要对中学生进行一次体能测试,测试结果分“优秀”、“良好”、“及格”、“不及格”四个等级,某学校从七年级学生中随机抽取部分学生的体能测试结果进行分析,并根据收集的数据绘制了两幅不完整的统计图,请根据这两幅统计图中的信息回答下列问题(1)本次抽样调查共抽取多少名学生?(2)补全条形统计图.(3)在扇形统计图中,求测试结果为“良好”等级所对应圆心角的度数.(4)若该学校七年级共有600名学生,请你估计该学校七年级学生中测试结果为“不及格”等级的学生有多少名?(5)请你对“不及格”等级的同学提一个友善的建议(一句话即可).【分析】(1)根据统计图可知优秀的18人占30%,从而可以得到本次抽查的学生数;(2)根据抽查的学生数可以得到抽查中及格的人数,从而可以将条形统计图补充完整;(3)用良好的人数占抽查人数的比值乘以360°即可解答本题;(4)根据统计图中的数据可以求得该学校七年级学生中测试结果为“不及格”等级的学生人数;(5)说出的建议只要对学生具有鼓励性即可.【解答】解:(1)本次抽样调查学生有:18÷30%=60(人),即本次抽样调查共抽取60名学生;(2)及格的学生有:60﹣18﹣24﹣3=15(人),补全的条形统计图如右图所示,(3)测试结果为“良好”等级所对应圆心角的度数是:×360°=144°,测试结果为“良好”等级所对应圆心角的度数是144°;(4)该学校七年级学生中测试结果为“不及格”等级的学生有:600×=30(人),即该学校七年级学生中测试结果为“不及格”等级的学生有30人;(5)对“不及格”等级的同学提一个友善的建议是:同学们,这次考试并不代表以后,相信你们下次一定可以考一个理想的成绩,加油,相信自己.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.25.(12分)(2016•六盘水)如图,在⊙O中,AB为直径,D、E为圆上两点,C为圆外一点,且∠E+∠C=90°.(1)求证:BC为⊙O的切线.(2)若sinA=,BC=6,求⊙O的半径.【分析】(1)根据在同圆或等圆中,同弧所对的圆周角相等可得∠A=∠E,再根据三角形的内角和等于180°求出∠ABC=90°,然后根据切线的定义证明即可;(2)根据∠A的正弦求出AC,利用勾股定理列式计算求出AB,然后求解即可.【解答】(1)证明:∵∠A与∠E所对的弧都是,∴∠A=∠E,又∵∠E+∠C=90°,∴∠A+∠C=90°,在△ABC中,∠ABC=180°﹣90°=90°,∵AB为直径,∴BC为⊙O的切线;(2)解:∵sinA=,BC=6,∴=,即=,解得AC=10,由勾股定理得,AB===8,∵AB为直径,∴⊙O的半径是×8=4.【点评】本题考查了切线的判定,锐角三角函数,解直角三角形,勾股定理,在同圆或等圆中,同弧所对的圆周角相等的性质,熟记切线的概念并求出直角是解题的关键.26.(16分)(2016•六盘水)如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.【分析】(1)根据抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y 轴交于点C(0,﹣3),可以求得抛物线的解析式;(2)根据(1)中的解析式化为顶点式,即可得到此抛物线顶点D的坐标和对称轴;(3)首先写出存在,然后运用分类讨论的数学思想分别求出各种情况下点P的坐标即可.【解答】解:(1)∵抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),∴,解得,,即此抛物线的解析式是y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴此抛物线顶点D的坐标是(1,﹣4),对称轴是直线x=1;(3)存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形,设点P的坐标为(1,y),当PA=PD时,=,解得,y=﹣,即点P的坐标为(1,﹣);当DA=DP时,=,解得,y=﹣4±,即点P的坐标为(1,﹣4﹣2)或(1,﹣4+);当AD=AP时,=,解得,y=±4,即点P的坐标是(1,4)或(1,﹣4),当点P为(1,﹣4)时与点D重合,故不符合题意,由上可得,以点P、D、A为顶点的三角形是等腰三角形时,点P的坐标为(1,﹣)或(1,﹣4﹣2)或(1,﹣4+)或(1,4).【点评】本题考查二次函数综合题,解题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答问题.21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵州省六盘水市2014年中考数学试卷
一、选择题(本题共10小题,每小题3分,共30分,只有一项符合题意要求)1.(3分)(2013•六盘水)﹣2013相反数()
C
2.(3分)(2013•六盘水)下面四个几何体中,主视图是圆的几何体是()
C
3.(3分)(2013•六盘水)下列运算正确的是()
题:
4.(3分)(2013•六盘水)下列图形中,是轴对称图形的是( )
B .
,这条直线叫做对称轴.
5.(3分)(2013•六盘水)下列图形中,单独选用一种图形不能进行平面镶嵌的是( )
握只用一种正多边形镶嵌,只有正三角形,正四边形,
6.(3分)(2013•六盘水)直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与∠1互余的角有几个()
7.(3分)(2013•六盘水)在平面中,下列命题为真命题的是()

8.(3分)(2013•六盘水)我省五个旅游景区门票票价如下表所示(单位:元),关于这五个景区票价的说法中,正确的是()
9.(3分)(2013•六盘水)已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k 的取值范围是()
10.(3分)(2013•六盘水)下列图形中,阴影部分面积最大的是()
C
二、填空题(本题8小题,每小题4分,共计32分)
11.(4分)(2013•六盘水)H7N9禽流感病毒的直径大约为0.0000000805米,用科学记数法表示为8.1×10﹣8米(保留两位有效数字)
12.(4分)(2013•六盘水)因式分解:4x3﹣36x= 4x(x+3)(x﹣3).
13.(4分)(2013•六盘水)如图,添加一个条件:∠ADE=∠ACB(答案不唯一),使△ADE∽△ACB,(写出一个即可)
14.(4分)(2013•六盘水)在六盘水市组织的“五城联创”演讲比赛中,小明等25人进入总决赛,赛制
规定,13人早上参赛,12人下午参赛,小明抽到上午比赛的概率是.

故答案为
15.(4分)(2013•六盘水)如图,梯形ABCD中,AD∥BC,AD=4,AB=5,BC=10,CD的垂直平分线交BC于E,连接DE,则四边形ABED的周长等于19 .
梯形;线段垂直平分线的性质.
16.(4分)(2013•六盘水)若⊙A和⊙B相切,它们的半径分别为8cm和2cm,则圆心距AB为10或6 cm.
17.(4分)(2013•六盘水)无论x取任何实数,代数式都有意义,则m的取值范围为m≥9.
(a≥0)叫二次根式.性质:二次根式中的被开方
18.(4分)(2013•六盘水)把边长为1的正方形纸片OABC放在直线m上,OA边在直线m上,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时,点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处,又将正方形纸片AO1C1B1绕B1点,按顺时针方向旋转90°…,按上述方法经过
4次旋转后,顶点O经过的总路程为,经过61次旋转后,顶点O经过的总路程为

,作出前几次旋转后的图形,
=次旋转路线是以正方形的对角线长
=
经过的路线长为+=
=.

三、解答题(本题共7个小题,共88分,解答时应写出必要的文字说明,证明过程或演算步骤)19.(16分)(2013•六盘水)(1)+(2013﹣π)0(2)先化简,再求值:(),其中x2﹣4=0.
﹣﹣﹣2×+1
+1
+)÷
×
×
=
20.(12分)(2013•六盘水)为了了解中学生参加体育活动的情况,某校对部分学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项:
A.1.5小时以上
B.1﹣﹣1.5小时
C.0.5小时
D.0.5小时以下
根据调查结果绘制了两幅不完整的统计图.
请你根据以上信息解答下列问题:
(1)本次调查活动采取了抽样调查方式.
(2)计算本次调查的学生人数和图(2)选项C的圆心角度数.
(3)请根据图(1)中选项B的部分补充完整.
(4)若该校有3000名学生,你估计该校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.
的圆心角度数:360°×=54°;答:该校可能有
21.(10分)(2013•六盘水)在Rt△ACB中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交与点D,E,且∠CBD=∠A.
(1)判断直线BD与⊙O的位置关系,并证明你的结论.
(2)若AD:AO=6:5,BC=3,求BD的长.
出∠EDB+∠ODE=90
=90°,
=

22.(10分)(2013•六盘水)阅读材料:
关于三角函数还有如下的公式:
sin(α±β)=sinαcosβ±cosasinβ
tan(α±β)=
利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.
例:tan15°=tan(45°﹣30°)
===
根据以上阅读材料,请选择适当的公式解答下面问题
(1)计算:sin15°;
(2)乌蒙铁塔是六盘水市标志性建筑物之一(图1),小华想用所学知识来测量该铁塔的高度,如图2,小华站在离塔底A距离7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.62米,请帮助小华求出乌蒙铁塔的高度.(精确到0.1米,参考数据,)
=sin45°cos30°﹣cos45°sin30°=×﹣×=;
=,

≈27.7(米)
23.(14分)(2013•六盘水)为了抓住2013年凉都消夏文化节的商机,某商场决定购进甲,乙两种纪念品,若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.
(1)购进甲乙两种纪念品每件各需要多少元?
(2)该商场决定购进甲乙两种纪念品100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6000元,同时又不能超过6430元,则该商场共有几种进货方案?
(3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?


24.(10分)(2013•六盘水)(1)观察发现
如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:
作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.
如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:
作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最
小值为.
(2)实践运用
如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使
BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为.
(3)拓展延伸
如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN的值最小,保留作图痕迹,不写作法.

的度数为的中点得到∠BOC=30°,∠AOC=60°,所以
OA=
BE=;
故答案为
的度数为的中点,
OA=,
故答案为
25.(16分)(2013•六盘水)已知.在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求经过点O,C,A三点的抛物线的解析式.
(2)求抛物线的对称轴与线段OB交点D的坐标.
(3)线段OB与抛物线交与点E,点P为线段OE上一动点(点P不与点O,点E重合),过P点作y轴的平行线,交抛物线于点M,问:在线段OE上是否存在这样的点P,使得PD=CM?若存在,请求出此时点P 的坐标;若不存在,请说明理由.
2求出
OA=
=4
OC=AO=2,
OH=

,,

+2
)∵AO=2,
2
k
k=
x
+2﹣=
×=1
,+2的顶点坐标为(,
t
t
t x
t(
(,

点坐标为(。

相关文档
最新文档