分式方程—人教版八年级上册数学2

合集下载

人教版八年级数学上册分式方程(含答案)

人教版八年级数学上册分式方程(含答案)

15.3分式方程专题一 解分式方程 1.方程32x 31-x 1+=的解是 . 2.解分式方程:3x 911x 3x 32-=-+.3.解分式方程:32x ++1x =242x x+.专题二 分式方程无解4.关于x 的分式方程211x m x x -=--无解,则m 的值是( )A .1B .0C .2D .–25.若关于x 的方程2222x m x x ++=--无解,则m 的值是______. 6.若关于x 的分式方程2233x m x x -=--无解,则m 的值为__________. 专题三 列分式方程解应用题7.甲、乙两班学生参加植树造林.已知甲班每天比乙班少植2棵树,甲班植60棵树所用天数与乙班植70棵树所用天数相等.若设甲班每天植树x 棵,则根据题意列出方程正确的是( )A .60702x x=+ B .60702x x =+C.60702x x =- D.60702x x =-8.为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种1,结果提前4天完成任务.原计划每天种多少棵树?39.某校为了进一步开展“阳光体育”活动,计划用2000元购买乒乓球拍,用2800元购买羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵14元.该校购买的乒乓球拍与羽毛球拍的数量能相同吗?请说明理由.状元笔记【知识要点】1.分式方程分母中含未知数的方程叫做分式方程.2.解分式方程的一般步骤【温馨提示】1.用分式方程中各项的最简公分母乘方程的两边,从而约去分母.但要注意用最简公分母乘方程两边各项时,切勿漏项.2.解分式方程可能产生使分式方程无解的情况,那么检验就是解分式方程的必要步骤.参考答案:1.x=6 解析:去分母,得2x+3=3(x-1),解得x=6,经检验x=6是原方程的解.所以,原分式方程无解.3.解:方程两边乘x(x+2),得3x+x+2=4,解得x=21.经检验:x=21是原方程的解.4.A 解析:方程两边成x -1,得x -2(x -1)=m ,解得x=2-m .∵当x=1时分母为0,方程无解,∴2-m=1,即m=1时,方程无解.故选A .7.B 解析:设甲班每天植树x 棵,则乙班每天植树(x+2)棵,甲班植60棵树所用的天数为x ,乙班植70棵树所用的天数270+x ,可列方程为x 60=270+x .故选B . 8.解:设原计划每天种x 棵树,实际每天种树113x ⎛⎫+⎪⎝⎭棵,根据题意,得 4804804113x x -=⎛⎫+ ⎪⎝⎭.解这个方程,得x=30.经检验x=30是原方程的解且符合题意.答:原计划每天种树30棵.9.解:不能相同.理由如下:设该校购买的乒乓球拍每副x 元,羽毛球拍每副(x +14)元,若购买的乒乓球拍与羽毛球拍的数量相同,则1428002000+=x x ,解得x =35.经检验x =35是原方程的解.但当x =35时,74001428002000=+=x x ,不是整数,不合题意. 所以购买的乒乓球拍与羽毛球拍的数量不能相同.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。

人教版八年级数学上册15.3分式方程(增根.无解)ppt精品课件

人教版八年级数学上册15.3分式方程(增根.无解)ppt精品课件
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
3x23x23 无m x解x,
二、利用分式方程解的情况确定所含字母的取值 范围
例3.若分式方程 的取值范围. a
2xx的2a解 是1正数,求
例3.若分式方程 的取值范围. a
2xx的2a解 是1正数,求
方法总结: 1.化整式方程求解. 2.根据题意列不等式组.(特别注意分式方程中分母 能为0)。
2019/7/8
最新中小学教学课件
thank
you!2019/7/8最新小学教学课件学习重点:
利用分式方程解的情况确定所含字母的取值。
练习:解方程:
x 1
3
x1
(x1)(x2)
.
一、分式方程增根的应用
例1、分式方程 有增根,求m的值。
1 m x 2 x 1
方法总结: 1.化为整式方程。(方程可以不整理) 2.确定增根。 3.把增根代入整式方程求出字母的值。
练习:已知关于x的方程 求实数K的值。
1 4x2
2 有 增x k根2
练习:解方程:
x 2 1 x 1 3x 3
.
例2、若关于x的分式方程 无解,求m的值.
xm 3 1 x1 x
方法总结: 1.化为整式方程(整式方程需要整理). 2. 分两种情况讨论 (1)整式方程无解 (2)分式方程有增根.

数学八年级上册【分式方程】知识点梳理

数学八年级上册【分式方程】知识点梳理

数学八年级上册【分式方程】知识点梳理知识点汇总一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程,转化方法是方程两边都乘以最简公分母,去掉分母。

在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根。

因为解分式方程时可能产生增根,所以解分式方程时必须验根。

三、解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.今日练习1.校运动会上,初二(3)班啦啦队买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可列方程为:A.B.C. D .2.以下是解分式方程,去分母后的结果,其中正确的是:A.B.C. D .【参考答案】1.B若设甲种雪糕的价格为x元,根据等量关系“甲种雪糕比乙种雪糕多20根”可列方程求解解:设甲种雪糕的价格为x元,则甲种雪糕的根数:;乙种雪糕的根数:.可得方程:故选B考点:由实际问题抽象出分式方程2.B。

人教版八年级上册数学《 分式方程》(优质教学设计)

人教版八年级上册数学《 分式方程》(优质教学设计)

人教版八年级上册数学《分式方程》(优质教学设计)一. 教材分析人教版八年级上册数学《分式方程》这一节内容,是在学生已经掌握了方程和等式的基本性质的基础上进行教学的。

本节课主要让学生了解分式方程的概念,学会解分式方程的方法,并能够应用分式方程解决实际问题。

教材通过具体的例子,引导学生探究分式方程的解法,并总结解分式方程的一般步骤。

二. 学情分析八年级的学生已经具备了一定的数学基础,对方程和等式有一定的了解。

但是,学生对分式方程的理解和应用还比较薄弱。

因此,在教学过程中,需要通过具体的例子,引导学生理解分式方程的概念,掌握解分式方程的方法,并能够应用分式方程解决实际问题。

三. 教学目标1.让学生了解分式方程的概念,理解分式方程的意义。

2.引导学生掌握解分式方程的方法,并能够熟练运用。

3.通过解决实际问题,培养学生的应用能力。

四. 教学重难点1.重点:分式方程的概念,解分式方程的方法。

2.难点:解分式方程的步骤和技巧。

五. 教学方法采用问题驱动法,通过具体的例子,引导学生探究分式方程的解法,并总结解分式方程的一般步骤。

同时,运用小组合作学习法,让学生在小组内讨论和分享解题经验,提高学生的合作能力和沟通能力。

六. 教学准备1.准备相关的例题和练习题。

2.准备课件,用于展示和解题过程。

七. 教学过程1.导入(5分钟)通过一个实际问题,引入分式方程的概念。

例如,某商店举行打折活动,原价为100元的商品打八折后,顾客实际支付了72元,求打折的力度。

让学生尝试用方程来解决这个问题,从而引出分式方程的概念。

2.呈现(10分钟)展示几个分式方程的例子,让学生观察和分析。

例如:(1)(=2)(2)(=3)引导学生总结解分式方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1。

3.操练(10分钟)让学生独立完成一些分式方程的练习题,检验学生对分式方程的理解和掌握程度。

教师可适时给予提示和指导。

4.巩固(10分钟)学生进行小组讨论,分享解题经验,总结解分式方程的技巧。

分式方程的应用行程问题2022-2023学年人教版八年级数学上册

分式方程的应用行程问题2022-2023学年人教版八年级数学上册

11 分式方程的应用2——行程问题班级:________ 姓名:________一、行程类应用题例1.某列车平均提速vkm/h,用相同的时间,列车提速前行驶150km,提速后比提速前多行驶50km,提速前列车的平均速度为多少?(用含v的式子表示)练习1.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快,结果于下午4时到达,求原计划行军的速度.练习2.一队学生去校外参观,在他们出发后30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍行进速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?例2.一轮船往返于A、B两地之间,顺水比逆水快1小时到达.已知A、B两地相距80千米,水流速度是2千米/小时,求轮船在静水中的速度.例3.刘峰和李明相约周末去野生动物园游玩,根据他们的谈话内容,求李明乘公交车、刘峰骑自行车每小时各行多少千米?练习3.两个小组攀登一座450m高的山,第二组的攀登速度是第一组的a倍.(1)若两个小组同时开始攀登,当a=1.2时,第二组比第一组早15min到达顶峰,求两个小组的攀登速度;(2)元旦假期这两个小组去攀登另一座hm高的山,第二组比第一组晚出发30min,结果两组同时到达顶峰,问第二组的平均攀登速度比第一组快多少?(用含a,h的代数式表示)例4:朋友们约着一起开着2辆车自驾去黄山玩,其中面包车为领队,小轿车车紧随其后,他们同时出发,当面包车车行驶了200公里时,发现小轿车车只行驶了180公里。

(1)若面包车的行驶速度比小轿车快10km/h,请问面包车,小轿车的速度分别为多少km/h?(2)小轿车发现跟丢时,面包车行驶了200公里,小轿车行驶了180公里,小轿车为了追上面包车,他就马上提速,他们约定好在300公里的地方碰头,他们正好同时到达,请问小轿车提速多少km/h?(3)两车发现跟丢时,面包车行驶了200公里,小轿车行驶了180公里,小轿车为了追上面包车,他就马上提速,他们约定好在s公里的地方碰头,他们正好同时到达,请问小轿车提速多少km/h?练习4.初夏五月,小明和同学们相约去森林公园游玩.从公园入口处到景点只有一条长15km的观光道路.小明先从入口处出发匀速步行前往景点,1.5h后,迟到的另3位同学在入口处搭乘小型观光车(限载客3人)匀速驶往景点,结果反而比小明早到45min.已知小型观光车的速度是步行速度的4倍.(1)分别求出小型观光车和步行的速度.(2)如果小型观光车在某处让这3位同学下车步行前往景点(步行速度和小明相同),观光车立即返回接载正在步行的小明后直接驶往景点,并正好和这3位同学同时到达.求这样做可以使小明提前多长时间到达景点?(上下车及车辆调头时间忽略不计)二、工程问题中分式方程与一元一次方程的综合应用例5.一辆汽车开往距离出发地180km的目的地,出发后第1小时内按原计划的速度匀速行驶,1小时后按原来速度的1.5倍匀速行驶,结果比原计划提前40min到达目的地,(1)求前1小时行驶的速度;(2)汽车出发时油箱有油7.5升油,到达目的地时还剩4.3升油,若汽车提速后每小时耗油量比原来速度每小时耗油量多0.3升,问这辆汽车要回到出发地,是以原来速度省油还是以提速后的速度省油?练习5.初二(1)班组织同学乘大巴车前往爱国教育基地开展活动,基地离学校有60公里,队伍12:00从学校出发,张老师因有事情,12:15从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地,问:(1)大巴与小车的平均速度各是多少?(2)张老师追上大巴的地点到基地的路程有多远?三、工程问题中分式方程与不等式的综合应用例6.早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家里,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校,已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车的速度是步行速度的3倍.(1)求小明步行的速度(单位:米/分)(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?例7.甲,乙两车由A地同时出发驶往B地,A、B两地的距离为600千米,若乙车比甲车每小时多行驶20千米,则乙车到达B地时,甲车离B地100千米.(1)求甲、乙两车的速度;(2)乙车到达B地后,立即沿原路以原速返回A地,甲车到达B地后停留20分钟,然后沿原路先以原速返回,行驶一段路程后每小时提速80千米,若甲车不早于乙车回到A地,求甲车从B地返回A地提速前最少行驶多少千米.练习6.某种型号油电混合动力汽车,从A地到B地,只用燃油行驶,需用燃油76元;从A地到B地,只用电行驶,需用电26元,已知每行驶1千米,只用燃油的费用比只用电的费用多0.5元.(1)若只用电行驶,每行驶1千米的费用是多少元?(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?。

最新人教版数学八年级上册第十五章3 分式方程(第2课时)

最新人教版数学八年级上册第十五章3 分式方程(第2课时)
人教版 数学 八年级 上册
15.3 分式方程/
15.3 分式方程(第2课时)
导入新知
15.3 分式方程/
1.解分式方程的一般步骤.
(1) 在方程的两边都乘以最简公分母,约去分母,化成整式
方程.
(2)解这个整式方程.
(3) 把整式方程的根代入最简公分母,看结果是不是为零,
使最简公分母为零的根是原方程的增根,必须舍去.
∴m = –2.
链接中考
15.3 分式方程/
甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船
从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的
速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求
两船在静水中的速度可列方程为( A )


A.
=
+


解:设提速前列车的平均速度为x km/h,则提速前列车行驶
s
(x+v)
s km所用的时间为 h;提速后列车的平均速度为
km/h,
x
s+50
(s+50)km,所用时间为 x+v h. 根据行驶时间
提速后列车运行
的等量关系可以列出方程:
s s+50
x = x+v
探究新知
15.3 分式方程/
去分母得:s(x+v)=x (s+50)
s
所以,x = 2t 是原分式方程的解,且符合题意.
s
答:学生骑车的速度是 2t km/h.
探究新知
15.3 分式方程/
素养考点 3 利用分式方程的根求字母的值或取值范围
例3 关于x的方程
无解,求k的值.

人教版八年级数学上册15.3分式方程(教案)

在今后的教学中,我会根据今天的教学反思,调整教学策略,关注学生的个体差异,提高他们的学习效果。具体措施如下:
1.对于分母处理这个难点,我将设计更多有针对性的练习题,让学生多加练习,熟练掌握通分和约分的技巧。
2.在实践活动和小组讨论环节,我会尽量选择与生活密切相关的问题,激发学生的兴趣,引导他们积极参与。
3.加强课堂互动,鼓励学生提问和发表观点,及时解答他们的疑惑,提高课堂效果。
4.注重培养学生的细心和严谨,提醒他们在解题过程中关注细节,避免出错。
人教版八年级数学上册15.3分式方程(教案)
一、教学内容
人教版八年级数学上册15.3分式方程:
1.分式方程的定义与特点;
2.分式方程的求解方法,包括去分母、去括号、移项、合并同类项等;
3.应用问题:根据实际情境列出分式方程,并解决相关问题;
4.分式方程在实际生活中的应用实例。
二、核心素养目标
1.培养学生运用数学语言表达现实问题的能力,提高抽象概括和建模素养;
此外,在小组讨论环节,有的小组讨论不够深入,可能是因为我对主题的引导不够明确。在今后的教学中,我将加强对学生的引导,鼓励他们提出更多有见地的观点,提高讨论质量。
还有一个值得注意的问题是,部分学生在解题过程中容易忽视细节,导致最终答案出错。我需要在教学中强调细心和严谨的重要性,提醒学生注意审题和检查,培养他们良好的解题习惯。
-分式方程求解过程中的移项和合并同类项,尤其是对于含有多个变量的分式方程;
例:演示如何将含有多个变量的分式方程3/(2x-1) - 5/(x+3) = 2/(x-2)进行移项和合并同类项。
-将实际情境转化为分式方程的能力,尤其是对于复杂问题的抽象和建模;
例:针对实际问题(如两个不同速度的人同时出发,问多长时间后两人相距一定距离),指导学生如何建立分式方程。

八年级数学上册 分式方程的解法 人教版


解得: x=1
检验:当x=1时,(x-1)(x+2) =0 ,因此x=1不 是原方程的解.
所以,原分式方程无解
备选练习
解下列方程:
(1) 5 7 x x2
解:方程两边乘x(x-2),得: 5(x-2)=7x 解得: x=-5 检验:当x=-5时,x(x-2) ≠0
所以,原分式方程的解为 x=-5

30v 30v
方程①有何特点?
方程①中含有分式,并且分母中含有未知 数,像这样的方程叫做分式方程.
你还能举出一个分式方程的例子吗?
练习
判断下列各式哪些是分式方程?
(1)xy5; (2)x22y-z; (3)1;
5
3
x
(4) y 0; (5)12x5
x5
x
(1)(2)是整式方程; (3)是分式;
约去分母,得: 90(30-v)=60(30+ v)
解这个整式方程,得:v=6
所以江水的流速为6 km/h.
解分式方程的过程,实质上是将方程的两边 乘同一个整式,约去分母,把分式方程转化为整 式方程来解.所乘的整式通常取方程中出现的各分 式的最简公分母.
解方程:
1 10 x 5 x2 25
怎样才能拿得起?王国维《人间词话》中曾提出,古今之成大事业者,须经过三重境界。这三重境界体现的正是儒家精神,所以正是路径所在。 第一重境界是“昨夜西风凋碧树,独上高楼,望尽天涯路”。登上高楼,远眺天际,正是踌(chóu)躇(chú)满志,志存高远,高瞻远瞩,一腔抱负。人生,志向决定方向,格局决定高度;小溪只能入湖,大河则能入海。所以做事,要先立心中志向;成事,要先拓胸中格局。
如何才能放得下?唐代禅宗高僧青原行思曾提出参禅的三境界,那正是路径所在。 第一重境界是“看山是山,看水是水”。人之最初,比如年少之时,心思是简单的,看到什么就是什么,别人说什么就相信什么。这样看待世界当然是简单而粗糙的,所看到的往往只是表面。但同时,正是因为简单而不放在心上,于是不受其困扰,这就是放下的心境。只是还太脆弱,容易被现实击碎。 第二重境界是“看山不是山,看水不是水”。人随着年龄渐长,经历的世事渐多,就发现这个世界的问题越来越多、越来越复杂,经常是黑白颠倒、是非混淆,无理走遍天下、有理寸步难行,好人无好报、恶人活千年。这时人是激愤的,不平的,忧虑的,怀疑的,警惕的,复杂的。于是人不愿意再轻易地相信什么,容易变得争强好胜、与人比较、绞尽脑汁、机关算尽,永无满足的一天。大多数人都困在这一阶段,虽然纠结、挣扎、痛苦,这却恰恰是顿悟的契机。因为看到了,才能出来;经历了,才能明白。 第三重境界是“看山还是山,看水还是水”。那些保持住本心、做得到忍耐的人,等他看得够了,经得多了,悟得深了,终于有一天豁然顿悟,明白了万般只是自然,存在就有存在的合理性,生会走向灭,繁华会变成寂寞,那些以前认为好的坏的对的错的,都会在规律里走向其应有的结局,人间只是无常,没有一定。这个时候他就不会再与人计较,只是做自己,活在当下之中。任你红尘滚滚,我自清风朗月;面对世俗芜杂,我只一笑了之。这个时候,就是放下了。

人教版数学八年级上册15.3.2分式方程解应用题 课件

分式方程(3)
——分式方程解应用题
解分式方程
(1) 3 2
x x3 (2) x 2x 1
x1 3x3
注意验根哦
分式方程
去分母
整式方程
解整式方程
x =a
检验
x =a 最简公分母是
否为零?
步骤
x =a不是分式 方程的解
x =a是分式 方程的解
列一元一次方程解应用题的步骤是什么?
1.审题; 2.设未知数; 3.列方程; 4.解方程; 5.作答。
说明:应用分式方程解决 实际问题与一元一次方程 解决实际问题的步骤基本 相同,但要注意验根。
一验是否是原方程的解; 二验是否符合实际问题。
例4:从2004年5月起某列列车平均提速 v千米/
时。用相同的时间,列车提速前行驶 s千米,
提速后比提速前多行驶50千米,提速前列车的平 均速度是多少?
分析:这里的字母 v 和 s表示已知量,设提速前的平
1、(1)工程问题基本公式: 工作量=工时×工效,
(2)某项工程甲独做10天完成,则每天完成
1 10
,乙独做6天完成这项工程的
1
2 3
,则
需 9 天完成 ,每天完成 9

此时,不知具体的工作总量,常常设为“1”。
(3)某公司需要600台机器,甲工厂12天可完成,
则甲工厂每天生产 50 台,乙工厂每天比甲多生
分析:设甲每小时做 x个零件,则乙每小时做 (x 6)
个零件,由“甲90个所用的时间与乙做60个所有的时间
相等”可知等量关系为: 甲做90个所用的时间= 乙做60个所用的时间
列方程为: 90 60 x x6
2.某工程队需要在规定日期内完成。若甲队单 独做正好按时完成;若乙队单独做,超过规定日期 三天才能完成。现由甲、乙合作两天,余下工程由 乙队单独做,恰好按期完成,问规定日期是多少天?

人教版八年级数学上册 《分式方程》分式PPT

人教版八年级数学上册 《分式方程》分式PPT
科 目:数学 适用版本:人教版 适用范围:【教师教学】
分式方程
第一页,共四十七页。
知识回顾 1.观察,这是个什么方程? 一元一次方程
2.一元一次方程有什么特点?
①只含有一个未知数 ②未知数的次数为1
③各项都是整式
3.解一元一次方程的步骤有哪些?
解:
去分母
产生增根.
第三十页,共四十七页。
增根问题
k为何值时,分式方程
解:方程两边都乘以(x-1)(x+1),得 (x+1)+k(x+1)-x(x-1)=0 把 x=1代入上式,则k=-1 把 x=-1代入上式,k 值不存在 ∴当k =-1,原方程有增根.
所以m+3-1=0
所以m=-2
第二十七页,共四十七页。
归纳 已知方程有增根求参数的步骤: 1.把参数当作已知数,解出分式方程 2.再根据分母为0,得到一个关于参数的方程. 3.解出参数.
第二十八页,共四十七页。
增根问题
1.当m=0时,方程 x=6,不会
会产生增根吗?
2.当m=1时,方程
会产生增根吗?
去分母
整式方程
解整式方程
目标
x=a
检验
x=a是
分式方程的解
最简公分母不为0最简公分母为0 x=a不是 分式程的解
第十六页,共四十七页。
解分式方程
1.怎么解分式方程? 2.为什么解分式方程一定要检验?
第十七页,共四十七页。
练习
解下列方程:
第十八页,共四十七页。
练习 解下列方程:
第十九页,共四十七页。
检验:当x=1时,(x-1)(x+2)=0, 因此,x=1不是原分式方程的解.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档