自动控制原理第八章 线性系统的状态空间分析与综合习题及解答

合集下载

自动控制原理 课后习题答案(2020年7月整理).pdf

自动控制原理 课后习题答案(2020年7月整理).pdf

第1章控制系统概述【课后自测】1-1 试列举几个日常生活中的开环控制和闭环控制系统,说明它们的工作原理并比较开环控制和闭环控制的优缺点。

解:开环控制——半自动、全自动洗衣机的洗衣过程。

工作原理:被控制量为衣服的干净度。

洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。

系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。

闭环控制——卫生间蓄水箱的蓄水量控制系统和空调、冰箱的温度控制系统。

工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。

水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。

当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。

一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。

开环控制和闭环控制的优缺点如下表1-2 自动控制系统通常有哪些环节组成?各个环节分别的作用是什么?解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件和执行元件。

各个基本单元的功能如下:(1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。

(2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。

(3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。

(4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。

常用的比较元件有差动放大器、机械差动装置和电桥等。

(5)放大元件—当比较元件产生的偏差信号比较微弱不足以驱动执行元件动作时,可通过放大元件将微弱信号作线性放大。

自动控制原理课后习题与答案

自动控制原理课后习题与答案

目录1自动控制系统的基本概念1.1内容提要1.2习题与解答2自动控制系统的数学模型2.1内容提要2.2习题与解答3自动控制系统的时域分析3.1内容提要3.2习颗与他答4根轨迹法4.1内容提要4.2习题与解答5频率法5.1内容提要5.2习题与解答6控制系统的校正及综合6.1内容提要6.2习题与解答7非线性系统分析7.1内容提要7.2习题与解答8线性离散系统的理论基础8.1内容提要8.2习题与解答9状态空间法9.1内容提要9.2习题与解答附录拉普拉斯变换参考文献1自动控制系统的基本概念1. 1内容提要基本术语:反馈量,扰动量,输人量,输出量,被控对象;基本结构:开环,闭环,复合;基本类型:线性和非线性,连续和离散,程序控制与随动;基本要求:暂态,稳态,稳定性。

本章要解决的问题,是在自动控制系统的基本概念基础上,能够针对一个实际的控制系统,找出其被控对象、输人量、输出量,并分析其结构、类型和工作原理。

1.2习题与解答题1-1图P1-1所示,为一直流发电机电压白动控制系统示意图。

图中,1为发电机;2为减速器;3为执行电机;4为比例放大器;5为可调电位器。

(1)该系统有哪些环节组成,各起什么作用” (2)绘出系统的框图,说明当 负载电流变化时,系统如何保持发 电机的电压恒定 (3)该系统是有差系统还是无 差系统。

(4)系统中有哪些可能的扰动, 答(1)该系统由给定环节、比较环节、中间环节、执行结构、检测环节、 发电机等环节组成。

给定环节:电压源0U 。

用来设定直流发电机电压的给定值。

比较环节:本系统所实现的被控量与给定量进行比较,是通过给定电 压与反馈电压反极性相接加到比例放大器上实现的中间环节:比例放大器。

它的作用是将偏差信号放大,使其足以带动 执行机构工作。

该环节又称为放大环节执行机构:该环节由执行电机、减速器和可调电位器构成。

该环节的 作用是通过改变发电机励磁回路的电阻值,改变发电机的磁场,调节发 电机的输出电压被控对象:发电机。

自动控制原理第八章习题答案

自动控制原理第八章习题答案

第八章 非线性控制系统分析练习题及答案8-2 设一阶非线性系统的微分方程为3x x x+-= 试确定系统有几个平衡状态,分析平衡状态的稳定性,并画出系统的相轨迹。

解 令 x=0 得 -+=-=-+=x x x x x x x 321110()()()系统平衡状态x e =-+011,,其中:0=e x :稳定的平衡状态;1,1+-=e x :不稳定平衡状态。

计算列表,画出相轨迹如图解8-1所示。

可见:当x ()01<时,系统最终收敛到稳定的平衡状态;当x ()01>时,系统发散;1)0(-<x 时,x t ()→-∞; 1)0(>x 时,x t ()→∞。

注:系统为一阶,故其相轨迹只有一条,不可能在整个 ~xx 平面上任意分布。

8-3 试确定下列方程的奇点及其类型,并用等倾斜线法绘制相平面图。

(1) x xx ++=0 (5) ⎩⎨⎧+=+=2122112x x xx x x解 (1) 系统方程为x -2 -1 -13 0 131 2x-6 0 0.385 0 -0.385 0 6 x 11 2 01 0211图解8-1 系统相轨迹⎩⎨⎧<=-+I I >=++I )0(0:)0(0:x x x x x x x x令0x x ==,得平衡点:0e x =。

系统特征方程及特征根:21,221,21:10,()2:10, 1.618,0.618()s s s s s s I II ⎧++==-±⎪⎨⎪+-==-+⎩稳定的焦点鞍点(, ) , , x f x x x x dxdxxx x dx dx x x x x x==--=--==--=-+=ααβ111⎪⎪⎩⎪⎪⎨⎧<-=>--=)0(11:II )0(11:I x x βαβα计算列表用等倾斜线法绘制系统相平面图如图解8-2(a )所示。

图解8-2(a )系统相平面图(5) xx x 112=+ ① 2122x x x+= ② 由式①: x xx 211=- ③ 式③代入②: ( )( )x xx x x 111112-=+- 即 x x x 11120--= ④ 令 x x110== 得平衡点: x e =0 由式④得特征方程及特征根为 ⎩⎨⎧-==--414.0414.20122,12λs s (鞍点) 画相轨迹,由④式x xdxdx x x x 1111112===+α xx 112=-α 计算列表用等倾斜线法绘制系统相平面图如图解8-2(b )所示。

自动控制原理课后习题答案.docx

自动控制原理课后习题答案.docx

(西安电子科技大学出版社)习题2-1试列写题2-1图所示各无源网络的微分方程.M 0= 2.39VJ 11= 2.19X 10∙A ,试求在工作点(w 0, i 0}附近方=/(〃,的 规性化方程。

2-7设晶网管三相桥式全控整漉电路的怆入房为控制角α,输出r 为空战整流电压口,它们之间的 关系为 式中,U ⑷是整流电压的理想空竣(«•试推导其线性化方程式.2-8 ∙系统由如下方程祖组成,其中Xr(S)为输入,XKS)为输出,试绘制系统构造图,并求出闭 环传递函数。

2-9系统的微分方程组如下其中r 、K l . K- K 、、/、K 、、T 均为正常数,试建设系统构造图,并求系统的传递函数C(S)/R(s).图2-2图有双M 冷 ⑵(W <»U.之间的关系为i* =l0P(e""∕0.026-l),假设系统工作点在 2-6如题2∙6图所示电路,.极耳啦J4非钻盛曲F ,其电流L 和电压2-10试化简即2-10图所示的系统构造图.并求传递函数C(S)11R(S), K(S) C(S)/ C(S) R(S) 筑书规图所材 Gl C(S) G,卡G 5佛与函数 国S) C(S) G) 5 “七; Hl 弟统 £(S) M(S)2-16零初 设某 2-17 g (t) = 7-5e 6f . 咫2∙ 15图求系统 的传速函数, 始条件下的输出响试求该系统的传递 2-18系统的 W'> I 控制系统构造t f 1*1 2-16 W 系统构造图 R(S) ΛU) 2-15 E(S) C (Λ I I - L_rτ∏J ∙13图 系统G:" r ,(5) E(S)凤 F) R ⑸M ⑸松) ⅛4和脉冲响应函数, 单位脉冲响应为。

自动控制原理课后习题及答案

自动控制原理课后习题及答案

⾃动控制原理课后习题及答案第⼀章绪论1-1 试⽐较开环控制系统和闭环控制系统的优缺点.解答:1开环系统(1) 优点:结构简单,成本低,⼯作稳定。

⽤于系统输⼊信号及扰动作⽤能预先知道时,可得到满意的效果。

(2) 缺点:不能⾃动调节被控量的偏差。

因此系统元器件参数变化,外来未知扰动存在时,控制精度差。

2 闭环系统⑴优点:不管由于⼲扰或由于系统本⾝结构参数变化所引起的被控量偏离给定值,都会产⽣控制作⽤去清除此偏差,所以控制精度较⾼。

它是⼀种按偏差调节的控制系统。

在实际中应⽤⼴泛。

⑵缺点:主要缺点是被控量可能出现波动,严重时系统⽆法⼯作。

1-2 什么叫反馈为什么闭环控制系统常采⽤负反馈试举例说明之。

解答:将系统输出信号引回输⼊端并对系统产⽣控制作⽤的控制⽅式叫反馈。

闭环控制系统常采⽤负反馈。

由1-1中的描述的闭环系统的优点所证明。

例如,⼀个温度控制系统通过热电阻(或热电偶)检测出当前炉⼦的温度,再与温度值相⽐较,去控制加热系统,以达到设定值。

1-3 试判断下列微分⽅程所描述的系统属于何种类型(线性,⾮线性,定常,时变)(1)22()()()234()56()d y t dy t du t y t u t dt dt dt ++=+(2)()2()y t u t =+(3)()()2()4()dy t du t ty t u t dt dt +=+(4)()2()()sin dy t y t u t t dt ω+=(5)22()()()2()3()d y t dy t y t y t u t dt dt ++=(6)2()()2()dy t y t u t dt +=(7)()()2()35()du t y t u t u t dtdt =++?解答:(1)线性定常(2)⾮线性定常(3)线性时变(4)线性时变(5)⾮线性定常(6)⾮线性定常(7)线性定常1-4如图1-4是⽔位⾃动控制系统的⽰意图,图中Q1,Q2分别为进⽔流量和出⽔流量。

最新自动控制原理西安电子科技大学第三版课后答案 陕西科技大学自动控制原理考研真题优秀

最新自动控制原理西安电子科技大学第三版课后答案 陕西科技大学自动控制原理考研真题优秀

最新自动控制原理西安电子科技大学第三版课后答案陕西科技大学自动控制原理考研真题优秀自动控制原理西安电子科技大学第三版课后答案陕西科技大学自动控制原理考研真题篇一1)自动控制、自动控制系统的基本概念以及自动控制系统的三种基本控制方式;2)能分析某个自动控制系统的原理并绘制原理方框图;3)自动控制系统的分类以及对控制系统的基本要求。

2.控制系统的数学模型1)掌握控制系统的时域数学模型、控制系统的复域数学模型的建立方法及其相互转换;2)通过结构图的化简或梅逊增益公式求取系统的闭环传递函数、误差传递函数及干扰信号作用下的闭环传递函数等,了解绘制系统结构图的方法。

3.线性系统的时域分析法1)掌握系统性能指标的定义;2)掌握系统稳定性概念、劳斯稳定判据及其应用;3)掌握一阶、二阶系统的动态性能分析,及动态性能指标的计算,掌握二阶系统性能的改善,了解高阶系统动态性能的分析方法;4)掌握稳态误差的定义及计算。

4.线性系统的根轨迹法1)掌握根轨迹的基本概念,根轨迹与系统性能的关系;2)掌握根轨迹绘制的基本法则,灵活应用基本法则绘制系统的根轨迹;3)利用根轨迹分析系统的性能;4)了解参数根轨迹和零度根轨迹的概念及绘制方法。

5.线性系统的频域分析法1)理解频率特性的定义及其几何表示法;2)典型环节的频率特性,掌握系统开环对数频率特性图、幅相曲线图的绘制;3)掌握利用奈奎斯特稳定判据、对数频率稳定性判据判断闭环系统的稳定性;4)掌握相角稳定裕量和幅值稳定裕量的定义及其求取方法,及它们与系统性能的关系;5)开环频率特性与闭环系统性能之间的关系,了解闭环频率特性。

6.线性系统的校正方法1)正确理解控制系统校正的基本概念,校正方式,常用校正装置的特性;2)掌握串联超前校正、滞后校正、滞后-超前校正网络的校正原理及设计方法;3)将性能指标转换为希望开环对数幅频特性,根据希望特性确定最小相位系统的校正装置;4)了解局部反馈校正、复合校正的基本思路与方法。

《自动控制原理》---丁红主编---第八章习题答案

8-1已知非线性环节的特性如图8.1a 所示,试计算该环节的描述函数。

答:方法一:由图8.1a 所示,,0...............0...............⎩⎨⎧<->+=x A Kx x A Kx y 令代入则可以得到, 因为非线性特性为奇函数,所以=0,A 1=,B 1==在此处键入公式。

可以得到B 1=KX+4,所以该非线性环节的描述函数为 。

方法二:图8.1a 所示的非线性特性可以看作是图8.1b ,图8.1c 叠加而成的。

图8.1b 对应的非线性环节的描述函数为。

图8.1c 对应的为理想继电器非线性,其描述函数为。

所以,图8.1a 对应的飞线性特性描述函数为。

8.2.试绘制0=++x x x &&&非线性系统的相平面图。

答:y 0 -a a x k (a ) y 0 xk (b ) y(c )0 -aa x由题意,此方程可以改写为:,开关线为x=0。

当x>0时,相轨迹方程对应的特征方程为+λ+1=0,,由可以得到.故奇点为稳定的焦点。

当x<0时,相轨迹方程对应的特征方程为+λ-1=0,,由可以得到此时的奇点为(0,0),奇点为鞍点,推导等倾线方程。

令=α,可以得到等倾线方程为,令等倾线的斜率为k ,即可以得到,得到,列写表格如下表所示。

K -3 -2 -10 1 2 3 +∞,8.3.系统方框图如图8-29所示,其中K>0,T>0。

当非线性元件N分别为理想继电特性;死区继电特性;滞环继电特性;带死区和滞环的继电特性,在cc&-相平面上绘制相平面图。

8-29系统方框图(1)具有死区的三位置继电特性线性部分的微分方程为当继电特性为具有死区的三位置继电特性时,上式可以写成分段微分方程为:C(t)r = 0- )1(+TssKN(e)e)开关线为,两条开关将相平面划分为三个线性区域,下面分区绘制相轨迹在区域,相轨迹方程为:类似于具有饱和特性的非线性控制系统时的讨论,像平面与该区域无奇点,相轨迹均渐进于的直线。

自动控制原理第八章线性系统的状态空间分析与综合习题及解答

第八章 线性系统的状态空间分析与综合习题及解答8-1 已知电枢控制的直流伺服电机的微分方程组及传递函数 b aaa a a E dtdi L i R U ++=+ ⑴设状态变量m m x θ=1,m x θ =2,θ =3x 及输出量m y θ=,试建立其动态方程; ⑵设状态变量m m a x x i x θθ ===321,,及 my θ=,试建立其动态方程。

解:(1)由题意可知: ⎪⎪⎩⎪⎪⎨⎧=======123121xy xx x x x m m mmθθθθ ,由已知 ⎪⎪⎩⎪⎪⎨⎧+===++=m m m m m a m mmb ba a a a a f J M i C M K E E i L i R U θθθ可推导出 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=++-+-===12333221x y U J L C x J L C K f R x J L R J L f x x x x x a ma mm a m b m a m a a m a m 由上式,可列动态方程如下=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-+-m a a m m a m a m b m a J L R J f L J L C K f R 0100010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x +⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡m a m J L C 00a U y =[]001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x(2)由题意可知:,1a i x =mm m y x x θθθ===,,32可推导出 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==-=-====+--=+--==23133231111x y x J f x J C J f i J C x x x U L x L K x L R U L L K i L R i x m m m m m m m m a m m m m a aa b a a a a m a b a a a aθθθθθ可列动态方程如下由 ⎪⎩⎪⎨⎧===mm m x x x θθθ 321和 ⎪⎩⎪⎨⎧===mm a x x i x θθ 321得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-======3133221x J f x J C J f i J C x x x x x m m m m m m m a m m m m m θθθθ 由上式可得变换矩阵为 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-=m m mm J f J C T 0100018-2 设系统微分方程为 u y y yy 66116=+++ 。

胡寿松《自动控制原理》课后习题及详解(线性系统的状态空间分析与综合)【圣才出品】

与题中给出的 G s 表达式对比可得: a 5,b 5,c 5
则系统约当型状态方程为
9-8 已知矩阵
试求 A 的特征方程、特征值、特征向量,并求出变换矩阵将 A 对角化。 解:A 的特征方程为 则 A 的特征值为 特征向量为
7 / 46
圣才电子书

使 A 对角化矩阵为
9 / 46
圣才电子书 十万种考研考证电子书、题库视频学习平台

9-12 已知线性系统状态转移矩阵
试求该系统的状态阵 A 。
解:该系统的状态阵 A 为
9-13 已知系统状态方程 试求系统传递函数 G(s)。
解:由式 G s c sI A1 b 可得系统传递函数为
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 9 章 线性系统的状态空间分析与综合 9-1 已知电枢控制的直流伺服电机的微分方程组及传递函数为
(1)设状态变量
输出量 y=θm,试建立其动态方程;
(2)设状态变量
试建立其动态方程;
确定两组状态变量间的变换矩阵 T。
6S 4S
8 3
1
2S 5 S2 4S
3
1
3 2
1 1 S 1 2
1 S 3
其可控标准型为
由对偶原理知其可观标准型为
对角型为ቤተ መጻሕፍቲ ባይዱ
9-7 已知系统传递函数
6 / 46
圣才电子书 十万种考研考证电子书、题库视频学习平台

试求约当型(A 为约当阵)动态方程。 解:设传递函数分解为部分分式
解:由系统结构图可知
图 9-3 系统结构图
整理得系统动态方程为
变换形式可得系统动态方程为
4 / 46
圣才电子书 十万种考研考证电子书、题库视频学习平台

胡寿松《自动控制原理》笔记和课后习题(含考研真题)详解(线性系统的状态空间分析与综合)【圣才】

2.状态空间的基本概念 (1)状态:系统在时间域中的行为或运动信息的集合。 (2)状态变量:能够完全表征系统运动状态的一组独立的变量,常用符号 x1(t),x2 (t),…,xn(t)表示。 (3)状态向量:由 n 个用来描述系统状态的状态变量 x1(t),x2(t),…,xn(t)组 成的向量 x(t)称为 n 维状态向量,表示为 x(t)=[x1(t),x2(t),…,xn(t)]T。 (4)状态空间:以 n 个状态变量为基底所组成的 n 维空间。 (5)状态轨迹:系统状态在状态空间中随时间变化而形成的轨迹,又称状态轨迹。 (6)线性系统的状态空间表达式:又称为动态方程。
具有非正(负或零)实部,且具有零实部的特征值为 A 的最小多项式单根。
(2)系统的唯一平衡状态 xe=0 是渐近稳定的充分必要条件:A 的所有特征根均具有
3.线性定常连续系统状态方程的解 (1)齐次方程求解方法:幂级数法;拉普拉斯变换法。 (2)非齐次方程求解方法:积分法;拉普拉斯变换法。
4.传递函数矩阵 表达式:G(s)=C(sI-A)-1B+D
二、线性系统的可控性与可观测性 1.可控性 如果系统的每一个状态变量的运动都可由输入来影响和控制,而由任意的始点达到原点, 则该系统是完全可控系统,简称为系统可控。 (1)可控标准形
5 / 75
圣才电子书 十万种考研考证电子书、题库视频学习平台

的任意初始态 x0 出发的运动轨迹 x(t;x0,t0),在 t→∞都满足:||x(t;x0,t0)-xe||≤ε,
t≥t0,则称 xe 是李雅普诺夫意义下稳定的。
(3)渐近稳定
系统不仅满足李氏意义下的稳定,且
(2)可观测性判据
3 / 75
圣才电子书 十万种考研考证电子书、题库视频学习平台
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

判断 是否是状态转移矩阵。若是,则确定系统的状态阵A;如果不是,请说明理由。
解:转移矩阵应满足:
假设 , 为转移矩阵则
A1=
A2=

A1 =
A2 = = = A2
所以 不是转移矩阵, 是转移矩阵,其状态阵为 。
8-10试求下列状态方程的解 的解
解:由题意可得:
8-11已知系统状态方程为 ,初始条件为 。试求系统在单位阶跃输入作用下的响应。
解:
此题为求非奇次状态方程的解,对于非奇次状态方程。
8-12已知差分方程 ,并且y(0)=0,y(1)=1,
试列写可控标准型离散动态方程,并求出 时的系统响应。
解:由差分方程可得离散动态方程如下:
8-13已知连续系统的动态方程为 设采样周期 ,试求离散化动态方程。
解:
= =
8-14试用李雅普诺夫第二法判断 平衡状态的稳定性。
由结构图可得
由上述三式,可列动态方程如下:
状态变量图如下:
8-4已知系统传递函数为 ,试求可控标准型,可观测标准型,对角型动态方程,并画出状态变量图。
解:
(1)可控标准型
(2)可观测标准型
(3)
由上式可得对角型
8-5已知系统传递函数 ,试求约当型动态方程,并画出状态变量图。
解:
由上式,可得约当型动态方程
8-6已知双输入—双输出系统状态方程和输出方程分别为
写出矩阵形式的动态方程,并画出状态变量图
解:由题中给定方程可列写出动态方程
状态变量图如下
8-7已知系统动态程为 ,试求传递函数G(s)
解:
= =
8-8已知系统矩阵A= ,至少用两种方法求状态转移矩阵。
解:
(1)级数法:
+
=
=
(2)拉氏变换法
8-9已知系统 ,
解:能。
上式无零极点对消,因此可控,可任意配置极点。
用可控标准型实现:
其中:
为使传递函数变为 ,需配置极点,使得
令:
解得:
配置极点后出现零极点对消,系统不可观。但传递函数只描述外部特性,故可达到目的。
8-31设系统状态方程为:
试判别系统可控性和可观测性;求输出至输入的反馈矩阵,使闭环极点位于-0.57, ,并画出状态变量图。
8-16设线性定常离散系统状态方程为, 试求使系统渐近稳定的k值范围。
解:令

解得:
若要满足题意,需令 。因此,渐近稳定的条件为: 。
8-17试判断下列系统的状态可控性。
(1)
(2)
(3)
(4)
(5)
(6)
解:
(1)
该系统不可控
(2)
该系统不可控。
(3)
该系统可控。
(4)
该系统不可控。
(5)
解:
矩阵不满秩,该系统不可控。
第八章 线性系统的状态空间分析与综合
习题及解答
8-1已知电枢控制的直流伺服电机的微分方程组及传递函数
+
⑴设状态变量 , , 及输出量 ,试建立其动态方程;
⑵设状态变量 及 ,试建立其动态方程。
解:
(1)由题意可知: ,
由已知
可推导出
由上式,可列动态方程如下
+
y =
(2)由题意可知:
可推导出
可列动态方程如下


验证:
验证完毕。
故可控标准型实现对应的 阵为:
8-25已知系统传递函数为 ,试写出系统可控、不可观测,可观测,不可控,不可控、不可观测的动态方程。
解:
传递函数有零极点对消,因此不可控或不可观。
可控、不可观方程:
可观测、不可控方程:
不可控、不可观测方程:
8-26已知系统动态方程各矩阵为:
试求可控子系统与不可控子系统的动态方程。
(6)
解:
矩阵不满秩,该系统不可控。
8-18设系统状态方程为 ,并设系统状态可控,试求 。
解:
令 时,即可满足可控性条件。
8-19设系统状态方程为 ,并设系统状态可控、可观测,
试求 值。
解:
采用可控标准型,不论为 何值,系统总可控。
在任意三阶实现情况下可控,则 。
8-20试判断下列系统的可观测性:
(1)

所以 中三行向量线性无关,因此该系统可控。
判断可观性:
=

解得 。
所以, 中三行向量线性无关,因此该系统可观测。
8-23已知矩阵 ,试求A的特征方程,特征值和特征向量,并求出变换矩阵,将A约当化。
解:
(1)
(2)
(3)
对角化变换矩阵
所以 可使 对角化
8-24将状态方程 化为可控标准型。
解:
所以, 可控,可化为可控标准型。
8-29设系统动态方程为 ,试设计全维状态观测器,使其极点位于 ,并画出状态变量图。
解:
可观,可设计全维状态观测器。
观测器系统阵:

解得:
8-30设系统传递函数为 ,判断能否利用状态反馈矩阵将传递函数变成 ,若有可能,求出一个满足的状态反馈阵 ,并画出状态变量图。
提示:状态反馈不改变传递函数的零点。
解:平衡点:
构造

=
=
判定 性质:
负定,因此平衡状态是大范围一致渐近稳定的
8-15已知系统状态方程为 ,当Q=I时,矩阵P的值;若选Q为正半定矩阵,求对应的P矩阵的值,并判断系统稳定性。
解:
令:
=
解得:
古氏行列式:
因此不定。

则 ,为负半定。
由等式 解得:
正半定。
判定系统稳定性:
三个特征值分别为: 。因此系统不稳定。
解:
所以,可控子系统为:
不可控子系统为:
8-27系统各矩阵同题8-26,试求可观测子系统与不可观测子系统的动态方程。
解:利用9-27的对偶关系实现:
可观子系统:
不可观子系统:
8-28设系统状态方程为 。说明可否用状态反馈任意配置闭环极点,若可以,求状态反馈矩阵,使闭环极点位于 ,并画出状态变量图。
解:
由 和

由上式可得变换矩阵为
8-2设系统微分方程为 。式中,u和y分别为系统输入和输出量。试列写可控标准型(即矩阵A为友矩阵)及可观测标准型(即矩阵A为友矩阵转置)状态空间表达式,并画出状态变量图。
解:由题意可得:
可控标准型
状态变量图如下:
由方程得可观测标准型
状态变量图如下:
8-3已知系统结构图如图8-29所示,其状态变量为 。试求动态方程,并画出状态变量图。
(2)
(3)
(4)
解:
(1)
该系统可观。
(2)
该系统可观。
(3)该形式为约当标准型,直接判定,该系统可观。
(4)该形式为约当标准型,直接判定,该系统不可观。
8-21试确定使系统 可观测的 。
解:
时,于是系统可观。
8-22已知系统动态方程各矩阵为

试用传递矩阵判断系统的可控性和可观测性。
解:
判断可控性:
解: =
,系统可控
,系统可观测。
令:
即:
解得:
8-32已知系统动态方程各矩阵为
试判别系统的可观测性;设计 维观测器,并使所有极点配置在 。
解:检查可观测性:
,可观测。设计 维降维观测器:
构造 阵,求 。
经 变换后系统方程为:
相关文档
最新文档