中考数学真题试题(含答案)(2021-2022学年)

合集下载

2021年江西省中考数学真题(含答案)

2021年江西省中考数学真题(含答案)

江西省2021年中考数学试卷及答案一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.-2的相反数是()A.2B.-2C.21D.21-解:解析:考点:实数,相反数的概念,答案:A 2.如图,几何体的主视图()A BC D解析:考点:三视图,答案:C3.计算a a a 11-+的结果为()A.1B.-1C.aa 2+ D.aa 2-解析:考点:分式的加减运算,答案:A4.如图是2020年中国新能源汽车购买用户地区分布图由图可知下列说法错误的是()A.一线城市购买新能源汽车的用户最多B.二线城市购买新能源汽车用户达37%C.三四线城市购买新能源汽车用户达到11万D.四线城市以下购买新能源汽车用户最少解析:考点:扇形统计图,答案:C5.在同一平面直角坐标中,二次函数2y ax =与一次函数y bx c =+的图象如图所示,则二次函数2y ax bx c =++的图象可能是()【解析】由y=ax ²的图象开口向上,可得a>0,再由y=bx+c 的图象经过第一、三、四象限,可得b>0,c<0.所以y=ax ²+bx+c 中的a>0,b>0,c<0,很容易推出正确选项是D.解:D6.如图是用七巧板拼接成的一个轴对称图形(忽略拼接线),小亮改变①的位置,将①分别摆放在图中左,下,右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为()A.2B.3C.4D.5故答案为:B二、填空题(本大题有6小题,每小题3分,共18分)7.国务院第七次全国人口普查领导小组办公室5月11日发布,江西人口数约为45100000人,将45100000用科学记法表示为【解析】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.解:45100000=4.51×107.故答案为:4.51×107.8.因式分解:224x y -=【解析】本题考查了用平方差公式法分解因式,熟记平方差公式是解题的关键.故答案为:(x+2y)(x-2y).9.已知1x ,2x 是一元二次方程2430x x -+=的两根,则1212x x x x +-=【解析】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系.解:由题意可知:124x x +=,123x x = ,∴1212431x x x x +-=-= .故答案为:1.10.下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是【解析】根据题意可知,这些数字组成的三角形是等腰三角形,两腰上的数都是1,从第3行开始,中间的每一个数都等于它肩上两个数字之和.∴第四行空缺的数字=1+2=3.故答案为:3.11.如图,将□ABCD 沿对角线AC 翻折,点B 落在点E 处,CE 交AD 于点F,若∠B=80°,∠ACE=2∠ECD,FC=a,FD=b,则□ABCD 的周长为.【解答】解:∵四边形ABCD 是平行四边形∴∠B =∠D =80°,∠BCD =100°,由翻折可知∠ACE =∠ACB 又∵∠ACE =2∠ECD,∴5∠ECD=∠BCD=100°∴∠ECD=20°,∠ACE =∠ACB=∠DAC=40°,∠DFC =∠D =80°∴AF=FC=DC=a,∵FD =b,∴AD=a+b□ABCD 的周长=2(AD+DC )=2(a+b+a )=4a+2b 故答案为:4a+2b .12.如图,在边长为的正六边形ABCDEF 中,连接BE,CF,其中点M,N 分别为BE 和CF 上的动点.若以M ,N ,D 为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为.NMFEDCBA (第11题图)(第12题图)故答案为:9或10或18.9<10<10.39≈63三、(本大题共3小题,每小题8分,共24分)13.(1)计算:(-1)2-(π-2021)0+|-12|;(2)如图,在△ABC 中,∠A=400,∠ABC=80°,BE 平分∠ABC 交AC 于点E,ED⊥AB 于点D,求证:AD=BD.【答案】(1)解:原式=2111+-=21【评析】本题考查实数运算,具体涵盖平方,零指数幂,绝对值,有理数加减运算.依据概念或意义算出每一部分的值是关键.(2)证明:∵BE 平分∠ABC ,∠ABC =80°,∴∠EBA =︒=︒⨯=∠40802121ABC .又∵∠A =40°,∴∠EBA =∠A ,∴AE =BE ,又∵ED ⊥AB ,∴AD =BD .【评析】本题考查几何简单推理,具体涵盖角的平分线的定义,等腰三角形的判定,及等腰三角形的三线合一的性质.能依据图形及数量对应几何性质与判定定理是关键.14.解不等式组:⎪⎩⎪⎨⎧+≤-.1-31,132>x x 并将解集在数轴上表示出来.【答案】解不等式①得:2≤x ;解不等式②得:4->x ;∴该不等式组的解集是:24≤<-x .在数轴上表示如下:【评析】本题考查解一元一次不等式组的基本步骤,以及在数轴上表示不等式的解集,正确解不等式是解题关键.15.为庆祝建党100周年,某大学组织志愿者周末到社区进行党史学习宣讲,决定从A,B,C,D 四名志愿者中通过抽签的方式确定两名志愿者参加.抽签规则:将四名志愿者的名字分别写在在四张完全相同不透明卡片的正面,把四张卡片背面朝上,洗均匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.(1)“A 志愿者被选中”是事件(填“随机”或“不可能”或“必然”);(2)请你用列表法或画树状图表示出这次抽签所有可能的结果,并求出A,B 两名志愿者被选中的概率.【答案】(1)随机(2)解:第一张AB CD第二张B C D A C D A B D A B C由表格(或树状图)可知一共由12种等可能的结果,其中“A,B 两名志愿者被选中”(记为事件E)包含其中两种结果,故P(E)=61122=.【评析】本题考查了事件的分类,列举法(包括列表法与树状图法)求概率.利用列表法或树状图法展示所有等可能的结果n,再从中选出符合相应事件的结果数目m,然后利用概率公式计算相应事件的概率.16.已知正方形ABCD 的边长为4个单位长度,点E 是CD 的中点,请仅用无刻度直尺按下列要求作图(保留作图痕迹).(1)在图1中,将直线AC 绕着正方形ABCD 的中心顺时针旋转45°;(2)在图2中,将直线AC 向上平移1个单位长度.012345-1-2-3-4-5【答案】解析:作图题一是要考虑作图的顺序,二是要考虑作图的依据.对于题(1),我们首先要确定正方形ABCD的中心所在位置(即正方形两对角线的交点O,这容易作出);其次想到旋转后的直线必然与AD、BC两边中点所在的直线重合,但这两边的中点我们无法直接得到,点E与正方形中心O的连线必平分线段AB,因此就得到矩形ADEF,再作矩形ADEF的两条对角线,得交点P,显然直线PO就是所求作直线;对于题(2),在(1)的基础上我们知道OP=1,我们只要找到CE的中点Q,则直线PQ即为所求直线.题(1)作图思路2:题(2)作法2:17.如图,正比例函数y=x的图像与反比例函数的图像交于点A(1,a),在△ABC中,∠ACB=90°,CA=CB,点C坐标为(-2,0).(1)求k的值;(2)求AB所在直线的解析式.【答案】(1)∵点A ()a ,1在正比例函数x y =的图象上,∴1=a ,即A ()11,又∵点A ()11,在反比例函数xky =的图象上,∴111=⨯=k ;(2)如图,分别过点A、B 做,、轴于点轴,交轴,E D BE AD x x x ⊥⊥则==BEC ADC ∠∠︒90,∴=21∠+∠︒90,∵=ACB ∠︒90,∴=23∠+∠︒90,又∵BC=AC∴BEC ∆≌CDA ∆∵()02C ,-,()11A ,,∴=3,CD 1AD =,∴=3,=CD BE 1AD EC ==,∴()33B ,-设AB 所在直线的解析式为b ax y +=,()()分别代入上式,得:,和,将点33B 11A -,解得∴AB 所在直线的解析式为2321+-=x y .四、(本大题共3小题,每小题8分,共24分)18.甲、乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件.(1)求这种商品的单价;(2)甲、乙两人第二次再去采购该商品时,单价比上次少了20元/件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是元/件,乙两次购买这种商品的平均单价是元/件.(3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(2)的计算结果,建议按相同加油更合算(填“金额”、“油量”).【答案】(1)设这种商品的单价为x 元/件,依题意得:1024003000=-xx 解得:x=60经检验,解得:x=60是原方程的解.(2)60-20=40(元/件)甲的平均单价:2400÷40=60(件)(2400+2400)÷(40+60)=48(元/件)乙的平均单价:3000÷60=50(件),50×40=2000元(3000+2000)÷(50+50)=50(元/件)(3)由(2)可知,按相同金额加油更合算19.为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75g 的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质相近.质检员分别从两厂的产品中抽样调查了20只鸡腿,它们的质最(单位∶g)如下∶甲厂∶76,74,74,76.73,76,76,77,78,74,76,70,76.76,73,70,77,79,78,71;乙厂∶75,76,77,77,78,77,76,71,74,75,79,71,72,74,73,74,70,79,75,77;甲厂鸡腿质量频数统计图分析上述数据得下表:分析上述数据得下表:请你根据图表中的信息完成下列问题∶((1)a=,b=(2)补全频数分布直方图∶(3)如果只考虑出口鸡腿规格,请结合表中的某个统计量,为外贸公司选购鸡腿提供参考建议∶(4)某外贸公司从甲厂采购了20000只鸡腿.并将质量(单位∶g)在71≤x<77的鸡腿加工成优等品,请估计可以加工成优等品的鸡腿有多少只?【答案】(1)由甲厂鸡腿质量频数统计表中数据可得:1- (0.10.150.25)0.5a =++=由甲厂鸡腿质量统计表中数据可得:76出现次数最多,有7次,质量x (g)频数频率68≤x <7120.171≤x <7430.1574≤x <7710a 77≤x <8050.25合计201∴甲厂的众数为76;故0.5,76a b ==(2)由乙厂鸡腿质量频数直方图中数据可得,7477x ≤<中出现的次数为:20(147)8-++=(3)因出口规格为75g ,甲厂和乙厂的平均数都为75g ,故从平均数角度选择甲厂和乙厂都一样。

2022年吉林长春中考数学试题【含答案】

2022年吉林长春中考数学试题【含答案】

2022年吉林长春中考数学试题一、选择题(本大题共8小题,每小题3分,共24分)1. 图是由5个相同的小正方体组合而成的立体图形,其主视图是( )A. B. C. D.A【分析】根据三视图的概念,从正面看到的图形就是主视图,再根据小正方体的个数和排列进行作答即可.【详解】正面看,其主视图为:故选:A .此题主要考查了简单组合体的三视图,俯视图是从上面看所得到的图形,主视图是从正面看所得到的图形,左视图时从左面看所得到的图形,熟练掌握知识点是解题的关键.2. 长春轨道客车股份有限公司制造的新型奥运版复兴号智能动车组,车头采用鹰隼形的设计,能让性能大幅提升,一列该动车组一年运行下来可节省约度电,将数据用科学记数法表示为( )A. B. C. D.51810⨯61.810⨯71.810⨯70.1810⨯B【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:=1.8×106,故选:B .此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3. 不等式的解集是( )23x +>A. B. C. D. 1x <5x <1x >5x >C【分析】直接移项解一元一次不等式即可.【详解】,23x +>,32x >-,1x >故选:C .本题考查了解一元一次不等式,熟练掌握解一元一次不等式的步骤是解题的关键.4. 实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( )A. B. C. D. 0a >a b <10b -<0ab >B【分析】观察数轴得:,再逐项判断即可求解.2123a b -<<-<<<【详解】解:观察数轴得:,故A 错误,不符合题意;B 正确,符2123a b -<<-<<<合题意;∴,故C 错误,不符合题意;10b ->∴,故D 错误,不符合题意;0ab <故选:B本题主要考查了实数与数轴,实数的大小比较,利用数形结合思想解答是解题的关键.5. 如图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A ,变幅索的底端记为点B ,垂直地面,垂足为点D ,,垂足AD BC AD ⊥为点C .设,下列关系式正确的是( )ABC α∠=A.B.C.D.sin AB BCα=sin BC ABα=sin AB ACα=sin AC ABα=D【分析】根据正弦三角函数的定义判断即可.【详解】∵BC ⊥AC ,∴△ABC 是直角三角形,∵∠ABC =α,∴,sin AC AB α=故选:D .本题考查了正弦三角函数的定义.在直角三角形中任意锐角∠A 的对边与斜边之比叫做∠A 的正弦,记作sin∠A .掌握正弦三角函数的定义是解答本题的关键.6. 如图,四边形是的内接四边形.若,则的度数为( ABCD O 121BCD ∠=︒BOD ∠)A. 138°B. 121°C. 118°D. 112°C【分析】由圆内接四边形的性质得,再由圆周定理可59A ∠=︒得.2118BOD A ∠=∠=︒【详解】解:∵四边形ABCD 内接于圆O ,∴ 180A C ∠+∠=︒∵ 121BCD ∠=︒∴59A ∠=︒∴2118BOD A ∠=∠=︒故选:C本题主要考查了圆内接四边形的性质和圆周角定理,熟练掌握相关性质和定理是解答本题的关键7. 如图,在中,根据尺规作图痕迹,下列说法不一定正确的是( )ABCA. B.AF BF=12AE AC =C. D. 90DBF DFB ∠+∠=︒BAF EBC∠=∠B【分析】根据尺规作图痕迹,可得DF 垂直平分AB ,BE 是的角平分线,根据垂直平ABC ∠分线的性质和角平分线的定义,直角三角形两锐角互余,等边对等角的性质进行判断即可.【详解】根据尺规作图痕迹,可得DF 垂直平分AB ,BE 是的角平分线,ABC ∠,,90,AF BF BDF ABF CBE ∴=∠=︒∠=∠,,90ABF BAF DBF DFB ∴∠=∠∠+∠=︒,BAF EBC ∴∠=∠综上,正确的是A 、C 、D 选项,故选:B .本题考查了垂直平分线和角平分线的作图,垂直平分线的性质,角平分线的定义,直角三角形两锐角互余,等边对等角的性质,熟练掌握知识点是解题的关键.8. 如图,在平面直角坐标系中,点P 在反比例函数的图象上,其纵坐ky x =0k >0x >标为2,过点P 作//轴,交x 轴于点Q ,将线段绕点Q 顺时针旋转60°得到线段PQ y QP .若点M 也在该反比例函数的图象上,则k 的值为( )QMC.D. 4C【分析】作MN ⊥x 轴交于点N ,分别表示出ON 、MN ,利用k 值的几何意义列式即可求出结果.【详解】解:作MN ⊥x 轴交于点N ,如图所示,∵P 点纵坐标为:2,∴P 点坐标表示为:(,2),PQ =2,2k由旋转可知:QM =PQ =2,∠PQM =60°,∴∠MQN =30°,∴MN=,QN 112QM =∴,ON MN k = 即:,2kk =解得:k =故选:C .本题主要考查的是k 的几何意义,表示出对应线段是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)9. 分解因式:_______.23m m +=(3)m m +【分析】原式提取公因式m 即可得到结果.【详解】解:23(3)m m m m +=+故.(3)m m +本题主要考查了提公因式分解因式,正确找出公因式是解答本题的关键.10. 若关于x 的方程有两个相等的实数根,则实数c 的值为_______.20x x c ++=##0.2514【分析】根据方程有两个相等的实数根,可得,计算即可.20x x c ++=0∆=【详解】关于x 的方程有两个相等的实数根,20x x c ++=,21410c ∴∆=-⨯=解得,14c =故.14本题考查了一元二次方程根的判别式,即一元二次方程有两个不相等的实数根时,;有两个相等的实数根时,;没有实数根时,;熟练掌握知识点是解题0∆>0∆=∆<0的关键.11. 《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住,设店中共有x 间房,可求得x 的值为________.8【分析】设店中共有x 间房,根据“今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住”可列一元一次方程,求解即可.【详解】设店中共有x 间房,由题意得,,779(1)x x +=-解得,8x =所以,店中共有8间房,故8.本题考查了一元一次方程的应用,准确理解题意,找到等量关系是解题的关键.12. 将等腰直角三角板与量角器按如图所示的方式摆放,使三角板的直角顶点与量角器的中心O 重合,且两条直角边分别与量角器边缘所在的弧交于A 、B 两点.若厘米,则5OA =的长度为________厘米.(结果保留)ABπ##52π2.5π【分析】直接根据弧长公式进行计算即可.【详解】,90,5cm AOB OA ∠=︒= ,9055cm 1802AB ππ⨯⨯∴==故.52π本题考查了弧长公式,即,熟练掌握知识点是解题的关键.180n rl π=13. 跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形和等边三角形组合而成,它们重叠部分的图形为正六边形.若ABC DEF 厘米,则这个正六边形的周长为_________厘米.27AB =54【分析】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,再证明△FMN、△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形即可求解.【详解】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,如图,∵六边形MNGHPO是正六边形,∴∠GNM=∠NMO=120°,∴∠FNM=∠FNM=60°,∴△FMN是等边三角形,同理可证明△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形,∴MO=BM,NG=AN,OP=PD,GH=HE,∴NG+MN+MO=AN+MN+BM=AB,GH+PH+OP=HE+PH+PD=DE,∵等边△ABC≌等边△DEF,∴AB=DE,∵AB=27cm,∴DE=27cm,∴正六边形MNGHPO的周长为:NG+MN+MO+GH+PH+OP=AB+DE=54cm,故54.本题考查了正六边的性质、全等三角形的性质以及等边三角形的判定与性质等知识,掌握正六边的性质是解答本题的关键.14. 已知二次函数,当时,函数值y 的最小值为1,则a 的值为223y x x =--+12a x_______.1--1-【分析】先把函数解析式化为顶点式可得当时,y 随x 的增大而增大,当时,1x <-1x >-y 随x 的增大而减小,然后分两种情况讨论:若;若,即可求解.1a ≥-1a <-【详解】解:,()222314y x x x =--+=-++∴当时,y 随x 的增大而增大,当时,y 随x 的增大而减小,1x <-1x >-若,当时,y 随x 的增大而减小,1a ≥-12a x此时当时,函数值y 最小,最小值为,不合题意,12x =74若,当时,函数值y 最小,最小值为1,1a <-x a =∴,2231a a --+=解得:或;1a =--1-+综上所述,a 的值为1--故1-本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.三、解答题(本大题共10小题,共78分)15. 先化简,再求值:,其中.()()()221a a a a +-++4a=4a +【分析】根据平方差公式与单项式乘以单项式进行计算,然后将代入求值即可4a =求解.【详解】解:原式=224a a a-++4a=+当时,原式4a =-44=-=本题考查了整式的混合运算,实数的运算,代数式求值,正确的计算是解题的关键.16. 抛掷一枚质地均匀的普通硬币,仅有两种可能的结果:“出现正面”或“出现反面”.正面朝上记2分,反面朝上记1分.小明抛掷这枚硬币两次,用画树状图(或列表)的方法,求两次分数之和不大于3的概率.34【分析】采用列表法列举即可求解.【详解】根据题意列表如下:由表可知,总的可能结果有4种,两次之和不大于3的情况有3种,故所求概率为:3÷4=,34即两次分数之和不大于3的概率为.34本题考查了用列表法或者树状图法列举求解概率的知识,掌握用列表法或者树状图法列举求解概率是解答本题的关键.17. 为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?乙班每小时挖400千克的土豆【分析】设乙班每小时挖x 千克的土豆,则甲班每小时挖(100+x )千克的土豆,根据题意列出分式方程即可求解.【详解】设乙班每小时挖x 千克的土豆,则甲班每小时挖(100+x )千克的土豆,根据题意有:,15001200100x x =+解得:x =400,经检验,x =400是原方程的根,故乙班每小时挖400千克的土豆.本题考查了分式方程的应用,明确题意列出分式方程是解答本题的关键.18. 如图①、图②、图③均是的正方形网格,每个小正方形的边长均为1,其顶点称55⨯为格点,的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作ABC 图,保留作图痕迹.(1)网格中的形状是________;ABC (2)在图①中确定一点D ,连结、,使与全等:DB DC DBC △ABC (3)在图②中的边上确定一点E ,连结,使:ABC BC AE ABE CBA △∽△(4)在图③中的边上确定一点P ,在边BC 上确定一点Q ,连结,使ABC AB PQ ,且相似比为1:2.PBQ ABC △∽△(1)直角三角形(2)见解析(答案不唯一)(3)见解析 (4)翙解析【分析】(1)运用勾股定理分别计算出AB ,AC ,BC 的长,再运用勾股定理逆定理进行判断即可得到结论;(2)作出点A 关于BC 的对称点D ,连接BD ,CD 即可得出与全等:DBC △ABC (3)过点A 作AE⊥BC 于点E ,则可知:ABE CBA △∽△(4)作出以AB 为斜边的等腰直角三角形,作出斜边上的高,交AB 于点P ,交BC 于点Q ,则点P ,Q 即为所求.【小问1详解】∵222222224220,215,525AB AC BC =+==+===∴,222AB AC BC +=∴是直角三角形,ABC 故直角三角形;【小问2详解】如图,点D 即为所求作,使与全等:DBC △ABC【小问3详解】如图所示,点E 即为所作,且使:ABE CBA △∽△【小问4详解】如图,点P ,Q 即为所求,使得,且相似比为1:2.PBQ ABC △∽△本题主要考查了勾股定理,勾股定理逆定理,等腰直角三角形的性质,全等三角形的判定,相似三角形的判定,熟练掌握相关定理是解答本题的关键.19. 如图,在Rt 中,,.点D 是的中点,过点D 作ABC 90ABC ∠=︒AB BC <AC 交于点E .延长至点F ,使得,连接、、.DE AC ⊥BC ED DF DE =AE AF CF(1)求证:四边形是菱形;AECF(2)若,则的值为_______.14BE EC =tan BCF ∠(1)见解析 (2【分析】(1)根据对角线互相垂直平分的四边形是菱形即可得证;(2)设,则,根据菱形的性质可得,,勾股BE a =4EC a =4AE EC a ==AE FC ∥定理求得,根据,,即可求解.AB BCF BEA ∠=∠tan BCF ∠=tan AB BEA BE ∠=【小问1详解】证明:,,AD DC =DE DF =∴四边形是平行四边形,AECF ∵,DE AC ⊥四边形是菱形;∴AECF 【小问2详解】解:, 14BE EC =设,则,BE a =4EC a =四边形是菱形;AECF ,,4AE EC a ∴==AE FC ∥,∴BCF BEA ∠=∠在中,,RtABE △AB ===,∴BCF =tan AB BEA BE ∠===本题考查了菱形的判定与性质,勾股定理,求正切,掌握以上知识是解题的关键.20. 党的十八大以来,我国把科技自立自强作为国家发展的战略支撑,科技事业发生了历史性、整体性、格局性变化,成功跨入创新型国家的行列,专利项目多项指数显著攀升.如图是长春市2016年到2020年专利授权情况的统计图.根据以上信息回答下列问题:(1)长春市从2016年到2020年,专利授权量最多的是________年:(2)长春市从2016年到2020年,专利授权量年增长率的中位数是_______;(3)与2019年相比,2020年长春市专利授权量增加了_______件,专利授权量年增长率提高了_______个百分点;(注:1%为1个百分点)(4)根据统计图提供的信息,有下列说法,正确的画“√”,错误的画“×”.①因为2019年的专利授权量年增长率最低,所以2019年的专利授权量的增长量就最小.( )②与2018年相比,2019年的专利授权量年增长率虽然下降,但专利授权量仍然上升.这是因为专利授权量年增长率,所以只100%-=⨯当年专利授权量上一年专利授权量上一年专利授权量要专利授权量年增长率大于零,当年专利授权量就一定增加.( )③通过统计数据,可以看出长春市区域科技创新力呈上升趋势,为国家科技自立自强贡献吉林力量.( )(1)2020(2)18.1% (3)5479,30.2(4)①×,②√,③√【分析】(1)观察统计图可得专利授权量最多的是2020年,即可求解;(2)先把专利授权量年增长率从小到大排列,即可求解;(3)分别用2020年长春市专利授权量减去2019年长春市专利授权量,2020年专利授权量年增长率减去2019年专利授权量年增长率,即可求解;(4)①根据题意可得2017年的的专利授权量的增长量低于2019年的,可得①错误;②根据专利授权量年增长率,可得②正确;100%-=⨯当年专利授权量上一年专利授权量上一年专利授权量③观察统计图可得从2016年到2020年,每年的专利授权量都有所增加,可得③正确,即可求解.【小问1详解】解:根据题意得:从2016年到2020年,专利授权量最多的是2020年;故2020【小问2详解】解:把专利授权量年增长率从小到大排列为:15.8%,16.0%,18.1%,25.4%,46.0%,位于正中间的是18.1%,∴专利授权量年增长率的中位数是18.1%;故18.1%【小问3详解】解:与2019年相比,2020年长春市专利授权量增加了17373-11894=5479件;专利授权量年增长率提高了46.0%-15.8%=30.2%,专利授权量年增长率提高了30.2个百分点;故5479,30.2【小问4详解】解:①因为2017年的专利授权量的增长量为8190-7062=1128件;2019年的专利授权量的增长量11894-10268=1626件,所以2019年的专利授权量的增长量高于2017年的专利授权量的增长量,故①错误;故×②因为专利授权量年增长率,100%-=⨯当年专利授权量上一年专利授权量上一年专利授权量所以只要专利授权量年增长率大于零,当年专利授权量就一定增加,故②正确;故√根据题意得:从2016年到2020年,每年的专利授权量都有所增加,所以长春市区域科技创新力呈上升趋势,故③正确;故√本题主要考查了折线统计图和条形统计图,理解统计图中数据之间的关系是正确解答的关键.21. 己知A 、B 两地之间有一条长440千米的高速公路.甲、乙两车分别从A 、B 两地同时出发,沿此公路相向而行,甲车先以100千米/时的速度匀速行驶200千米后与乙车相遇,再以另一速度继续匀速行驶4小时到达B 地;乙车匀速行驶至A 地,两车到达各自的目的地后停止.两车距A 地的路程y (千米)与各自的行驶时间x (时)之间的函数关系如图所示.(1)_______,_______;m =n =(2)求两车相遇后,甲车距A 地的路程y 与x 之间的函数关系式;(3)当乙车到达A 地时,求甲车距A 地的路程.(1)2.6 (2)甲车距A 地的路程y 与x 之间的函数关系式6080y x =+(3)300千米【分析】(1)先根据甲乙两车相遇时甲车行驶的路程除以速度可求出m 的值,再用m 的值加4即可得n 的值;(2)由(1)得(2,200)和(6,440),再运用待定系数法求解即可;(3)先求出乙车的行驶速度,从而可求出行驶时间,代入函数关系式可得结论.【小问1详解】根据题意得,(时)2001002m =÷=(时)4246n m =+=+=故2.6;【小问2详解】由(1)得(2,200)和(6,440),设相遇后,甲车距A 地的路程y 与x 之间的函数关系式为y kx b =+则有:,22006440k b k b +=⎧⎨+=⎩解得, 6080k b =⎧⎨=⎩甲车距A 地的路程y 与x 之间的函数关系式6080y x =+【小问3详解】甲乙两车相遇时,乙车行驶的路程为440-200=240千米,∴乙车的速度为:240÷2=120(千米/时)∴乙车行完全程用时为:440÷120=(时)113∵1123>∴当时,千米,113x =1160803003y =⨯+=即:当乙车到达A 地时,甲车距A 地的路程为300千米本题主要考查了一次函数的应用,读懂图象是解答本题的关键.22. 【探索发现】在一次折纸活动中,小亮同学选用了常见的A 4纸,如图①,矩形为它的示意图.他查找了A 4纸的相关资料,根据资料显示得出图①中ABCD .他先将A 4纸沿过点A 的直线折叠,使点B 落在上,点B的对应点为点AD =AD E ,折痕为;再沿过点F 的直线折叠,使点C 落在上,点C 的对应点为点H ,折痕AF EF 为;然后连结,沿所在的直线再次折叠,发现点D 与点F 重合,进而猜想FG AG AG .ADG AFG △≌△【问题解决】(1)小亮对上面的猜想进行了证明,下面是部分证明过程:ADG AFG △≌△证明:四边形是矩形,ABCD ∴.90BAD B C D ∠=∠=∠=∠=︒由折叠可知,,.1452BAF BAD ∠=∠=︒BFA EFA ∠=∠∴.45EFA BFA ∠=∠=︒∴.AF AD ==请你补全余下的证明过程.【结论应用】(2)的度数为________度,的值为_________;DAG ∠FGAF(3)在图①的条件下,点P 在线段上,且,点Q 在线段上,连结、AF 12AP AB =AG FQ ,如图②,设,则的最小值为_________.(用含a 的代数式表示)PQ AB a =FQ PQ +(1)见解析 (2)22.5°1.-(3【分析】(1)根据折叠的性质可得AD =AF ,,由HL 可证明结论;90AFG D ∠=∠=︒(2)根据折叠的性质可得 证明是等腰直角三角形,122.5;2DAG DAF ∠=∠=︒GCF ∆可求出GF 的长,从而可得结论 ;(3)根据题意可知点F 与点D 关于AG 对称,连接PD ,则PD 为PQ +FQ 的最小值,过点P作PR ⊥AD ,求出PR =AR,求出DR ,根据勾腰定理可得结论.a【小问1详解】证明:四边形是矩形,ABCD ∴.90BAD B C D ∠=∠=∠=∠=︒由折叠可知,,.1452BAF BAD ∠=∠=︒BFA EFA ∠=∠∴.45EFA BFA ∠=∠=︒∴.AF AD ==由折叠得,,45CFG GFH ∠=∠=︒∴454590AFG AFE GFE ∠=∠+∠=︒+︒=︒∴90AFG D ∠=∠=︒又AD =AF ,AG =AG∴ADG AFG△≌△【小问2详解】由折叠得,∠,BAF EAF =∠又∠90BAF EAF ︒+∠=∴∠119045,22EAF BAE ︒︒=∠=⨯=由得,∠ADG AFG △≌△114522.5,22DAG FAG FAD ︒︒=∠=∠=⨯=∠90,AFG ADG ︒=∠=又∠45AFB ︒=∴∠45,GFC ︒=∴∠45,FGC ︒=∴.GC FC =设则,AB x=,,BF x AF AD BC ====∴1)FC BC BF x x =-=-=-∴(2GF x==∴ 1.GF AF==-【小问3详解】如图,连接,FD ∵DG FG=∴AG 是FD 的垂直平分线,即点F 与点D 关于AG 轴对称,连接PD 交AG 于点Q ,则PQ +FQ 的最小值为PD 的长;过点P 作交AD 于点R ,PR AD ⊥∵∠45DAF BAF ︒=∠=∴∠45.APR ︒=∴AR PR =又22222()24a a AR PR AP +===∴,AR PR ==∴DR AD AR a =-==在中,Rt DPR ∆222DP AR PR =+∴DP ===∴PQ FQ +本题主要考查了折叠的性质,全等三角形的判定与性质,最短路径问题,矩形的性质以及勾股定理等知识,正确作出辅助线构造直角三角形是解答本题的关键.23. 如图,在中,,,点M 为边的中点,动点P从ABCD 4AB =AD BD ==AB 点A 出发,沿折线B 运动,连结.作AD DB -PM 点A 关于直线的对称点,连结、.设点P 的运动时间为t 秒.PM A 'A P 'A M '(1)点D 到边的距离为__________;AB (2)用含t 的代数式表示线段的长;DP (3)连结,当线段最短时,求的面积;A D 'A D 'DPA '△(4)当M 、、C 三点共线时,直接写出t 的值.A '(1)3 (2)当0≤t ≤1时,;当1<t ≤2时,DP =; PD =(3)35(4)或232011【分析】(1)连接DM ,根据等腰三角形的性质可得DM ⊥AB ,再由勾股定理,即可求解;(2)分两种情况讨论:当0≤t ≤1时,点P 在AD 边上;当1<t ≤2时,点P 在BD 边上,即可求解;(3)过点P 作PE ⊥DM 于点E ,根据题意可得点A 的运动轨迹为以点M 为圆心,AM 长为半径的圆,可得到当点D 、A ′、M 三点共线时,线段最短,此时点P 在AD 上,再证明A D '△PDE ∽△ADM ,可得,从而得到,在33,22DE t PE t =-=-23A E DE A D t ''=-=-中,由勾股定理可得,即可求解;Rt A PE ' 25t =(4)分两种情况讨论:当点位于M 、C 之间时,此时点P 在AD 上;当点()位A 'A 'A ''于C M 的延长线上时,此时点P 在BD 上,即可求解.【小问1详解】解:如图,连接DM ,∵AB =4,,点M 为边的中点,AD BD ==AB ∴AM =BM =2,DM ⊥AB ,∴,3DM ==即点D 到边的距离为3;AB 故3【小问2详解】解:根据题意得:当0≤t ≤1时,点P 在AD 边上,;DP =当1<t ≤2时,点P 在BD 边上,;PD =综上所述,当0≤t ≤1时,;当1<t ≤2时,;DP =PD =【小问3详解】解:如图,过点P 作PE ⊥DM 于点E ,∵作点A 关于直线的对称点,PM A '∴A ′M =AM =2,∴点A 的运动轨迹为以点M 为圆心,AM 长为半径的圆,∴当点D 、A ′、M 三点共线时,线段最短,此时点P 在AD 上,A D '∴,1A D '=根据题意得:,,A P AP '==DP =由(1)得:DM ⊥AB ,∵PE ⊥DM ,∴PE ∥AB ,∴△PDE ∽△ADM ,∴,PD DE PE AD DMAM ==,32DE PE ==解得:,33,22DE t PE t =-=-∴,23A E DE A D t ''=-=-在中,,Rt A PE ' 222A P PE A E ''=+∴,解得:,)()()2222223t t =-+-25t =∴,65PE =∴;116312255DPA S A D PE ''=⋅=⨯⨯= 【小问4详解】解:如图,当点M 、、C 三点共线时,且点位于M 、C 之间时,此时点P 在AD 上,A 'A '连接A A ′, A ′B ,过点P 作PF ⊥AB 于点F ,过点A ′作A ′G ⊥AB 于点G ,则A A ′⊥PM ,∵AB 为直径,∴∠A =90°,即A A ′⊥A ′B ,∴PM ∥A ′B ,∴∠PMF =∠AB A ′,过点C 作CN ⊥AB 交AB 延长线于点N ,在中,AB ∥DC ,ABCD ∵DM ⊥AB ,∴DM ∥CN ,∴四边形CDMN 为平行四边形,∴CN =DM =3,MN =CD =4,∴CM =5,∴,3sin 5CN CMN CM ∠==∵ M =2,A '∴,36255A G '=⨯=∴,85MG =∴,25BG BM MG =-=∴,tan 3A G A BA BG ''∠==∴,tan tan 3PMF A BA '∠=∠=∴,即PF =3FM ,3PF FM =∵,3tan 2DM PF DAM AM AF ∠===cos AM AF DAM AD AP ∠===∴,32PF AF =∴,即AF =2FM ,332FM AF=∵AM =2,∴,43AF =,解得:;=23t =如图,当点()位于C M 的延长线上时,此时点P 在BD 上,,A 'A ''PB =过点作于点G ′,则,取的中点H ,则点M 、P 、H A ''A G AB '''⊥AMA CMN ''∠=∠AA ''三点共线,过点H 作HK ⊥AB 于点K ,过点P 作PT ⊥AB 于点T,同理:,62,55A G AG ''''==∵HK ⊥AB ,,A G AB '''⊥∴HK ∥A ′′G ′,∴,AHK AA G ''' ∵点H 是的中点,AA ''∴,12HK AK AH A GAG AA ===''''''∴,31,55HK AK ==∴,95MK =∴,1tan tan 3HK PMT HMK MK ∠=∠==∴,即MT =3PT ,13PT MT =∵,,3tan 2DM PT PBT BM BT ∠===cos BT BM PBT PB BD ∠===∴,23BT PT =∴,92MT BT =∵MT +BT =BM =2,∴,411BT =,解得:;=2011t =综上所述,t 的值为或.232011本题主要考查了四边形的综合题,熟练掌握平行四边形的性质,圆的基本性质,相似三角形的判定和性质,解直角三角形,根据题意得到点的运动轨迹是解题的关键,是中考的A '压轴题.24. 在平面直角坐标系中,抛物线(b 是常数)经过点.点A 在抛物线2y x bx =-()2,0上,且点A 的横坐标为m ().以点A 为中心,构造正方形,,0m ≠PQMN 2PQ m =且轴.PQ x ⊥(1)求该抛物线对应的函数表达式:(2)若点B 是抛物线上一点,且在抛物线对称轴左侧.过点B 作x 轴的平行线交抛物线于另一点C ,连接.当时,求点B 的坐标;BC 4BC =(3)若,当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大时,或者y 随x 0m >的增大而减小时,求m 的取值范围;(4)当抛物线与正方形的边只有2个交点,且交点的纵坐标之差为时,直接写PQMN 34出m 的值.(1)22y x x =-(2)()1,3B -(3)或102m <≤3m ≥(4)或或.38m =-12m =32m =【分析】(1)将点代入,待定系数法求解析式即可求解;()2,02y x bx =-(2)设,根据对称性可得,根据,即可求解;()2,2B m m m -()22,2C m m m --BC 4=(3)根据题意分两种情况讨论,分别求得当正方形点在轴上时,此时与PQMN Q x M点重合,当经过抛物线的对称轴时,进而观察图象即可求解;O PQ 1x =(4)根据题意分三种情况讨论,根据正方形的性质以及点的坐标位置,即可求解.【小问1详解】解:∵抛物线(b 是常数)经过点2y x bx =-()2,0∴420b -=解得2b =22y x x∴=-【小问2详解】如图,由22y x x =-()211x =--则对称轴为直线,1x =设,则()2,2B m m m -()22,2C m m m --24BC m m =--= 解得1m =-()1,3B ∴-【小问3详解】点A 在抛物线上,且点A 的横坐标为m ().以点A 为中心,构造正方形, 0m ≠PQMN ,且轴2PQ m =PQ x ⊥,且在轴上,如图,2MN PQ m∴==,M N y①当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大时,如图,当正方形点在轴上时,此时与点重合,PQMN Q x M O PN PQ= 的解析式为OP ∴y x=,将代入∴(),A m m (),A m m 22y x x=-即22m m m --0=解得120,3m m ==0m > ()3,3A ∴观察图形可知,当时,抛物线在正方形内部的点的纵坐标y 随x 的增大而增大;3m ≥②当抛物线在正方形内部的点的纵坐标y 随x 的增大而减小时,当经过抛物线的对称PQ 轴时,1x=2,0MQ PQ m m ==> 21m ∴=解得,12m =观察图形可知,当时,抛物线在正方形内部的点的纵坐标y 随x 的增大而增大;102m <≤综上所述,m 的取值范围为或102m <≤3m ≥【小问4详解】①如图,设正方形与抛物线的交点分别为,当时,则,E F 34E F y y -=34MN =是正方形的中心,A PQMN ()2,2A m m m -∴1328A x MN ==即38m =-②如图,当点在抛物线左侧,轴右侧时,A y()2,2A m m m -2MN m∴=22122E A A y y MN y m m m m m m ∴=+=+=-+=-交点的纵坐标之差为,34的纵坐标为F ∴234m m --的横坐标为F 2MQ PQ m==232,4F m m m ⎛⎫∴-- ⎪⎝⎭在抛物线上,F 22y x x =-()2232224m m m m ∴--=-⨯解得12m =③当在抛物线对称轴的右侧时,正方形与抛物线的交点分别为,,设直线交A O S AM轴于点,如图,x T 则34N S y y ==34OM OT ∴==即330,,,044M N ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭设直线解析式为MN y kx b=+则30434k b b ⎧+=⎪⎪⎨⎪=⎪⎩解得134k b =-⎧⎪⎨=⎪⎩直线解析式为∴MN 34y x =-+联立22y x x =-解得(舍去)1231,22x x ==-即的横坐标为,即,A 3232m =综上所述,或或.38m =-12m =32m =本题考查了二次函数的综合问题,二次函数的对称性,正方形的性质,掌握二次函数图象的性质是解题的关键.。

2022中考数学考试试卷真题(含答案和解析)

2022中考数学考试试卷真题(含答案和解析)

2022中考数学考试试卷真题(含答案和解析)1.**市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为()A .5152.3310⨯B .615.23310⨯C .71.523310⨯D .80.1523310⨯2.某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A .套餐一B .套餐二C .套餐三D .套餐四3.下列运算正确的是()A =B .=C .5630x x x ⋅=D .()5210x x =4.ABC ∆中,点,D E 分别是ABC ∆的边AB ,AC 的中点,连接DE ,若68C ∠=︒,则AED =∠()A .22︒B .68︒C .96︒D .112︒5.如图所示的圆锥,下列说法正确的是()A .该圆锥的主视图是轴对称图形B .该圆锥的主视图是中心对称图形C .该圆锥的主视图既是轴对称图形,又是中心对称图形D .该圆锥的主视图既不是轴对称图形,又不是中心对称图形6.一次函数31y x =-+的图象过点()11,x y ,()121,x y +,()132,x y +,则()A .123y y y <<B .321y y y <<C .213y y y <<D .312y y y <<7.如图,Rt ABC ∆中,90C ∠=︒,5AB =,4cos 5A =,以点B 为圆心,r 为半径作B ,当3r =时,B 与AC 的位置关系是()A .相离B .相切C .相交D .无法确定8.往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm =,则水的最大深度为()A .8cmB .10cmC .16cmD .20cm9.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是().A .0个B .1个C .2个D .1个或2个10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为()A .485B .325C .245D .12511.已知100A ∠=︒,则A ∠的补角等于________︒.12=__________.13.方程3122x x x =++的解是_______.14.如图,点A 的坐标为()1,3,点B 在x 轴上,把OAB ∆沿x 轴向右平移到ECD ∆,若四边形ABDC 的面积为9,则点C 的坐标为_______.15.如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB ',AC '分别交对角线BD 于点,E F ,若4AE =,则EF ED ⋅的值为_______.16.对某条线段的长度进行了3次测量,得到3个结果(单位:mm )9.9,10.1,10.0,若用a 作为这条线段长度的近以值,当a =______mn 时,222(9.9)(10.1)(10.0)a a a -+-+-最小.对另一条线段的长度进行了n 次测量,得到n 个结果(单位:mm )12,,,n x x x ,若用x 作为这条线段长度的近似值,当x =_____mm 时,()()()22212n x x x x x x -+-++- 最小.17.解不等式组:212541x x x x -+⎧⎨+<-⎩ .18.如图,AB AD =,25BAC DAC ∠=∠=︒,80D ∠=︒.求BCA ∠的度数.19.以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调査了m名新聘毕业生的专业情况,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题:(1)m=,n=;(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应圆心角的度数是;(4)若该公司新聘600名毕业生,请你估计“总线”专业的毕业生有名.20.如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.21.端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?22.背景:一次小组合作探究课上,小明将两个正方形按背景图位置摆放(点E,A,D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转,(如图1)还能得到BE=DG吗?如果能,请给出证明.如若不能,请说明理由:(2)把背景中的正方形分别改为菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转,(如图2)试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形改成矩形AEFG 和矩形ABCD ,且23AE AB AG AD ==,AE =4,AB =8,将矩形AEFG 绕点A 按顺时针方向旋转(如图3),连接DE ,BG .小组发现:在旋转过程中,BG 2+DE 2是定值,请求出这个定值.23.如图1,抛物线y =ax 2+bx +3(a ≠0)与x 轴交于A (-3,0)和B (1,0),与y 轴交于点C ,顶点为D .(1)求解抛物线解析式;(2)连接AD ,CD ,BC ,将△OBC 沿着x 轴以每秒1个单位长度的速度向左平移,得到O B C '''∆,点O 、B 、C 的对应点分别为点O ',B ',C ',设平移时间为t 秒,当点O'与点A 重合时停止移动.记O B C '''∆与四边形AOCD 的重叠部分的面积为S ,请直接写出....S 与时间t 的函数解析式;(3)如图2,过抛物线上任意..一点M (m ,n )向直线l :92y =作垂线,垂足为E ,试问在该抛物线的对称轴上是否存在一点F ,使得ME -MF =14?若存在,请求F 点的坐标;若不存在,请说明理由.参考答案1.C 【详解】15233000=71.523310⨯,故选C .2.A 【【详解】解:通过观察条形统计图可得:套餐一一共出现了50人,出现的人数最多,因此通过利用样本估计总体可以得出学生最喜欢的套餐种类是套餐一;故选:A .3.D 【详解】A 不是同类二次根式,不能进行加法运算,故该选项错误;B 、6a =,故该选项错误;C 、5611x x x ⋅=,故该选项错误;D 、()5210x x =,故该选项正确,故选:D.4.B 【【详解】如图,∵点,D E 分别是ABC ∆的边AB ,AC 的中点,∴DE 是ABC ∆的中位线,∴DE ∥BC ,∴AED =∠68C ∠=︒,故选:B.5.A 【详解】解:圆锥的主视图是一个等腰三角形,所以该圆锥的主视图是轴对称图形,不是中心对称图形,故A 正确,该圆锥的主视图是中心对称图形,故B 错误,该圆锥的主视图既是轴对称图形,又是中心对称图形,故C 错误,该圆锥的主视图既不是轴对称图形,又不是中心对称图形,故D 错误,故选A .6.B 【详解】因为一次函数的一次项系数小于0,所以y 随x 增减而减小.故选B .7.B 【详解】解:∵Rt ABC ∆中,90C ∠=︒,4cos 5A =,∴cosA=45AC AB =∵5AB =,∴AC=4∴3=当3r =时,B 与AC 的位置关系是:相切故选:B 8.C 【详解】解:过点O 作OD ⊥AB 于D ,交⊙O 于E ,连接OA ,由垂径定理得:11482422AD AB cm ==⨯=,∵⊙O 的直径为52cm ,∴26OA OE cm ==,在Rt AOD ∆中,由勾股定理得:O m D c =,∴261016DE OE OD cm =-=-=,∴油的最大深度为16cm ,故选:C .9.D 【解析】【分析】根据直线y x a =+不经过第二象限,得到0a ≤,再分两种情况判断方程的解的情况.【详解】∵直线y x a =+不经过第二象限,∴0a ≤,∵方程2210ax x ++=,当a=0时,方程为一元一次方程,故有一个解,当a<0时,方程为一元二次方程,∵∆=2444b ac a -=-,∴4-4a>0,∴方程有两个不相等的实数根,故选:D.10.C 【【详解】∵四边形ABCD 是矩形,AC BD ∴=,90ABC BCD ADC BAD ∠=∠=∠=∠=︒6AB = ,8BC =8AD BC ∴==,6DC AB ==10AC ∴==,10BD =,152OA AC ∴==,OE AC ⊥ ,90AOE ∴∠=︒AOE ADC ∴∠=∠,又CAD DAC ∠=∠,AOE ADC ∴ ,AO AE EOAD AC CD ∴==,58106AE EO ∴==,254AE ∴=,154OE =,74DE ∴=,同理可证,DEF DBA ,DE EFBD BA ∴=,74106FF ∴=,2120EF ∴=,1521244205OE EF ∴+=+=,故选:C .11.80【详解】∠A 的补角=180°-100°=80°,故答案为:80.12【详解】==.13.32【详解】3122xx x =++左右同乘2(x +1)得:2x =3解得x =32.经检验x =32是方程的跟.故答案为:32.14.(4,3)【详解】过点A 作AH ⊥x 轴于点H ,∵A (1,3),∴AH=3,由平移得AB ∥CD ,AB=CD ,∴四边形ABDC 是平行四边形,∴AC=BD ,∵9BD AH ⋅=,∴BD=3,∴AC=3,∴C(4,3)故答案为:(4,3).15.16【详解】解:在正方形ABCD 中,BAC=ADB 45∠∠=︒,∵ABC ∆绕点A 逆时针旋转到AB C ''∆,∴B AC =BAC 45''∠∠=︒,∴EAF=ADE 45∠∠=︒,∵AEF=AED ∠∠,∴AEF DEA ~ ,∴AE EF DE AE=,∴22EF ED AE 416∙===.故答案为:16.16.10.0;12n x x x n +++ .【详解】解:(1)整理222(9.9)(10.1)(10.0)a a a -+-+-得:2360.0300.02a a -+,设2360.0300.02y a a =-+,由二次函数的性质可知:当60.010.023a -=-=⨯时,函数有最小值,即:当10.0a =时,222(9.9)(10.1)(10.0)a a a -+-+-的值最小,故答案为:10.0;(2)整理()()()22212n x x x x x x -+-++- 得:()()222212122n n nx x x x x x x x -++++++ ,设()()222212122n n y nx x x x x x x x =-++++++ ,由二次函数性质可知:当()121222n n x x x x x x x n n-++++++=-=⨯ 时,()()222212122n n y nx x x x x x x x =-++++++ 有最小值,即:当12n x x x x n +++=时,()()()22212n x x x x x x -+-++- 的值最小,故答案为:12n x x x n +++ .17.x ≥3【详解】212541x x x x -+⎧⎨+<-⎩①②由①可得x ≥3,由②可得x>2,∴不等式的解集为:x ≥3.18.75°.【详解】∵25DAC ∠=︒,80D ∠=︒,∴∠DCA=75°,∵AB AD =,25BAC DAC ∠=∠=︒,AC=AC ,∴△ABC ≌△ADC ,∴∠BCA=∠DCA=75°.19.(1)50,10;(2)补全条形统计图见解析;(3)70°;(4)估计“总线”专业的毕业生有180名.【详解】(1)由统计图可知155030%m ==,510%50n ==,n=10.(2)硬件专业的毕业生为5040%=20⨯人,则统计图为(3)软件专业的毕业生对应的占比为10100%=20%50⨯,所对的圆心角的度数为20%360=72⨯︒︒.(4)该公司新聘600名毕业生,“总线”专业的毕业生为60030%=180⨯名.20.(1)见解析;(2)245CD =.【详解】(1)证明:连接OC∵CD 与⊙O 相切于C 点∴OC ⊥CD又∵CD ⊥AE∴OC //AE∴∠OCB =∠E∵OC =OB∴∠ABE =∠OCB∴∠ABE =∠E∴AE =AB(2)连接AC∵AB 为⊙O 的直径∴∠ACB =90°∴8AC ==∵AB =AE ,AC ⊥BE∴EC =BC =6∵∠DEC =∠CEA,∠EDC =∠ECA∴△EDC ∽△ECA ∴DC EC AC EA =∴6248105EC CD AC EA =⋅=⨯=.21.(1)肉粽得进货单价为10元,蜜枣粽得进货单价为4元;(2)第二批购进肉粽200个时,全部售完后,第二批粽子获得利润最大,最大利润为1000元.【详解】(1)设肉粽和蜜枣粽的进货单价分别为x 、y 元,则根据题意可得:50306206x y x y +=⎧⎨-=⎩.解此方程组得:104x y =⎧⎨=⎩.答:肉粽得进货单价为10元,蜜枣粽得进货单价为4元;(2)设第二批购进肉粽t 个,第二批粽子得利润为W ,则(1410)(64)(300)2600W t t t =-+--=+,∵k =2>0,∴W 随t 的增大而增大,由题意2(300)t t ≤-,解得200t ≤,∴当t =200时,第二批粽子由最大利润,最大利润22006001000W =⨯+=,答:第二批购进肉粽200个时,全部售完后,第二批粽子获得利润最大,最大利润为1000元.22.(1)见解析;(2)当∠EAG =∠BAD 时,BE =DG 成立;理由见解析;(3)22260BG DE +=.【详解】(1)证明:∵四边形ABCD 为正方形∴AB =AD ,90DAB ︒∠=∵四边形AEFG 为正方形∴AE =AG ,90EAG ︒∠=∴EAB GAD∠=∠在△EAB 和△GAD 中有:AE AG EAB GAD AB AD =⎧⎪∠=∠⎨⎪=⎩∴△EAB ≌△GAD∴BE =DG ;(2)当∠EAG =∠BAD 时,BE =DG 成立。

陕西省2022年中考数学真题试题(含答案)

陕西省2022年中考数学真题试题(含答案)

陕西省 2022年中考数学真题试题一、选择题:〔本大题共10题,每题3分,总分值30分〕1、-711的倒数是A .711B .-711C .117D .-1172、如图,是一个几何体的外表展开图,那么该几何体是A .正方体B .长方体C .三棱柱D .四棱锥3、如图,假设l 1∥l 2,l 3∥l 4,那么图中与∠1互补的角有A .1个B .2个C .3个D .4个4、如图,在矩形ABCD 中,A (-2,0),B(0,1).假设正比例函数y =kx 的图像经过点C ,那么k 的取值为A .-12B .12C .-2D .2第2题图第3题图第4题图5、以下计算正确的选项是A .a 2·a 2=2a 4B .(-a 2)3=-a 6C .3a 2-6a 2=3a 2D .(a -2)2=a 2-46、如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,那么AE 的长为A .423B .2 2C .823D .3 2第6题图第8题图第9题图7、假设直线l 1经过点(0,4),l 2经过(3,2),且l 1与l 2关于x 轴对称,那么l 1与l 2的交点坐标为A .(-2,0)B .(2,0)C .(-6,0)D .(6,0)8、如图,在菱形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 和DA 的中点,连接EF 、FG 、yC B AO xGH 和HE .假设EH =2EF ,那么以下结论正确的选项是A .AB =2EFB .AB =2EFC .AB =3EFD .AB =5EF9、如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与○O 相交于点D ,连接BD ,那么∠DBC 的大小为A .15°B .35°C .25°D .45°10、对于抛物线y =ax 2+(2a -1)x +a -3,当x =1时,y >0,那么这条抛物线的顶点一定在A .第一象限B .第二象限C .第三象限D .第四象限二、填空题:〔本大题共4题,每题3分,总分值12分〕11、比拟大小:3<10(填<,>或=).12、如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,那么AFE 的度数为72°13、假设一个反比例函数的图像经过点A (m ,m )和B (2m ,-1),那么这个反比例函数的表达式为y =4x14、点O 是平行四边形ABCD 的对称中心,AD >AB ,E 、F 分别是AB 边上的点,且EF =12AB ;G 、H 分别是BC 边上的点,且GH =13BC ;假设S 1,S 2分别表示∆EOF 和∆GOH 的面积,那么S 1,S 2之间的等量关系是2S 1=3S 2第12题图第14题图二、解答题〔共11小题,计78分.解容许写出过程〕15.〔此题总分值5分〕计算:(-3)×(-6)+|2-1|+(5-2π)0解:原式=32+2-1+1=4 2 16.〔此题总分值5分〕 化简:⎝⎛⎭⎪⎫a +1a -1-a a +1÷3a +1a 2+a解:原式=3a +1(a +1)(a -1)×a (a +1)3a +1=aa -117.〔此题总分值5分〕如图,在正方形ABCD 中,M 是BC 边上一定点,连接AM ,请用尺规作图法,在AM 上求作一点P ,使得△DPA ∽△ABM 〔不写做法保存作图痕迹〕解:如图,P 即为所求点. 18、〔此题总分值5分〕如图,AB ∥CD ,E 、F 分别为AB 、CD 上的点,且EC ∥BF ,连接AD ,分别与EC 、BF 相交与点G 、H ,假设AB =CD ,求证:AG =DH .证明:∵AB ∥CD ,∴∠A =∠D ∵CE ∥BF ,∴∠AHB =∠DGC 在∆ABH 和∆DCG 中,∵⎩⎪⎨⎪⎧∠A =∠D∠AHB =∠DGC AB =CD∴∆ABH ≌∆DCG (AAS ),∴AH =DG ∵AH =AG +GH ,DG =DH +GH ,∴AG =HD19.〔此题总分值7分〕对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况〞问卷,并在本校随机抽取假设干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A 、B 、C 、D 四组,绘制了如下统计图表:“垃圾分类知识及投放情况〞问卷测试成绩统计表〔第19题图〕依据以上统计信息,解答以下问题: (1)求得m =30,n =19%;(2)这次测试成绩的中位数落在B 组; (3)求本次全部测试成绩的平均数.解:测试的平均成绩=2581+5543+5100+2796200=80.1.20.〔此题总分值7分〕周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.:CB ⊥AD ,ED ⊥AD ,测得BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如下图.请根据相关测量信息,求河宽AB .解:∵CB ⊥AD ,ED ⊥AD , ∴∠CBA =∠EDA =90° ∵∠CAB =∠EAD ∴∆ABC ∽∆ADE ∴AD AB =DEBC ∴AB +8.5AB =1.51组别 分数/分 频数 各组总分/分A 60<x ≤70 38 2581B 70<x ≤80 72 5543C 80<x ≤90 60 5100D 90<x ≤100m2796A nD 、15%B 36%C 30%∴AB =17,即河宽为17米. 21.〔此题总分值7分〕经过一年多的精准帮扶,小明家的网络商店〔简称网店〕将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:商品 红枣 小米 规格1kg /袋2kg /袋 本钱〔元/袋〕 40 38 售价〔元/袋〕6054根据上表提供的信息,解答以下问题:(1)今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg ,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg ,其中,这种规格的红枣的销售量不低于600kg .假设这后五个月,销售这种规格的红枣味x 〔kg 〕,销售这种规格的红枣和小米获得的总利润为y 〔元〕,求出y 与x 之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.解:(1)设前五个月小明家网店销售这种规格的红枣a 袋,销售小米b 袋,根据题意列方程得:a +2b =3000,(60-40)a +(54-38)b =42000,解得:a =1500,b =750∴前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋 (2)根据题意得:y =(60-40)x +(54-38)×2000-x2=12x +16000y 随x 的增大而增大,∵x ≥600,∴当x =600时,y 取得最小值,最小值为y =12×600+16000=23200∴小明家网店销售这种规格的红枣和小米至少获得总利润23200元. 22.〔此题总分值7分〕如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1〞的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,那么该扇形内的数字即为转出的数字,此时,称为转动转盘一次〔假设指针指向两个扇形的交线,那么不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止〕(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.〔第22题图〕解:(1)由题意可知:“1〞和“3〞所占的扇形圆心角为120°,所以2个“-2〞所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为120°360°=13; (2)由(1)可知,该转盘转出“1〞“3〞“-2〞的概率相同,均为13,所有可能性如下表所示: 第一次 第二次 1-2 3 1 (1,1) (1,-2) (1,3) -2 (-2,1) (-2,-2) (-2,3) 3(3,1)(3,-2)(3,3)由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为923.〔此题总分值8分〕如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC 、BC 相交于点M 、N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ; (2)连接MD ,求证:MD =NB .23题图 23题解图(1) 解:(1)如图,连接ON∵CD 是Rt △ABC 斜边AB 上的中线 ∴AD =CD =DB ∴∠DCB =∠DBC 又∵∠DCB =∠ONC ∴∠ONC =∠DBC ∴ON ∥AB∵NE 是⊙O 的切线,ON 是⊙O 的半径 ∴∠ONE =90°∴∠NEB =90°,即NE ⊥AB ;(2)如解图(1)所示,由(1)可知ON ∥AB ,O 为⊙O 的圆心,∴OC =OB ,∠CMD =90°∴CN =NB =12CB ,MD ∥CB又∵D 是AB 的中点,∴MD =12CB∴MD =NB .24.〔此题总分值10分〕抛物线L :y =x 2+x -6与x 轴相交于A 、B 两点〔点A 在点B 的左侧〕,并与y 轴相交于点C .(1)求A 、B 、C 三点的坐标,并求出△ABC 的面积;(2)将抛物线向左或向右平移,得到抛物线L ´,且L ´与x 轴相交于A ´、B ´两点〔点A ´在点B ´的左侧〕,并与y 轴交于点C ´,要使△A ´B ´C ´和△ABC 的面积相等,求所有满足条件的抛物线的函数表达式.解:(1)当y =0时,x 2+x -6=0,解得x 1=-3,x 2=2;当x =0时,y =-6 ∴A (-3,0),B (2,0),C (0,6) ∴S △ABC =12AB ·OC =12×5×6=15;(2)将抛物线向左或向右平移时,A´、B´两点间的距离不变,始终为5,那么要使△A´B´C´和△ABC的面积相等,高也只能是6设A(a,0),那么B(a+5,0),y=(x-a)(x-a-5),当x=0时,y=a2+5a当C点在x轴上方时,y=a2+5a=6,a=1或a=-6,此时y=x2-7x-6或y=x2+7x-6;当C点在x轴下方时,y=a2+5a=-6,a=-2或a=-3,此时y=x2-x-6或y=x2+x-6(与圆抛物线重合,舍去);所以,所有满足条件的抛物线的函数表达式为:y=x2-7x-6,y=x2+7x-6,y=x2-x-6.25.〔此题总分值12分〕问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,那么△ABC的外接圆半径R的值为.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM 的最大值.问题解决(3)如图③所示,AB、AC、BC是某新区的三条规划路其中,AB=6km,AC=3km,∠BAC =60°,BC所对的圆心角为60°.新区管委会想在BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F.也就是,分别在BC线段AB和AC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷环保和节约本钱要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).图①图②图③解:(1)R=AB=AC=5;(2)如25题解图(2)所示,连接MO并延长交⊙O于N,连接OP显然,MP≤OM+OP=OM+ON=MN,ON=13,OM=132-122=5,MN=18∴PM的最大值为18;25题解图(2) 25题解图(3)(3)假设P点即为所求点,分别作出点P关于AB、AC的对称点P´、P"连接PP´、P´E,PE,P"F,PF,PP"由对称性可知PE+EF+FP=P´E+EF+FP"=P´P",且P´、E、F、P"在一条直线上,所以P´P"即为最短距离,其长度取决于PA的长度25题解图(4)作出弧BC的圆心O,连接AO,与弧BC交于P,P点即为使得PA最短的点∵AB=6km,AC=3km,∠BAC=60°,∴∆ABC是直角三角形,∠ABC=30°,BC=3 3 BC所对的圆心角为60°,∴∆OBC是等边三角形,∠CBO=60°,BO=BC=3 3∴∠ABO=90°,AO=37,PA=37-3 3∠P´AE=∠EAP,∠PAF=∠FAP",∴∠P´AP"=2∠ABC=120°,P´A=AP",∴∠AP´E =∠AP"F=30°∵P´P"=2P´A cos∠AP´E=3P´A=321-9所以PE+EF+FP的最小值为321-9km.。

江苏省徐州巿2022年中考数学试题真题含答案Word版

江苏省徐州巿2022年中考数学试题真题含答案Word版

江苏省徐州巿2022年中考数学试题真题含答案Word版2022年中考试题徐州巿2022年初中毕业、升学考试数学试题本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷共120分,考试时间120分钟.第Ⅰ卷注意事项:1.答Ⅰ第卷前考生务必将自己的考试证号、考试科目用2B铅笔填涂在答题卡上.2.作答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.不能答在第Ⅰ卷上.一、选择题(每小题2分,共20分.在每小题给出的四个选项中,有且只有一个是正确的)....1.4的平方根是A.?2B.2C. -2 D 162.一方有难、八方支援,截至5月26日12时,徐州巿累计为汶川地震灾区捐款约为11 180万元,该笔善款可用科学记数法表示为A. 11.18×103万元B. 1.118×104万元C. 1.118×105万元D. 1.118×108万元3.函数y?1x?1中自变量x的取值范围是A. x≥-1B. x≤-1C. x≠-1D. x =-1 4.下列运算中,正确的是A.x3+x3=x6B. x3·x9=x27C.(x2)3=x5D. x?x2=x-1 5.如果点(3,-4)在反比例函数y?kx的图象上,那么下列各点中,在此图象上的是A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)6.下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方....盒的是A1B2022年中考试题C D7.⊙O1和⊙O2的半径分别为5和2,O1O2=3,则⊙O1和⊙O2的位置关系是A.内含B. 内切C.相交D.外切8.下列图形中,是轴对称图形但不是中心对称图形的是A.正三角形B.菱形C.直角梯形D.正六边形9.下列事件中,必然事件是A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角C.366人中至少有2人的生日相同D.实数的绝对值是非负数(第10题图)10.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为A.34 B.13 C.12 D.14二、填空题(每小题3分,共18分.请将答案填写在第Ⅱ卷相应的位置上)................11.因式分解:2x2-8=______▲________12.徐州巿部分医保定点医院2022年第一季度的人均住院费用(单位:元)约为:12 320,11 880,10 370,8 570,10 640, 10240.这组数据的极差是_____▲_______元. 13.若x1,x2为方程x2?x?1?0的两个实数根,则x1?x2?___▲___. 14.边长为a的正三角形的面积等于______▲______.15.如图,AB是⊙O的直径,点C在AB的延长线上,CD 与⊙O相切于点 D.若,若∠C=18°,则∠CDA=______▲_______.(第15题图)(第16题图)16.如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于____▲_____cm.第Ⅱ卷22022年中考试题三、解答题(每小题5分,共20分)17.计算:(?1)202218.已知x?x119.解不等式组?2?2x?1?5(x?1)??3?1,求x2??01?1?()?338.?2x?3的值.,并写出它的所有整数解.20.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m)参考数据:四、解答题(本题有A、B两类题,A类题4分,B类题6分,你可以根据自己的学习情况,在两类题中任意选做一题,如果两类题都做,则以A类题计分)......21.(A类)已知如图,四边形ABCD中,AB=BC,AD =CD,求证:∠A=∠C.(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.五、解答题(每小题7分,共21分)22.从称许到南京可乘列车A与列车B,已知徐州至南京里程约为350km,A与B车的平均速度之比为10∶7,A车的行驶时间比B车的少1h,那么两车的平均速度分别为多少?23.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各3BDAB45?30?21.414,31.732A6mD14m(第20题图)C(第21题图)C2022年中考试题题:项目金额/元金额/元60504030短信费月功能费4%基本话费40%月功能费5 基本话费长途话费短信费20220月功能费基本话费长途话费短信费长途话费36%项目(1)该月小王手机话费共有多少元?(2)扇形统计图中,表示短信费的扇形的圆心角为多少度?(3)请将表格补充完整;(4)请将条形统计图补充完整.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1,②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;42022年中考试题④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.Ay六、解答题(每小题8分,共16分)25.为缓解油价上涨给出租车待业带来的成本压力,某巿自2022年11月17日起,调整出租车运价,调整方案见下列表格及图像(其中a,b,c为常数)行驶路程不超过3km的部分超过3km不超出6km的部分超出6km的部分每公里 2.1元每公里c元O367xyD13.3BxC收费标准调价前起步价6元调价后起步价a 元11.2C7AEBF每公里b元6 设行驶路程xkm时,调价前的运价y1(元),调价后的运价为y2(元)如图,折线ABCD表示y2与x之间的函数关系式,线段EF表示当0≤x≤3时,y1与x的函数关系式,根据图表信息,完成下列各题:①填空:a=______,b=______,c=_______.②写出当x>3时,y1与x的关系,并在上图中画出该函数的图象.③函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.52022年中考试题26.已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断① OA=OC ② AB=CD ③ ∠BAD=∠DCB ④ AD∥BC请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:①构造一个真命题,画图并给出证明;...②构造一个假命题,举反例加以说明. ...七、解答题(第27题8分,第28题10分,共18分)27.已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B 两点随图象移至A′、B′,求△O A′B′的面积.28.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30° 【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板....DEF...绕点旋转,并使边DE与边AB交于点P,边EF与边BC于点Q ..E...【探究一】在旋转过程中,(1)如图2,当CEEA=1时,EP与EQ满足怎样的数量关系?并给出证明.62022年中考试题(2)如图3,当CEEA=2时EP与EQ满足怎样的数量关系?,并说明理由.CEEA=m(3)根据你对(1)、(2)的探究结果,试写出当系式时,EP与EQ满足的数量关为_________,其中m的取值范围是_______(直接写出结论,不必证明)【探究二】若,AC=30cm,连续PQ,设△EPQ的面积为S(cm2),在旋转过程中:(1)S是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.(2)随着S取不同的值,对应△EPQ的个数有哪些变化?不出相应S值的取值范围.A(D)AFEPBC(E)BDQFCAEPDBQCF(图1)(图2)(图3)72022年中考试题徐州巿2022年初中毕业、升学考试数学试题参考答案1.A2.B3.C4.D5.C6.B7.B8.C9.D 10.C 11. 2(x?2)(x?16.m17.解:原式=1+1-3+2=1 18.解:x222) 12. 3750元13.-1 14.34a2 15.126°?2x?3?(x?3)(x?1)3?1?3)(,将x?3?1代入到上式,则可得x?2x?3?(3?1?1)?(3?2)(3?2)??1?x119.解:?2?2x?1?5(x?1)? ?x??2?x??22?x?2?2x?1?5x?5x?2??20.解:如图所示,过点A、D分别作BC的垂线AE、DF分别交BC于点E、F,所以△ABE、△CDF均为Rt△,又因为CD=14,∠DCF=30°,所以DF=7=AE,且FC=73A6mD14m12.145?B30?C所以BC=7+6+12.1=25.1m. 21.证明:(A)连结AC,因为AB=AC,所以∠BAC=∠BCA,同理AD=CD 得∠DAC=∠DCAE FA所以∠A=∠BAC+∠DAC=∠BCA+∠DCAC(B)如(A)只须反过来即可.22.解方程的思想.A车150km/h,B车125km/h. 23.解:(1)125元的总话费(2)72° (3)项目金额/元月功能费5 基本话费50 长途话费45 短信费25 BD=∠C 82022年中考试题(4)24.(4)对称中心是(0,0)25.解:(1) a=7, b=1.4, c=2.1 (2)y1?2.1x?0.3A1A2B2BB1C1xCC2金额/元6050403020220月功能费基本话费长途话费短信费项目解:如下图所示,yA(3)有交点为(317,9)其意义为当x?317时是方案调价前合算,当x?317时方案调价后合算.26.解:(1)②③为论断时,(2)②④为论断时,此时可以构成一梯形. 27.解:(1)y??x?2x?32(2)(0,3),(-3,0),(1,0)(3)略911/ 11。

2022年福建省中考数学真题(含答案)

2022年福建省中考数学真题(含答案)

2022年福建省初中毕业和高中阶段学校招生考试数学试题一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合要求的。

1. -11的相反数是( )A. -11B. 111-C. 111D. 112. 如图所示的圆柱,其俯视图是( )A. B. C. D.3. 5G 应用在福建省全面铺开,助力千行百业迎“智”变.截止2021年底,全省5G 终端用户达1397.6万户.数据13976000用科学记数法表示为( )A. 31397610⨯B. 41397.610⨯C. 71.397610⨯D. 80.1397610⨯4. 美术老师布置同学们设计窗花,下列作品为轴对称图形的是( )A. B. C. D.5. 如图,数轴上的点P 表示下列四个无理数中的一个,这个无理数是( )A. B. C. D. π 6. 不等式组1030x x ->⎧⎨-≤⎩的解集是( ) A. 1x >B. 13x <<C. 13x <≤D. 3x ≤ 7. 化简()223a的结果是( ) A. 29a B. 26a C. 49a D. 43a 8. 2021年福建省的环境空气质量达标天数位居全国前列.下图是福建省10个地区环境空气质量综合指数统计图.综合指数越小,表示环境空气质量越好.依据综合指数,从图中可知环境空气质量最好的地区是( )A. 1FB. 6FC. 7FD. 10F 9. 如图所示的衣架可以近似看成一个等腰三角形ABC ,其中AB AC =,27ABC ∠=︒,44cm BC =,则高AD 约为( )(参考数据:sin 270.45︒≈,cos270.89︒≈,tan 270.51︒≈)A. 9.90cmB. 11.22cmC. 19.58cmD. 22.44cm10. 如图,现有一把直尺和一块三角尺,其中90ABC ∠=︒,60CAB ∠=︒,8AB =,点A 对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得ABC △移动到'''A B C △,点'A 对应直尺的刻度为0,则四边形''ACC A 的面积是( )A. 96B.C. 192D.二、填空题:本题共6小题,每小题4分,共24分。

2022年浙江省衢州市中考数学真题试卷(含详解)

2022年浙江省衢州市中考数学真题试卷(含详解)

2022年浙江省衢州市中考数学试卷一、选择题(本题共有10小题,每小题3分,共30分)1.(3分)下列图形是中心对称图形的是()A.B.C.D.2.(3分)计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)03.(3分)在平面直角坐标系中,点A(﹣1,﹣2)落在()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)如图是某品牌运动服的S号,M号,L号,XL号的销售情况统计图,则厂家应生产最多的型号为()A.S号B.M号C.L号D.XL号5.(3分)线段a,b,c首尾顺次相接组成三角形,若a=1,b=3,则c的长度可以是()A.3B.4C.5D.66.(3分)某班环保小组收集废旧电池,数据统计如下表.问1节5号电池和1节7号电池的质量分别是多少?设1节5号电池的质量为x克,1节7号电池的质量为y克,列方程组,由消元法可得x的值为()5号电池(节)7号电池(节)总质量(克)第一天2272第二天3296 A.12B.16C.24D.267.(3分)不等式组的解集是()A.x<3B.无解C.2<x<4D.3<x<48.(3分)西周数学家商高总结了用“矩”(如图1)测量物高的方法:把矩的两边放置成如图2的位置,从矩的一端A(人眼)望点E,使视线通过点C,记人站立的位置为点B,量出BG长,即可算得物高EG.令BG=x(m),EG=y(m),若a=30cm,b=60cm,AB=1.6m,则y关于x的函数表达式为()A.y=x B.y=x+1.6C.y=2x+1.6D.y=+1.69.(3分)如图,在△ABC中,AB=AC,∠B=36°.分别以点A,C为圆心,大于AC 的长为半径画弧,两弧相交于点D,E,作直线DE分别交AC,BC于点F,G.以G为圆心,GC长为半径画弧,交BC于点H,连结AG,AH.则下列说法错误的是()A.AG=CG B.∠B=2∠HAB C.△CAH≌△BAG D.BG2=CG⋅CB 10.(3分)已知二次函数y=a(x﹣1)2﹣a(a≠0),当﹣1≤x≤4时,y的最小值为﹣4,则a的值为()A.或4B.或﹣C.﹣或4D.﹣或4二、填空题(本题共有6小题,每小题4分,共24分)11.(4分)计算()2=.12.(4分)不透明袋子里装有仅颜色不同的4个白球和2个红球,从袋子中随机摸出一球,“摸出红球”的概率是.13.(4分)如图,AB切⊙O于点B,AO的延长线交⊙O于点C,连结BC.若∠A=40°,则∠C的度数为.14.(4分)将一个容积为360cm3的包装盒剪开铺平,纸样如图所示.利用容积列出图中x (cm)满足的一元二次方程:(不必化简).15.(4分)如图,在△ABC中,边AB在x轴上,边AC交y轴于点E.反比例函数y=(x >0)的图象恰好经过点C,与边BC交于点D.若AE=CE,CD=2BD,S△ABC=6,则k=.16.(4分)希腊数学家海伦给出了挖掘直线隧道的方法:如图,A,B是两侧山脚的入口,从B出发任作线段BC,过C作CD⊥BC,然后依次作垂线段DE,EF,FG,GH,直到接近A点,作AJ⊥GH于点J.每条线段可测量,长度如图所示.分别在BC,AJ上任选点M,N,作MQ⊥BC,NP⊥AJ,使得==k,此时点P,A,B,Q共线.挖隧道时始终能看见P,Q处的标志即可.(1)CD﹣EF﹣GJ=km.(2)k=.三、解答题(本题共有8小题,第17~19小题每题6分,第20~21小题每题8分,第22~23小题每题10分,第24小题12分,共66分.请务必写出解答过程)17.(6分)(1)因式分解:a2﹣1.(2)化简:+.18.(6分)已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.19.(6分)如图,在4×4的方格纸中,点A,B在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.(1)在图1中画一条线段垂直AB.(2)在图2中画一条线段平分AB.20.(8分)如图,C,D是以AB为直径的半圆上的两点,∠CAB=∠DBA,连结BC,CD.(1)求证:CD∥AB.(2)若AB=4,∠ACD=30°,求阴影部分的面积.21.(8分)【新知学习】在气象学上,“入夏”由两种平均气温与22℃比较来判断:衢州市2021年5月5日~5月14日的两种平均气温统计表(单位:℃)2021年5月5日6日7日8日9日10日11日12日13日14日(日平均气温)20212221242625242527(五天滑动平均气温)……21.622.823.62424.825.4……注:“五天滑动平均气温”指某一天及其前后各两天的日平均气温的平均数,如:5月8日=(5月6日+5月7日+5月8日+5月9日+5月10日)=(21+22+21+24+26)=22.8(℃).已知2021年的从5月8日起首次连续五天大于或等于22℃,而5月8日对应着5月6日~5月10日,其中第一个大于或等于22℃的是5月7日,则5月7日即为我市2021年的“入夏日”.【新知应用】已知我市2022年的“入夏日”为图中的某一天,请根据信息解决问题:(1)求2022年的5月27日.(2)写出从哪天开始,图中的连续五天都大于或等于22℃.并判断今年的“入夏日”.(3)某媒体报道:“夏天姗姗来迟,衢州2022年的春天比去年长.”你认为这样的说法正确吗?为什么?(我市2021年和2022年的入春时间分别是2月1日和2月27日)22.(10分)金师傅近期准备换车,看中了价格相同的两款国产车.燃油车油箱容积:40升油价:9元/升续航里程:a千米每千米行驶费用:元新能源车电池电量:60千瓦时电价:0.6元/千瓦时续航里程:a千米每千米行驶费用:_____元(1)用含a的代数式表示新能源车的每千米行驶费用.(2)若燃油车的每千米行驶费用比新能源车多0.54元.①分别求出这两款车的每千米行驶费用.②若燃油车和新能源车每年的其它费用分别为4800元和7500元.问:每年行驶里程为多少千米时,买新能源车的年费用更低?(年费用=年行驶费用+年其它费用)23.(10分)如图1为北京冬奥会“雪飞天”滑雪大跳台赛道的横截面示意图.取水平线OE为x轴,铅垂线OD为y轴,建立平面直角坐标系.运动员以速度v(m/s)从D点滑出,运动轨迹近似抛物线y=﹣ax2+2x+20(a≠0).某运动员7次试跳的轨迹如图2.在着陆坡CE上设置点K(与DO相距32m)作为标准点,着陆点在K点或超过K点视为成绩达标.(1)求线段CE的函数表达式(写出x的取值范围).(2)当a =时,着陆点为P,求P的横坐标并判断成绩是否达标.(3)在试跳中发现运动轨迹与滑出速度v的大小有关,进一步探究,测算得7组a与v2的对应数据,在平面直角坐标系中描点如图3.①猜想a关于v2的函数类型,求函数表达式,并任选一对对应值验证.②当v为多少m/s时,运动员的成绩恰能达标(精确到1m/s )?(参考数据:≈1.73,≈2.24)24.(12分)如图,在菱形ABCD中,AB=5,BD为对角线.点E是边AB延长线上的任意一点,连结DE交BC于点F,BG平分∠CBE交DE于点G.(1)求证:∠DBG=90°.(2)若BD=6,DG=2GE.①求菱形ABCD的面积.②求tan∠BDE的值.(3)若BE=AB,当∠DAB的大小发生变化时(0°<∠DAB<180°),在AE上找一点T,使GT为定值,说明理由并求出ET的值.2022年浙江省衢州市中考数学试卷参考答案与试题解析一、选择题(本题共有10小题,每小题3分,共30分)1.【分析】根据中心对称图形的概念判断.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【解答】解:选项A、C、D都不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:B.2.【分析】根据绝对值、负整数指数幂、零指数幂解决此题.【解答】解:A.根据绝对值的定义,|﹣2|=2,那么A符合题意.B.根据绝对值的定义,﹣|2|=﹣2,那么B不符合题意.C.根据负整数指数幂,,那么C不符合题意.D.根据零指数幂,(﹣2)0=1,那么D不符合题意.故选:A.3.【分析】根据第三象限中点的坐标特征:横坐标为负数,纵坐标为负数,由此可确定A 点位置.【解答】解:∵﹣1<0,﹣2<0,∴点A(﹣1,﹣2)在第三象限,故选:C.4.【分析】利用四个型号的数量所占百分比解答即可【解答】解:∵32%>26%>24%>18%,∴厂家应生产最多的型号为M号.故选:B.5.【分析】根据三角形两边之和大于第三边,两边之差小于第三边直接列式计算即可.【解答】解:∵线段a=1,b=3,∴3﹣1<c<3+1,即2<c<4.观察选项,只有选项A符合题意,故选:A.6.【分析】根据题意可得2x+2y=72,3x+2y=96.,联立成二元一次方程组求解即可.【解答】解:由题意得:,解得,故选:C.7.【分析】先解出每个不等式,再求公共解集即可.【解答】解:,解不等式①得x<4,解不等式②得x>3,∴不等式组的解集为3<x<4,故选:D.8.【分析】根据题意和图形,可以得到AF=BG=xm,EF=EG﹣FG,FG=AB=1.6m,EG =ym,然后根据相似三角形的性质,可以得到y与x的函数关系式.【解答】解:由图2可得,AF=BG=xm,EF=EG﹣FG,FG=AB=1.6m,EG=ym,∴EF=(y﹣1.6)m,∵CD⊥AF,EF⊥AF,∴CD∥EF,∴△ADC∽△AFE,∴,即,∴,化简,得y=x+1.6,故选:B.9.【分析】根据基本作图得到DE垂直平分AC,GH=GC,再根据线段垂直平分线的性质得到AF=CF,GF⊥AC,GC=GA,于是可对A选项进行判断;通过证明FG为△ACH 的中位线得到FG∥AH,所以AH⊥AC,则可计算出∠HAB=18°,则∠B=2∠HAB,于是可对B选项进行判断;计算出∠BAG=72°,∠AGB=72°,而△ACH为直角三角形,则根据全等三角形的判定方法可对C选项进行判断;通过证明△CAG∽△CBA,利用相似比得到CA2=CG•CB,然后利用AB=GB=AC可对D选项进行判断.【解答】解:由作法得DE垂直平分AC,GH=GC,∴AF=CF,GF⊥AC,GC=GA,所以A选项不符合题意;∵CG=GH,CF=AF,∴FG为△ACH的中位线,∴FG∥AH,∴AH⊥AC,∴∠CAH=90°,∵AB=AC,∴∠C=∠B=36°,∵∠BAC=180°﹣∠B﹣∠C=108°,∴∠HAB=108°﹣∠CAH=18°,∴∠B=2∠HAB,所以B选项不符合题意;∵GC=GA,∴∠GAC=∠C=36°,∴∠BAG=108°﹣∠GAC=72°,∠AGB=∠C+∠GAC=72°,∵△ACH为直角三角形,∴△CAH与△BAG不全等,所以C选项符合题意;∵∠GCA=∠ACB,∠CAG=∠B,∴△CAG∽△CBA,∴CG:CA=CA:CB,∴CA2=CG•CB,∵∠BAG=∠AGB=72°,∴AB=GB,而AB=AC,∴AC=GB,∴BG2=CG•CB,所以D选项不符合题意.故选:C.10.【分析】分两种情况讨论:当a>0时,﹣a=﹣4,解得a=4;当a<0时,在﹣1≤x≤4,9a﹣a=﹣4,解得a=﹣.【解答】解:y=a(x﹣1)2﹣a的对称轴为直线x=1,顶点坐标为(1,﹣a),当a>0时,在﹣1≤x≤4,函数有最小值﹣a,∵y的最小值为﹣4,∴﹣a=﹣4,∴a=4;当a<0时,在﹣1≤x≤4,当x=4时,函数有最小值,∴9a﹣a=﹣4,解得a=﹣;综上所述:a的值为4或﹣,故选:D.二、填空题(本题共有6小题,每小题4分,共24分)11.【分析】直接计算即可.【解答】解:原式=2.故答案是2.12.【分析】用红色球的个数除以球的总个数即可.【解答】解:∵袋子中共有4+2=6个除颜色外其它都相同的球,其中红球有2个,∴从袋子中随机摸出一个小球,摸出的球是红球的概率是=,故答案为:.13.【分析】连接OB,先根据切线的性质求出∠AOB,再根据OB=OC,∠AOB=∠C+∠OBC即可解决问题.【解答】解:如图,连接OB.∵AB是⊙O切线,∴OB⊥AB,∴∠ABO=90°,∵∠A=40°,∴∠AOB=90°﹣∠A=50°,∵OC=OB,∴∠C=∠OBC,∵∠AOB=∠C+∠OBC,∴∠C=25°.故答案为:25°.14.【分析】根据题意表示出长方体的长与宽,进而表示出长方体的体积即可.【解答】解:由题意可得:长方体的高为:15,宽为:(20﹣2x)÷2(cm),则根据题意,列出关于x的方程为:15x(10﹣x)=360.故答案为:15x(10﹣x)=360.15.【分析】作CM⊥AB于点M,DN⊥AB于点N,设C(m,),则OM=m,CM=,根据平行线分线段成比例求出DN,BN,OA,MN,再根据面积公式即可求出k的值.【解答】解:如图,作CM⊥AB于点M,DN⊥AB于点N,设C(m,),则OM=m,CM=,∵OE∥CM,AE=CE,∴==1,∴AO=m,∵DN∥CM,CD=2BD,∴===,∴DN=,∴D的纵坐标为,∴=,∴x=3m,即ON=3m,∴MN=2m,∴BN=m,∴AB=5m,∵S△ABC=6,∴5m•=6,∴k=.故答案为:.16.【分析】(1)根据图中三条线段所标数据即可解答;(2)连接AB,过点A作AZ⊥CB,交CB的延长线于点Z.易得AZ=1.8,BZ=4=2.6,证明△BMQ∽△BZA,即可解答.【解答】解:(1)CD﹣EF﹣GJ=5.5﹣1﹣2.7=1.8(km);(2)连接AB,过点A作AZ⊥CB,交CB的延长线于点Z.由矩形性质得:AZ=CD﹣EF﹣GJ=1.8,BZ=DE+FG﹣CB﹣AJ=4.9+3.1﹣3﹣2.4=2.6,∵点P,A,B,Q共线,∴∠MBQ=∠ZBA,又∵∠BMQ=∠BZA=90°,∴△BMQ∽△BZA,∴=k===.故答案为:1.8;.三、解答题(本题共有8小题,第17~19小题每题6分,第20~21小题每题8分,第22~23小题每题10分,第24小题12分,共66分.请务必写出解答过程)17.【分析】(1)应用因式分解﹣运用公式法,平方差公式进行计算即可得出答案;(2)运算异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减,进行计算即可得出答案.【解答】解(1)a2﹣1=(a﹣1)(a+1);(2).18.【分析】根据邻补角的定义得出∠ACB=∠ACD,利用ASA证明△ACB≌△ACD,根据全等三角形的性质即可得解.【解答】证明:∵∠3=∠4,∴∠ACB=∠ACD,在△ACB和△ACD中,,∴△ACB≌△ACD(ASA),∴AB=AD.19.【分析】(1)利用数形结合的思想作出图形即可;(2)利用矩形的对角线互相平分解决问题即可.【解答】解:(1)如图1中,线段EF即为所求(答案不唯一);(2)如图2中,线段EF即为所求(答案不唯一).20.【分析】(1)根据圆周角定理可得,∠ACD=∠DBA,由已知条件可得∠CAB=∠ACD,再根据平行线的判定方法即可得出答案;(2)连结OD,过点D作DE⊥AB,垂足为E.由∠ACD=30°,可得∠ACD=∠CAB =30°,根据圆周角定理可得∠AOD=∠COB=60°,即可得出∠COD=180°﹣∠AOD ﹣∠COB=60°,∠BOD=180°﹣∠AOD=120°,即可算出S扇形BOD=的面积,在Rt△ODE中,根据三角函数可算出DE=cos30°OD的长度,即可算出S△BOD=的面积,根据S阴影=S扇形BOD﹣S△BOD代入计算即可得出答案.【解答】(1)证明:∵=,∴∠ACD=∠DBA,又∵∠CAB=∠DBA,∴∠CAB=∠ACD,∴CD∥AB.(2)如图,连结OD,过点D作DE⊥AB,垂足为E.∵∠ACD=30°,∴∠ACD=∠CAB=30°,∴∠AOD=∠COB=60°,∴∠COD=180°﹣∠AOD﹣∠COB=60°,∴∠BOD=180°﹣∠AOD=120°,∴S扇形BOD=.在Rt△ODE中,∵DE=cos30°OD==,∴S△BOD===,∴S阴影=S扇形BOD﹣S△BOD,=.∴S阴影=.21.【分析】(1)根据算术平均数的定义解答即可;(2)根据统计图数据解答即可;(3)根据统计图数据解答即可.【解答】解(1)(℃);(2)从5月27日开始,连续五天都大于或等于22℃,我市2022年的“入夏日”为5月25日;(3)不正确.因为今年的入夏时间虽然比去年迟了18天,但是今年的入春时间比去年迟了26天,所以今年的春天应该比去年还短.22.【分析】(1)根据表中的信息,可以计算出新能源车的每千米行驶费用;(2)①根据燃油车的每千米行驶费用比新能源车多0.54元和表中的信息,可以列出相应的分式方程,然后求解即可,注意分式方程要检验;②根据题意,可以列出相应的不等式,然后求解即可.【解答】解:(1)由表格可得,新能源车的每千米行驶费用为:=(元),即新能源车的每千米行驶费用为元;(2)①∵燃油车的每千米行驶费用比新能源车多0.54元,∴﹣=0.54,解得a=600,经检验,a=600是原分式方程的解,∴=0.6,=0.06,答:燃油车的每千米行驶费用为0.6元,新能源车的每千米行驶费用为0.06元;②设每年行驶里程为xkm,由题意得:0.6x+4800>0.06x+7500,解得x>5000,答:当每年行驶里程大于5000km时,买新能源车的年费用更低.23.【分析】(1)由图2可知:C(8,16),E(40,0),利用待定系数法可得出结论;(2)当时,,联立,可得出点P的横坐标,比较jke得出结论;(3)①猜想a与v2成反比例函数关系.将(100,0.250)代入表达式,求出m的值即可.将(150,0.167)代入进行验证即可得出结论;②由K在线段上,得K(32,4),代入得y=﹣ax2+2x+20,得.由得v2=320,比较即可.【解答】解:(1)由图2可知:C(8,16),E(40,0),设CE:y=kx+b(k≠0),将C(8,16),E(40,0)代入得:,解得,∴线段CE的函数表达式为(8≤x≤40).(2)当时,,由题意得,解得x1=0(舍去),x2=22.5.∴P的横坐标为22.5.∵22.5<32,∴成绩未达标.(3)①猜想a与v2成反比例函数关系.∴设,将(100,0.250)代入得,解得m=25,∴.将(150,0.167)代入验证:,∴能相当精确地反映a与v2的关系,即为所求的函数表达式.②由K在线段上,得K(32,4),代入得y=﹣ax2+2x+20,得.由得v2=320,又∵v>0,∴.∴当v≈18m/s时,运动员的成绩恰能达标.24.【分析】(1)由菱形的性质得CB=AB,CD=AD,可证明△ABD≌△CBD,得∠CBD =∠ABC,而∠CBG=∠EBC,所以∠DBG=(∠ABC+∠EBC)=90°;(2)①连结AC交BD于点K,交DE于点L,由∠AKB=90°,AB=5,DK=BK=BD =3,根据勾股定理可求得AK=4,则AC=8,即可由S菱形ABCD=AC•BD求出菱形ABCD 的面积;②先由∠DKL=∠DBG=90°证明AC∥BG,则==1,所以DL=GL=DG,再由DG=2GE得GE=DG,则DL=GL=GE,即可由CD∥AB,得==,可求得CL=AC=,所以KL=4﹣=,再求出tan∠BDE的值即可;(3)过点G作GT∥BC,交AE于点T,由∠DKL=∠DBG=90°可知,当∠DAB的大小发生变化时,始终都有BG∥AC,由△BGE∽△ALE得==1,所以EG=LG,同理可得DL=LG,再证明△ETG∽△EAD,得===,即可求得GT=,说明GT为定值,再求出ET的值即可.【解答】(1)证明:如图1,∵四边形ABCD是菱形,∴CB=AB,CD=AD,∵BD=BD,∴△ABD≌△CBD,∴∠CBD=∠ABD=∠ABC,∵∠CBG=∠EBG=∠EBC,∴∠DBG=∠CBD+∠CBG=(∠ABC+∠EBC)=×180°=90°.(2)解:①如图2,连结AC交BD于点K,交DE于点L,∵AC⊥BD,∴∠AKB=90°,∵AB=5,BD=6,∴BK=DK=BD=3,∴AK===4,∴CK=AK=4,∴AC=8,∴S菱形ABCD=AC•BD=×8×6=24.②∵∠DKL=∠DBG=90°,∴AC∥BG,∴==1,∴DL=GL=DG,∵DG=2GE,∴GE=DG,∴DL=GL=GE,∵CD∥AB,∴==,∴CL=AC=×8=,∴KL=4﹣=,∴tan∠BDE===.(3)解:如图3,过点G作GT∥BC,交AE于点T,则GT为定值,理由:连结AC交BD于点K,交DE于点L,∵∠DKL=∠DBG=90°,∴当∠DAB的大小发生变化时,始终都有BG∥AC,∴△BGE∽△ALE,∵BE=AB,∴==1,∴EG=LG,∵KL∥BG,∴==1,∴DL=LG=EG=ED,∵AD∥BC,∴GT∥AD,∴△ETG∽△EAD,∴===,∵BE=AB=DA=5,∴GT=DA=×5=,∴GT为定值;∵EA=BE+AB=10,∴ET=EA=×10=.。

山东省聊城市2021年中考数学试题真题(Word版,含答案与解析)

山东省聊城市2021年中考数学试题真题(Word版,含答案与解析)

山东省聊城市2021年中考数学试卷一、单选题1.(2021·聊城)下列各数中,是负数的是()A. |﹣2|B. (﹣√5)2C. (﹣1)0D. ﹣32【答案】 D【考点】正数和负数的认识及应用【解析】【解答】解:A. |﹣2|=2,是正数,不符合题意,B. (﹣√5)2=5,是正数,不符合题意,C. (﹣1)0=1是正数,不符合题意,D. ﹣32=-9是负数,符合题意,故答案为:D.【分析】先计算,再根据负数的定义对每个选项一一判断求解即可。

2.(2021·聊城)如图所示的几何体,其上半部有一个圆孔,则该几何体的俯视图是()A. B.C. D.【答案】A【考点】简单几何体的三视图【解析】【解答】解:从上向下看几何体时,外部轮廓如图1所示:∵上半部有圆孔,且在几何体内部,看不见的轮廓线画虚线,∴整个几何体的俯视图如图2所示:故答案为:A【分析】根据几何体和俯视图的定义对每个选项一一判断求解即可。

3.(2021·聊城)已知一个水分子的直径约为3.85×10﹣9米,某花粉的直径约为5×10﹣4米,用科学记数法表示一个水分子的直径是这种花粉直径的()A. 0.77×10﹣5倍B. 77×10﹣4倍C. 7.7×10﹣6倍D. 7.7×10﹣5倍【答案】C【考点】科学记数法—表示绝对值较小的数【解析】【解答】由题意得:(3.85×10﹣9)÷(5×10﹣4)= 7.7×10﹣6倍,故答案为:C.【分析】根据一个水分子的直径约为3.85×10﹣9米,某花粉的直径约为5×10﹣4米,计算求解即可。

4.(2021·聊城)如图,AB∥CD∥EF,若∠ABC=130°,∠BCE=55°,则∠CEF的度数为()A. 95°B. 105°C. 110°D. 115°【答案】B【考点】角的运算,平行线的性质【解析】【解答】解:∵AB//CD∴∠ABC=∠DCB=130°∴∠ECD=∠DCB−∠BCE=130°−55°=75°∵EF//CD∴∠ECD+∠CEF=180°∴∠CEF=180°−75°=105°故答案是:B.【分析】先求出∠ABC=∠DCB=130°,再求出∠ECD+∠CEF=180°,最后求解即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西宁市2017年初中毕业暨升学考试
数学试卷
第Ⅰ卷(选择题 共30分)
一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.在下列各数中,比—1小的数是( ) A.1 B . -1 C. -2 D.0 2。

下列计算正确的是( )
A . B. C. D. 3. 下列图形中,是轴对称图形但不是中心对称图形的是( )
A . 等边三角形 B.干行四边形 C.正六边形 D. 圆 4。

下列调查中,适合采用全面调查(普查)方式的是( ) A.了解西宁电视台“教育在线”栏目的收视率 B.了解青海湖斑头雁种群数量
C. 了解全国快递包裹产生包装垃圾的数量 D.了解某班同学“跳绳”的成绩
5. 不等式组的解集在数轴上表示正确的是( )
A. B.
C. D.
6. 在平面直角坐标系中,将点向右平移3个单位长度得到点,则点关于轴
的对称点 的坐标为( )
A .
B . C. D .
7. 如图,点是矩形的对角线的中点,交于点,若,则的长为( )
32mm -=4
3
m m m ÷=()3
26m m -=()mn mn -
-=+213
1
x x -+<⎧⎨
≤⎩()1,2A -
-B B
x B '
()3,2--()2,2()2,2-()2,2-O
A
B C D AC //O M A B AD M 3,10O
M B C ==OB
A . 5 B. 4 C.
8. 如图,是
的直径,弦交于点,,.则的长为 ( )

B.
C. D.8
9. 西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾。

设乙车单独清理全部垃圾的时间为小时,根据题意可列出方程为( )
A .
B .
C 。

D.
10。

如图,在正方形中,,动点自点出发沿方向以每秒的速度
运动,同时动点自点出发沿折线以每秒的速度运动,到达点时运动同时
停止,设的面积为,运动时间为(秒),则下列图象中能大致反映与之间的函数关系的是( )
ﻬA. B.
C 。

AB O
CD AB P
2,6A
P B P ==0
30A P C ∠=CD x
1.2 1.2
16x += 1.2 1.21
62x +=
1.2 1.2132
x +=
1.2 1.213
x +=A
B C D 3A B c m =M A AB
1cm N
D
D
C C B -2cm B A M N ∆()2
y cm x
y
x
D .
第Ⅱ卷(非选择题 共90分)
二、填空题(本大题共10题,每题2分,共20分,将答案填在答题纸上)
11.是____________次单项式.
12.市民惊叹西宁绿化颜值暴涨,2
017年西宁市投资25160000元实施生态造林绿化工程建设项目.将25160000用科学记数法表示为______________.
13.若正多边形的一个外角是40°,则这个正多边形的边数是 .
14.计算:
.
15。

若是一元二次方程的两个根,则的值是

16。

圆锥的主视图是边长为的等边三角形,则该圆锥侧面展开图的面积是。

17.如图,四边形内接于,点在的延长线上,若,则__________。

18. 如图,点在双曲线
上,过点作轴,垂足为,的垂直平
分线交于点,当时,的周长为_____________。

213x y (2
2-=
12
,x x 2
350x x +
-=22
1212
xx xx +4cm 2
cm A
B C D O
E
BC 0
120B O D ∠
=D C E ∠=A )0y x >A
A C x ⊥C OA
OC B
1A
C =A B C ∆
19。

若点在直线上,当时,,则这条直线的函数解析式为___________. 20。

如图,将
沿对折,使点落在点处,若
,则的长为_________.
三、解答题 (本大题共8小题,第21、22题每题7分,第23、24、25题每题8分,第26、27题每题10分,第28题12分,共70分.解答应写出文字说明、证明过程或演算步骤.)
21。

计算:。

22。

先化简,再求值:,其中。

23. 如图,四边形中,相交于点,是的中点,。

(1)求证:四边形是平行四边形; (2)若,求的面积.
24。

如图,建设“幸福西宁”,打造“绿色发展样板城市”.美丽的湟水河宛如一条玉带穿城而过,已形成“水清、流畅、岸绿、景美"的生态环境新格局。

在数学课外实践活动中,小亮在海湖新区自行车绿道北段上的两点分别对南岸的体育中心进行测量,分别没得
米,求体育中心到湟水河北岸的距离约为多少米(精确
到1米
)?
(),A m n ()0y k xk =
≠11m -≤≤11n -≤≤A B C D
EF A
C
60,4,6A A DA B ∠===AE )
2
212s i n 60π+-2
2
n m n m
n m ⎛⎫--÷ ⎪-⎝⎭m
n -A
B C D ,A CB D O O AC //,8,6A
D B C A C B D ==A B C D A
C B
D ⊥A B C D
AC ,A B D
00
30,60,200D A C D B C A B ∠=∠==D
AC 1.732
25.西宁教育局在局属各初中学校设立“自主学习日”。

规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表。

针对以下六个项目(每人只能选一项):。

课外阅读;.家务劳动;.体育锻炼;.学科学习;。

社会实践;.其他项目进行调查。

根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解
答下列问题:
(1)此次抽查的样本容量为____________,请补全条形统计图;
(2)全市约有4万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少人?
(3)七年级(1)班从选择社会实践的2名女生和1名男生中选派2名参加校级社会实践活动。

请你用树状图或列表法求出恰好选到1男1女的概率是多少?并列举出所有等可能的结果.
26。

如图,在中,,以为直径作交于点,过点作
的切线
交于点,交延长线于点.
A B
C
D
E
F A B C ∆A
B A
C =AB O
BC
D D
O
DE AC E AB
F
(1)求证:; (2)若,求的长.
27.首条贯通丝绸之路经济带的高铁线-—--宝兰客专进入全线拉通试验阶段.宝兰客专的通车对加快西北地区与“一带一路"沿线国家和地区的经贸合作、人文交流具有十分重要的意义.试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为(小时),两车之间的距离为(千米),如图中的折线表示与之间的函数关
系.
根据图象进行以下探究: 【信息读取】
(1)西宁到西安两地相距_________千米,两车出发后___________小时相遇; (2)普通列车到达终点共需__________小时,普通列车的速度是___________千米/小时。

【解决问题】 (3)求动车的速度; (4)普通列车行驶小时后,动车的达终点西宁,求此时普通列车还需行驶多少千米到达西
安?
28。

如图,在平面直角坐标系中,矩形的顶点分别在轴,轴的正半轴上,且。

若抛物线经过两点,且顶点在边上,对称轴交于点,点的坐标分
别为。

D
E A C ⊥10,8A
B A E ==BF x y
y
x
t O
A B C ,A C x y
4,3O A O C ==,O A BC
BE
F
,D E ()()3
,0,0,1
(1)求抛物线的解析式;
(2)猜想的形状并加以证明; (3)点在对称轴右侧的抛物线上,点在轴上,请问是否存在以点为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.
E D B
M
N
x
,,,AFMN
M




ﻬ。

相关文档
最新文档