二阶系统动态性能分析
实验一基于MATLAB的二阶系统动态性能分析

实验一基于MATLAB的二阶系统动态性能分析二阶系统是控制系统中常见的一类系统,在工程实践中有广泛的应用。
为了对二阶系统的动态性能进行分析,可以使用MATLAB进行模拟实验。
首先,我们需要定义一个二阶系统的数学模型。
一个典型的二阶系统可以用如下的常微分方程表示:$$m\ddot{x} + b\dot{x} + kx = u(t)$$其中,$m$是系统的质量,$b$是系统的阻尼系数,$k$是系统的刚度,$u(t)$是控制输入。
在MATLAB中,我们可以使用StateSpace模型来表示二阶系统。
具体实现时,需要指定系统的状态空间矩阵,并将其转换为StateSpace模型对象。
例如:```matlabm=1;b=0.5;k=2;A=[01;-k/m-b/m];B=[0;1/m];C=[10;01];D=[0;0];sys = ss(A, B, C, D);```接下来,我们可以利用MATLAB的Simulink工具来模拟系统的响应。
Simulink提供了一个直观的图形界面,可以快速搭建系统的模型,并进行动态模拟。
我们需要使用一个输入信号来激励系统,并观察系统的响应。
例如,我们可以设计一个阶跃输入的信号,并将其作为系统的输入,然后观察系统的输出。
在Simulink中,可以使用Step函数来生成阶跃输入。
同时,我们可以添加一个Scope模块来实时显示系统的输出信号。
以下是一个简单的Simulink模型的示例:在Simulink模拟中,可以调整系统的参数,如质量、阻尼系数和刚度,以观察它们对系统动态性能的影响。
通过修改输入信号的类型和参数,还可以研究系统在不同激励下的响应特性。
另外,MATLAB还提供了一些工具和函数来评估二阶系统的动态性能。
例如,可以使用step函数来计算系统的阶跃响应,并获取一些性能指标,如峰值时间、上升时间和超调量。
通过比较不同系统的性能指标,可以选择最优的系统配置。
此外,MATLAB还提供了频域分析工具,如Bode图和Nyquist图,用于分析系统的频率响应和稳定性。
机械工程控制基础29_二阶系统的性能指标

机械工程控制基础29_二阶系统的性能指标二阶系统是指具有两个自由度的机械工程控制系统。
在控制系统理论中,衡量系统性能的指标有许多,比如超调量、调节时间、稳态误差等。
下面将详细介绍二阶系统的性能指标。
一、超调量:超调量是指过渡过程中输出量超过稳态值的最大偏离量。
对于二阶系统而言,其超调量可以通过过冲幅值与稳态值的差进行计算。
具体公式如下:超调量(%)=(过冲幅值-稳态值)/稳态值×100超调量主要反映了系统在过渡过程中的动态性能,是指标中最容易获取的。
二、调节时间:调节时间是指系统输出量从初始稳态值到达稳态值所需要的时间。
对于二阶系统而言,其调节时间通常从过渡过程的时间t1开始计算。
具体公式如下:调节时间=t2-t1其中,t2表示系统输出量进入超定态的时刻。
三、上升时间:上升时间是指系统输出量从初始稳态值到达稳态值所需要的时间,也即是调节时间的一部分。
对于二阶系统而言,上升时间是系统输出量从过渡过程的时间t1到达过冲幅值和稳态值之间的时间间隔。
四、峰值时间:峰值时间是指系统输出量达到过冲幅值或者偏离过冲幅值最远的时刻。
对于二阶系统而言,峰值时间是系统从过渡过程的时间t1到达过冲幅值的时间间隔。
五、稳态误差:稳态误差是指系统输出量在稳态下与期望输入量之间的偏差。
对于二阶系统而言,稳态误差可以通过比较系统稳态值与期望输入量来计算。
稳态误差主要反映系统的静态性能,也即系统对于不同输入的输出表现。
综上所述,二阶系统的性能指标主要包括超调量、调节时间、上升时间、峰值时间和稳态误差。
这些指标可以通过理论计算、仿真分析和实验测试等方法来获取,用于评估和比较不同二阶系统的控制性能。
在实际应用中,根据具体需求和控制要求,可以通过调整系统参数和控制策略等来改善系统的性能指标,并使系统能够更好地满足要求。
自动控制原理实验——二阶系统的动态过程分析

实验二二阶系统的动态过程分析一、 实验目的1. 掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术。
2. 定量分析二阶系统的阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
3. 加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的性质。
4. 了解和学习二阶控制系统及其阶跃响应的Matlab 仿真和Simulink 实现方法。
二、 实验内容1. 分析典型二阶系统()G s 的ξ和n ω变化时,对系统的阶跃响应的影响。
2. 用实验的方法求解以下问题:设控制系统结构图如图2.1所示,若要求系统具有性能:%20%,1,p p t s σσ===试确定系统参数K 和τ,并计算单位阶跃响应的特征量d t ,r t 和s t 。
图2.1 控制系统的结构图3. 用实验的方法求解以下问题:设控制系统结构图如图2.2所示。
图中,输入信号()r t t θ=,放大器增益AK 分别取13.5,200和1500。
试分别写出系统的误差响应表达式,并估算其性能指标。
图2.2 控制系统的结构图三、实验原理任何一个给定的线性控制系统,都可以分解为若干个典型环节的组合。
将每个典型环节的模拟电路按系统的方块图连接起来,就得到控制系统的模拟电路图。
通常,二阶控制系统222()2nn nG ssωξωω=++可以分解为一个比例环节、一个惯性环节和一个积分环节,其结构原理如图 2.3所示,对应的模拟电路图如图2.4所示。
图2.3 二阶系统的结构原理图图2.4 二阶系统的模拟电路原理图图2.4中:()(),()()r cu t r t u t c t==-。
比例常数(增益系数)21RKR=,惯性时间常数131T R C=,积分时间常数242T R C=。
其闭环传递函数为:12221112()1()(1)crKU s TTKKU s T s T s K s sT TT==++++(0.1) 又:二阶控制系统的特性由两个参数来描述,即系统的阻尼比ξ和无阻尼自然频率n ω。
二阶阶跃响应动态性能指标求取

二阶阶跃响应动态性能指标求取二阶系统是控制系统中常见的一种模型,其阶跃响应动态性能指标是评估系统的性能好坏的重要指标。
本文将从二阶系统的阶跃响应的定义、特点和性能指标的求取方法等方面进行阐述。
首先,二阶系统的阶跃响应是指系统在输入为单位阶跃信号时的响应。
假设二阶系统的传递函数为:G(s)=K/(s^2+2ξω_ns+ω_n^2)其中,K为增益,ξ为阻尼比,ω_n为自然频率。
二阶系统的阶跃响应具有以下特点:1.超调量:超调量是指阶跃响应中峰值与系统最终稳定值之间的差值,用百分数表示。
超调量越小,表示系统对阶跃输入的响应越快速、平稳。
2.响应时间:响应时间是指系统从单位阶跃响应开始到稳定的时间。
响应时间越短,表示系统对阶跃输入的响应越迅速。
3.调整时间:调整时间是指系统从初始状态到达超调量指定范围内的时间,一般取超调量为5%。
调整时间越短,表示系统对阶跃输入的响应越快速、平稳。
4.峰值时间:峰值时间是指系统对阶跃输入的响应达到其最大值的时间。
5.匀稳态误差:系统在稳态下的输出与输入的差值,反映系统的控制准确性。
若单位阶跃输入的稳态输出为1,则对于系统的阶跃响应不应有静态误差。
有了以上的定义和特点之后,下面将介绍二阶系统阶跃响应动态性能指标的求取方法。
首先,根据传递函数可求得系统的特征方程:s^2+2ξω_ns+ω_n^2=0然后,通过特征方程可以求得系统的根:s_1=-ξω_n+ω_n√(ξ^2-1)s_2=-ξω_n-ω_n√(ξ^2-1)根据系统根的位置可以对系统的动态性能进行评估。
1.超调量的计算:超调量的计算公式为:MP=e^(-πξ/√(1-ξ^2))其中,MP为超调量,ξ为阻尼比。
2.响应时间的计算:响应时间的计算公式为:t_r=π/ω_d其中,t_r为响应时间,ω_d为峰值时的角频率,可通过特征方程得到:ω_d=ω_n√(1-ξ^2)3.调整时间的计算:调整时间的计算公式为:t_s=4/(ξω_n)其中,t_s为调整时间。
自控实验—二三阶系统动态分析

自控实验—二三阶系统动态分析在自控实验中,二、三阶系统动态分析是非常重要的一部分。
通过对系统的动态性能进行分析,可以评估系统的稳定性、响应速度和稳态误差等方面的性能。
本次实验将使用PID控制器对二、三阶系统进行实时控制,并通过实验数据对系统进行动态分析。
首先,我们先了解什么是二、三阶系统。
在控制系统中,系统的阶数表示系统传递函数的阶数,也可以理解为系统动态特性的复杂程度。
二阶系统由两个极点和一个零点组成,三阶系统由三个极点和一个零点组成。
二、三阶系统的动态响应特性与极点位置有关,不同的极点位置对系统的稳定性、响应速度和稳态误差等性能有着不同的影响。
在实验中,我们将使用PID控制器对二、三阶系统进行控制。
PID控制器是一种经典的比例-积分-微分控制器,可以根据误差信号进行调节,通过调整比例系数、积分时间和微分时间来控制系统的响应特性。
实验中,我们将根据二、三阶系统的实时数据进行PID参数调整,以达到控制系统的稳定和快速响应的目的。
在进行实验前,我们首先需要对二、三阶系统进行建模。
二、三阶系统的传递函数通常表示为:二阶系统:G(s) = K / (s^2 + 2ξω_ns + ω_n^2)三阶系统:G(s) = K / (s^3 + 3ξω_ns^2 + 3ω_n^2s + ω_n^3)其中,K表示系统的增益,ξ表示系统的阻尼比,ω_n表示系统的自然频率。
通过实验数据的统计和分析,我们可以估计出系统的K、ξ和ω_n的值,并据此进行PID参数的调整。
接下来,我们进行实验。
我们首先将PID控制器的参数设为初始值,然后对系统进行实时控制,并记录系统输出的数据。
通过对这些数据进行分析,我们可以得到系统的稳态误差、响应时间和超调量等性能指标。
对于二阶系统,我们将分析以下几个方面的性能:1.稳态误差:通过比较实际输出值与目标值之间的差异,可以得到系统的稳态误差。
常见的稳态误差有零稳态误差、常数稳态误差和比例稳态误差等。
二阶系统动态性能指标

代表
过阻尼二阶系统的动态表现
时化成两个一阶惯性环节串联 三、二阶系统的动态性能指标与系统参数的关系
[例] 控制系统如图,求
R(s) + -
解:
C(s)
欠阻尼系统
第五次 作业
• P134
3-9
作业三 P60 2-12 解 信号流图
1
1
梅逊公式
欠阻尼二阶系统的动态性能指标
例2(P88 例3-12)图3-24为单位反馈二阶系统的单位阶 跃响应曲线。已知性能指标为:超调量=37%,调节时间 =5s,稳态值=0.95。试确定系统的开环传函。 解 二阶系统的传函为
1
2
闭环闭环主导极点
[例] 闭环控制系统的传递函数为 ,求单位阶跃响应
解:
第六节 稳态误差分析
一、稳态误差的定义 (1)从输入端定义 (2)从输出端定义
R(s) +
C(s)
G(s)
-
H(s)
由终值定理:
开环传递函数
二、控制系统的型别
开环传递函数中积分环节的个数 上很少见
-
++
一.一阶系统的瞬态响应
-
+
=
二.一阶系统的动态性能指标
ts 是一阶系统的动态性能指标。
增大系统的开环放大系数K0 都会使T 减小,使ts 减小。
第四节 二阶系统的动态性指标
一、二阶系统的动态响应
二阶标准型
或称典型二阶系 统传递函数
P75 二阶系统的 结构图
当 ξ=0 时
Ct(t)=L -1[
当 0<ζ<1时
误差带
=37%
根据终值定理
例3(大连理工大学2001年)单位负反馈二阶系统的单位 阶跃响应曲线如图所示。试确定系统的开环传函。 解 依图可知
欠阻尼二阶系统动态性能分析与计算

1+ lim k s→0 sν r(t)=Rt R(s)=R/s2 R ess= k lim s ν s s→0 r(t)=Rt2/2 R(s)=R/s3 ess= R
lim
s→0
s2
k sν
取不同的 ν
R1(t)
0型 Ⅰ型 Ⅱ型
Rt
Rt2/2
R1(t)
Rt
Rt2/2
R 1+ k
∞
R k
∞ ∞
R k R
1 右移一位降两阶 2 每两行个数相等 3 行列式第一列不动 +8 ε -8(2ε+8)7 4 次对角线减主对角线 -7 ε 分母总是上一行第一个元素 5 2 ε 6 一行可同乘以或同除以某正数 7 第一列出现零元素 时, 用正无穷小量ε代
劳斯判据
系统稳定的必要条件: s6 1 特征方程各项系数 均大于零!
ξ ωn ωn
传递函数:
A Φ(s)= S+a
运动模态1
K(t)=Ae-at
零极点分布图:
j
-a
0 0
传递函数:
A1s+B1 Φ(s)=(S+a)2+b2
运动模态2
K(t)=Ae-atsin(bt+α)
零极点分布图:
j b -a 0 0
t
运动模态3
传递函数:
A1s+B1 Φ(s)= S2+b2
欠阻尼二阶系统动态性能分析与计算动态性能指标定义1100ba峰值时间tp间trb调节时间ts动态性能指标定义2调节时间ts上升时间tr动态性能指标定义3brabtrtpts一阶系统时域分析无零点的一阶系统ts1画图时取k1t05ht0632hh2t0865hh3t095h二阶系统单位阶跃响应定性分析21200s12212n2112ht0112ncosnt0欠阻尼二阶系统动态性能分析与计算1取其解中的最小值s121sindt欠阻尼二阶系统的tsht1ent取误差带为005则有ent005ln201235由此解出ts运动模态1ktaeat零极点分布图
3.3二阶系统的动态性能(上)解析

s 2n 1 s [( s n ) jd )][( s n ) jd ]
s 2n 1 s 2n 1 s ( s n )2 ( jd )2 s ( s n )2 d 2
at
s n n 1 s (s n )2 d 2 (s n )2 d 2 n 1 2 1 s n 1 2 2 s ( s n ) d ( s n )2 d 2
5.84 n ts 4.75 n
4、稳态误差为0,说明典型二阶系统跟踪阶跃输入信号时,无稳态误差, 系统为无静差系统。
4.过阻尼(ζ>1)状态
闭环特征方程
特征根
2 s 2 2n s n 0
s1 n n 2 1
s2 n n 2 1
nt
d
L[e at cos t ]
上式取拉氏反变换,得
y(t ) 1 e
1 1
cos d t
1
2
sa ( s a)2 2 L[e at sin t ] ( s a)2 2
ent sin d t
e nt 1 2 e
Δ 2 Δ 5
4T1 1.25 ts 3T 1
Δ 2 Δ 5
1.34
3、稳态误差为0,说明典型二阶系统跟踪阶跃输入信号时,无稳态误 Y(t) 差,系统为无静差系统。
2
4、需要说明的是,对于临界阻尼和过阻 尼的二阶系统,其单位阶跃响应都没有 振荡和超调,系统的调节时间随ζ的增加 而变大,在所有无超调的二阶系统中, 临界阻尼时,响应速度最快。
2 n 1 1 s Y ( s ) ( s ) R( s ) 2 2 2 s n s s s 2 n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
δ1%= e
ts =
−
π 1 ζ 2 1−ζ1
×100%=16%
4
ωn1ζ1
=
4 =1 s) ( 0.5×8
Monday, October 17, 2011
11
How to improve the performance of second order system
a. Derivative feedback of output
e − ζω n t 1−ζ
2
sin( ω d t + tg −1
1− ζ
2
ζ
) ≤ ∆%
for convenience
e − ζω n t s 1−ζ 2
= ∆%
2
ts = −
Monday, October 17, 2011
ln(
1−ζ
× ∆ %)
ζω
n
6
衰减振荡瞬态过程的性能指标 Transient response specification
cos β = ζ
β is damped angle
td =
Monday, October 17, 2011
1+ 0.7ξ
ωn
2
Transient response specification Peak time :t p ,for c′(t p ) = 0 when t = t p
c (t ) = 1 − e −ζω n t 1−ζ 2 sin(ω d t + β ) , t ≥ 0
Qts = 4
ωnζ
(or
3
ωnζ
),∴ωn is increased, ts . For a certain
ζ
Usually, letting ζ =0.4~0.8, then the overshoot is 25%~1.5%.
Monday, October 17, 2011
8
Example
Consider a system shown in fig.
Obtain ① ζ and ωn ; ② δ % and ts
K =16,T = 0.25
R (s )
③for δ %=16%,K=?, When T is same. Solution:① ω n = ②
K = T
−
K s(Ts + 1)
C (s )
16 1 1 = 8, ζ = = = 0 . 25 0 . 25 2 KT 2 16 × 0 . 25
R (s )
2 ωn s ( s + 2ζω n )
C (s )
-
-
τs
将输出信号的导数反馈到 系统输入端并与误差信号 比较。 比较。保持无阻尼振荡频 率不变,增大系统阻尼, 率不变,增大系统阻尼, 减小超调, 减小超调,同时减小调节 时间。 时间。
b. Proportional plus derivative of error
1− ζ 2 ωd = = tgβ thus: tg (ωd t p + β ) = ζωn ζ
故峰值时间满足的条件是 tg (ωd t p + β ) = tgβ
ωd t p = nπ (n = 0,1,2,...)
π t p is first time of peak,so n=1,we have: t p = = ωn 1−ζ 2 ωd
−
δ %×100%= e
ζ π 1− 2 ζ
×100% = 44%
4 4 = = 2s, (for∆ = 2) ω ζ 8×0.25 n ts = 3 3 = =1.5s, (for∆ = 5) ωnζ 8×0.25
③
−
ζπ
1− ζ
2
Q δ % = 16 %, ∴ 0 . 16 = e
4
衰减振荡瞬态过程的性能指标 Transient response specification
100 90 80 70 60 50 40 30 20 10 0
δ%
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Monday, October 17, 2011
ζ
5
衰减振荡瞬态过程的性能指标 Transient response specification
Settling time t s: according definition ,when t≥ts, |c(t)-c(∞)|≤ c(∞) ×∆%。 If the final value is unity, the error between the steady state and the response is equal to
Second order system and transient response specification Following shall obtain the rising time \ peak time \ maximum overshoot and settling time
c ( t ) = 1 − e − ζω n t (cos ω d t + sin ω d t ) , 1−ζ 2
−1
ζ
t≥0
c(t ) = 1 −
e −ζωnt 1− ζ
2
sin( 1 − ζ ωn t + tg
2
1− ζ 2
ζ
), t ≥ 0
rising time t r : according definition, for c ( t r ) = 1 when t = t r
c ( t ) = 1 − e − ζω n t r (cos ω d t r +
R (s )
2 ωn s ( s + 2ζω n )
Wn2 (1 + τs ) G ( s) = 2 s + (2ζWn + Wn2τ ) s + Wn2 C (s )
-
τs
+
相当于给系统增加了一个 闭环零点, 闭环零点,同时保持系统 自然频率不变, 自然频率不变,增大系统 阻尼比。 阻尼比。 Wτ ζd =ζ + n 2
Monday, October 17, ห้องสมุดไป่ตู้011
12
1
1− e −ζω n t 1−ζ 2
0
t
1−
1 1−ζ 2
ts t's
Response curve within a pair of envelope curve of
1±
Monday, October 17, 2011
e − ζω n t 1−ζ 2
7
[In Summary] Damped ratio ζ is very important parameter of second order system. It determines the performance of the system. For ζ > 1 the curve is monotonically and no oscillation and no overshoot. For ζ = 0 ,curve is oscillation for ever. For (0 < ζ < 1) ,when ζ is small, large oscillation and settling time and bad performance.
−
= 1− e
ζπ 1−ζ 2
(cos π +
ζ
1−ζ 2
sin π ) = 1 + e
−
ζπ 1−ζ 2
δ% =
c(t p ) − c(∞) c (∞ )
×100% = (c(t p ) − 1) ×100%
−
ζπ
1−ζ 2
thus: %= e δ
Monday, October 17, 2011
×100%
Monday, October 17, 2011
π
3
Transient response specification Maximum overshoot δ % :
π Substitute t p = into c(t ), hence c(t p ) = cmax ωd ζ −ζω n t p cmax = c(t p ) = 1 − e (cos ω d t p + sin ω d t p ) 2 1−ζ
1− ζ 2 where β = tg −1
ζ
c′(t ) = −
− ζωne
−ζω n t p
1−ζ 2
sin(ω d t p + β ) −
e
−ζω n t p
1−ζ 2
ωd ⋅ cos(ωd t p + β ) = 0
ζωn sin(ωd t p + β ) −ωd ⋅ cos( d t p + β ) = 0 ω
ζ
cos ω d t r +
sin ω d t r = 0 1−ζ 2
ζ
1−ζ
2
sin ω d t r ) = 1
tg ω d t r = −
Monday, October 17, 2011
1−ζ
2
ζ
thus:t r =
1
ω
tg
−1
(−
1−ζ 2
d
ζ
)
1
衰减振荡瞬态过程的性能指标 Second order system and transient response specification