纳米材料在生物医学领域的应用

合集下载

纳米材料在生物医学中的应用

纳米材料在生物医学中的应用

纳米材料在生物医学中的应用随着科学技术的不断进步和人类认知的不断深入,越来越多的先进材料被应用于生物医学领域中。

其中纳米材料作为新兴材料,具有结构奇异、性质优异、功能多样等特点,成为了近年来研究的热点之一。

那么,纳米材料在生物医学领域的应用具体有哪些呢?一、纳米材料在药物传递中的应用纳米材料在药物传递方面的应用广泛,主要是通过改变材料的尺寸和表面性质来实现药物的高效传递,从而达到更好的治疗效果。

纳米材料具有非常小的尺寸和大的比表面积,这使得它们能够更好地穿透组织和细胞,减少副作用,并且可以有效地保护药物免受光热、化学和生物因素的影响。

此外,纳米材料还可以通过改变药物的释放速度、靶向性、生物可降解性等性质来增强药物的效力,减轻药物副作用和增强使用安全性。

二、纳米材料在生物成像中的应用纳米材料在生物成像方面的应用主要体现在两个方面:一是通过纳米材料的特殊结构和磁性、荧光、放射性等特性,实现对生物 signals 的采集和信号转换;二是通过纳米材料的多样性和多功能性,能够在生物学显像操作中实现多模式或多层次的成像。

例如,可通过利用纳米材料的荧光特性来制备多种荧光标记的纳米粒子,用于细胞和器官成像、生物检测、生态监测等方面;同时也可通过利用纳米金颗粒的表面增强拉曼等效应技术来实现更加精细、高分辨率的生物成像。

三、纳米材料在生物传感中的应用纳米材料在生物传感方面的应用主要是通过利用其独特的性质,如表面增强拉曼散射、表面等离子激元振荡、自组装等现象,来实现对生物大分子(如DNA、RNA、蛋白质)的快速、敏感、特异性检测。

这种生物传感器可能成为下一代的生物检测和治疗技术,有潜力促进生物医学诊断和治疗的发展。

四、纳米材料在组织工程中的应用组织工程学是一门研究如何制造全新生物组织的学科,其最大的挑战是如何构造具备理想机械性能、形态和功能的人工生物组织。

纳米材料因其尺寸微小,能够模拟自然环境,为生物材料的设计和制备提供了新的思路和方法。

纳米材料在生物医学领域的应用

纳米材料在生物医学领域的应用

纳米材料在生物医学领域的应用随着科学技术的飞速发展,纳米材料因其独特的物理和化学性质,逐渐成为生物医学研究的重要工具。

纳米材料通常具有极小的尺寸,通常在1到100纳米之间,这一微小的尺度赋予了它们许多非凡的特性,如增强的反应性、优良的生物相容性和良好的分散性等。

这些特性使得纳米材料在生物医学领域展现出广泛的应用潜力,包括药物递送、成像诊断、抗肿瘤治疗等方面。

纳米材料的基本特性尺寸效应纳米材料独特的尺寸效应使得它们在许多应用中表现出与宏观材料截然不同的性质。

在这一尺度下,材料表面原子所占比例大增,导致其表面能、反应性和电子特性等均有所变化。

这使得纳米材料能够更有效地与生物分子相互作用。

增强的比表面积纳米材料具有极大的比表面积,这意味着它们能够与更多的生物分子进行接触,从而提高了药物载体或者催化剂的效率。

这一特性尤其适用于药物释放系统,在体内能够更快速地与靶细胞结合,实现更高效的药物传递。

有序结构许多纳米材料可以通过控制合成条件而获取有序的结构,这种有序性对提高材料性能和功能至关重要。

在生物医学中,有序结构能够提升治疗效果,通过优化载药能力、降低毒性等方式达到更佳效果。

纳米材料在药物递送中的应用药物递送系统是纳米医学研究的重要组成部分。

通过使用纳米材料,可以实现目的性药物释放,即在特定条件下(如pH值、温度或酶的存在)释放药物。

靶向递送靶向递送是指将药物精确地输送到病变部位。

纳米粒子可通过表面修饰结合抗体或配体,从而增强对靶细胞的亲和力。

例如,利用功能化金纳米粒子可以将化疗药物包装并通过靶向肿瘤细胞表面的特定受体进行释放。

这种智能化药物递送系统显著减少了对周围健康组织的损伤,提高了治疗效果。

控释技术基于纳米技术的控制释放系统能够实现药物在体内的持续释放。

例如,聚合物基纳米珠可以设计为在一定时间内逐步释放药物,相较传统给药方法,大大提高了给药频率与患者依从性。

同时,这种系统可以提供更稳定、更持久的药效,减少患者服用次数及可能带来的不适,被广泛应用于慢性病以及癌症等疾病治疗中。

纳米材料在生物医学中的应用

纳米材料在生物医学中的应用

纳米材料在生物医学中的应用细胞是构成生物体的基本单位,研究细胞结构和功能的进展,对于进一步了解生物体的生理和病理过程非常重要。

而纳米技术的发展为细胞研究提供了强有力的工具,纳米材料在生物医学中的应用正变得越来越广泛。

一、生物成像生物成像是生物医学领域的核心技术之一,通过对病灶的判断和跟踪,将为疾病的早期诊断和治疗提供重要依据。

纳米材料的独特物理和化学性质,使其成为生物成像的理想探针。

例如,在磁共振成像中使用的超顺磁纳米颗粒能够增强图像对比度,并提高磁共振成像的敏感度。

金纳米颗粒也被广泛用于生物成像,其表面等离子体共振效应可用于增强光学成像的分辨率和对比度。

二、靶向治疗靶向治疗是针对特定疾病相关分子的疗法,通过与病变细胞特异性结合,释放药物或发挥治疗效果。

纳米材料的表面可以通过修饰特定的分子,使其具有高度的靶向性。

一种常用的应用是利用纳米载体递送药物,有效地将药物输送到病变部位,减少对健康组织的损伤。

此外,纳米材料在光热治疗中也发挥重要作用,通过选择性地吸收光能将其转化为热能,用于破坏肿瘤细胞。

其中,碳纳米材料和金纳米颗粒是常用的光热治疗材料。

三、生物传感器生物传感器是检测生物体内特定物质或生物过程的电子仪器。

纳米材料的高比表面积和良好的导电性使其成为生物传感器中的理想电极和传感元件。

例如,碳纳米管可以用于电化学检测特定分子的浓度,而纳米金颗粒则可以作为光学传感器检测生物样品中的分子信号。

此外,纳米材料还可以与生物分子相互作用,实现对生物过程的监测和控制。

四、组织工程组织工程是通过组合生物材料、细胞和生物活性物质来构建人工组织的技术。

纳米材料的高度可调性和可制备性使其在组织工程中得到广泛应用。

例如,纳米纤维素可以用于构建三维生物支架,为细胞附着和生长提供支持。

纳米涂层技术也可以改善生物材料的表面性能,增强其与细胞的相互作用,在人工体内组织工程中发挥重要作用。

纳米材料在生物医学中的应用为科学家们提供了更多的研究和治疗手段,但同时也面临一些挑战。

纳米材料在生物医学中的创新应用

纳米材料在生物医学中的创新应用

纳米材料在生物医学中的创新应用在当今科技飞速发展的时代,纳米材料凭借其独特的性质和优势,在生物医学领域展现出了令人瞩目的创新应用。

这些应用不仅为疾病的诊断和治疗带来了新的契机,也为提高人类健康水平提供了有力的支持。

纳米材料,顾名思义,是指在纳米尺度(1 100 纳米)范围内的材料。

由于其尺寸极小,纳米材料具有与常规材料截然不同的物理、化学和生物学特性。

例如,纳米材料具有较大的比表面积,这意味着它们能够与生物分子更充分地接触和相互作用;同时,纳米材料的量子效应也使其具有独特的光学、电学和磁学性质。

在生物医学领域,纳米材料的创新应用首先体现在疾病诊断方面。

其中,纳米造影剂的出现为医学影像学带来了革命性的变化。

传统的造影剂在成像效果和特异性方面存在一定的局限性,而纳米造影剂则能够有效地提高成像的灵敏度和分辨率。

例如,基于金纳米粒子的造影剂在 X 射线成像中具有出色的对比度,能够更清晰地显示肿瘤等病变组织;磁性纳米粒子则在磁共振成像(MRI)中表现优异,可以更准确地检测早期病变。

此外,量子点作为一种新型的纳米荧光材料,具有发光强度高、稳定性好、光谱可调等优点,在生物荧光成像中具有广阔的应用前景。

通过将量子点与特异性抗体或生物分子结合,可以实现对细胞和生物分子的高灵敏度和高选择性检测,为疾病的早期诊断提供了有力的工具。

除了诊断,纳米材料在疾病治疗方面也发挥着重要作用。

纳米药物载体是目前研究的热点之一。

传统的药物治疗往往存在药物利用率低、毒副作用大等问题,而纳米药物载体则能够有效地解决这些难题。

例如,脂质体、聚合物纳米粒和纳米胶束等纳米载体可以将药物包裹在内部,通过控制纳米载体的尺寸、表面性质和靶向性,实现药物的精准输送和释放。

这样不仅可以提高药物在病灶部位的浓度,增强治疗效果,还可以减少药物对正常组织的损伤,降低毒副作用。

此外,纳米材料还可以用于光热治疗和光动力治疗等新型治疗方法。

金纳米棒、碳纳米管等纳米材料在近红外光的照射下能够产生局部高温,从而杀死肿瘤细胞;而一些纳米材料在特定波长的光激发下能够产生具有细胞毒性的活性氧物质,实现对肿瘤的光动力治疗。

纳米材料在生物医学中的应用

纳米材料在生物医学中的应用

纳米材料在生物医学中的应用一、纳米材料在生物医学领域的应用1. 生物传感器:纳米材料可以用于生物传感器的制备和运载。

由于其特殊的物理和化学特性,纳米材料能够在低浓度下高度灵敏地探测生物分子,如蛋白质、DNA、RNA等。

纳米材料的高比表面积也能够提高生物分子的靶向性和识别能力,因此在生物传感器中的应用前景广阔。

2. 药物传输:纳米材料在药物传输方面有着巨大的应用前景。

基于其独特的尺寸和表面性质,纳米材料可以实现药物的高效载体和传输,可以改善药物的生物利用度和保留时间,降低药物的副作用。

纳米材料还可以通过靶向控制药物的释放,提高药物的效力和准确性。

3. 治疗:纳米材料的生物学特性还可以被用来治疗疾病。

纳米材料可以通过特定的靶向途径有效地将药物输送到病灶部位,实现对肿瘤、炎症等疾病的治疗。

纳米材料本身也具有良好的生物相容性和生物降解性,可以大大减少对人体的副作用和不良反应。

4. 影像检测:纳米材料在影像检测方面也有很大的应用潜力。

纳米材料可以被用作造影剂,可以通过在体内对比增强显像的方式,帮助医生更准确地进行检测和诊断。

纳米材料还可以通过特定的结构设计和表面修饰,提高对特定靶向组织或细胞的识别和检测能力。

二、纳米材料在生物医学领域的研究进展1. 纳米生物传感器的研究进展纳米生物传感器是将纳米材料作为传感器材料,能够感知和转换生物分子的信号。

近年来,许多基于纳米材料的生物传感器已经被开发出来,并且在许多生物医学领域得到应用。

一种基于纳米金材料的葡萄糖生物传感器已经被研发出来,能够检测血液中的葡萄糖浓度,用于糖尿病的监测和治疗。

2. 纳米材料在药物传输方面的研究进展纳米材料在药物传输方面的研究也越来越受到关注。

以纳米脂质体为载体的药物传输系统已经在临床中得到应用,并被用于多种疾病的治疗。

纳米材料的特殊表面性质也为药物的靶向控制提供了很多可能性。

一种基于聚合物纳米粒子的药物传输系统已经被成功研发出来,并能够实现对癌细胞的高度靶向,从而提高了治疗效果。

纳米材料在生物医学中的应用

纳米材料在生物医学中的应用

纳米材料在生物医学中的应用一、纳米材料简介纳米材料是一种尺度在 1-100 纳米(1nm=10^-9m)之间的材料。

随着纳米技术的不断发展,纳米材料的种类也越来越多,包括碳纳米管、纳米金属、纳米氧化物、纳米化合物等。

纳米材料具有独特的物理和化学特性,在生物医学领域有着广阔的应用前景。

二、纳米材料在生物医学中的应用1. 纳米药物纳米药物是指纳米材料作为载体,将药物包裹其中,以此实现针对性输送和控制释放。

这种药物具有高效、低剂量、较少毒副作用等优点。

例如,近年来研究的纳米抗癌药物在治疗肺癌、乳腺癌等疾病中显示出显著的疗效,成为靶向治疗的重要手段。

2. 纳米生物传感器纳米生物传感器是指将纳米材料与生物体相互作用,通过监测生物体内的物质浓度、生物物质分子等信息,实现对生物体状态的检测、分析和诊断。

例如,纳米粒子的表面修饰可实现对病毒、细菌等病原体的高灵敏性检测,从而提高疾病早期诊断的准确性。

3. 纳米材料的组织工程和再生医学纳米材料在组织工程和再生医学中应用广泛。

例如,纳米材料可以通过与生物体组织细胞相互作用,促进细胞生长和分化。

这种作用可应用于骨折愈合、心脏组织修复等方面。

同时,纳米材料还可以用于人工关节、血管、器官等的研究和制造,应用效果显著。

4. 纳米光学成像纳米光学成像是一种通过光学手段对微观物质进行成像的技术。

纳米材料在这方面的应用虽然有限,但正在逐渐发展。

例如,纳米金颗粒的表面修饰可实现在体内的光学成像,用于疾病诊断和研究。

三、纳米材料在生物医学中的优势与传统医疗技术相比,纳米技术具有以下优势:1. 高效性:纳米药物能够精准靶向病变部位,达到更高的药效和更少的伤害。

2. 安全性:在合理使用下,纳米材料的毒副作用很小,对人体安全。

3. 可控性:纳米药物的性质可以通过合理设计进行调控,达到更好的治疗效果。

4. 生物相容性:多数纳米材料具有很好的生物相容性,不会被生物体的免疫系统排斥。

四、纳米材料在生物医学中的挑战虽然纳米技术在生物医学领域有着广阔的应用前景,但其面临以下挑战:1. 在生物体内的稳定性问题;纳米药物在体内易受生物环境的影响,失去原有的性质和效果。

纳米材料在生物医学领域的应用

纳米材料在生物医学领域的应用

纳米材料在生物医学领域的应用纳米科技作为当今科技领域中备受关注的一项重要技术,其应用领域也越来越广泛。

尤其在生物医学领域,纳米材料的应用具有广泛的展望和前景。

本文将就此主题展开讨论。

一、纳米材料的特性及其在生物医学领域的应用纳米材料以其独特的特性,如比表面积大、表面反应活性高、强烈的量子效应等特点,使其在生物医学领域表现出了出色的潜力。

纳米材料的各种特殊功能使其在生物医学领域开发和应用具有明显的优势。

1.纳米材料在生物医学领域的应用纳米材料被用来治疗癌症、糖尿病、心血管疾病、神经系统疾病等多种疾病。

其中,用纳米颗粒治疗肿瘤是众所周知的一个领域。

纳米材料具有增强肿瘤组织特异性的功能,使其在探索癌症诊断和治疗方面变得更加有前景。

另外,纳米材料的表面特性允许其对生物界面的研究,包括细胞循环、细胞代谢和生物学组织学探索等领域。

2.纳米材料的生物应用在生物医学应用方面,纳米材料可以用来制备药物载体、光感材料、生物传感器、杀菌剂、非线性光学分子和缺陷材料等。

纳米材料可以在靶向方面获得更好的控制,减少作用不明、细胞毒性不足或过于导致多种副作用的控制问题。

此外,与常规药物相比,使用纳米材料包装的药物有更好的溶解性,可以在目标区域精确释放。

二、纳米材料在癌症治疗中的应用目前,癌症仍然是世界各国普遍面临的危险疾病之一,而纳米材料就因为其与癌症相关的潜力变得更加重要。

因此,在癌症治疗方面的纳米领域研究也越来越引人注目了。

1.纳米材料作为癌症治疗药物的载体与常规药物相比,使用纳米材料包装的药物在药物分子、药物动力学、药物分布、药物释放以及局部治疗性等方面都具有很大的优势。

使用适当的纳米材料可以为药物输送、释放,甚至作为一种辅助药物。

纳米材料还被广泛应用于癌症的高密度诊断。

对于人类乳腺的癌症治疗,纳米球奶糖材料可以制备成光纤,允许准确定位和吸收受体细胞。

2.纳米材料的靶向治疗纳米材料具有高比表面积、界面反应能力和分子大小能力,便于生物分子界面的靶向自由转运。

纳米材料的生物医学应用

纳米材料的生物医学应用

纳米材料的生物医学应用随着科学技术的不断进步,纳米技术在生物医学领域的应用越来越受到重视。

纳米材料具有独特的物理、化学和生物学特性,使其在生物医学领域具有广阔的应用前景。

本文将从诊断、治疗和药物传递等方面阐述纳米材料在生物医学中的重要应用。

一、纳米材料在疾病诊断中的应用纳米材料的特殊性质使其成为一种理想的生物标记物。

通过在纳米颗粒上修饰抗体、蛋白质或核酸等生物分子,可以实现对特定疾病标志物的高度选择性和灵敏检测。

例如,在癌症的早期诊断中,通过将纳米颗粒与抗体结合,可以实现对肿瘤特异性标志物的检测,提高诊断的准确性和灵敏性。

二、纳米材料在疾病治疗中的应用1. 肿瘤治疗纳米材料在肿瘤治疗中具有重要的应用潜力。

一方面,纳米颗粒可以通过改变其大小、形状或表面性质,实现药物的靶向输送,提高药物在肿瘤组织中的积累,减少对正常组织的损伤。

另一方面,纳米材料还可以作为肿瘤热疗的载体,通过外加磁场或光照射使纳米材料产生热效应,破坏肿瘤细胞的结构,实现肿瘤的热疗。

2. 动脉粥样硬化治疗动脉粥样硬化是一种常见的血管疾病,纳米材料在治疗该疾病中显示出巨大的潜力。

通过将纳米颗粒修饰上抗炎药物或血管重建因子等生物活性物质,可以实现对病变血管的定向治疗,促进血管再生,改善血管通透性。

三、纳米材料在药物传递中的应用纳米材料在药物传递中的应用已经取得了重要的突破。

通过将药物包裹在纳米粒子内部,可以提高药物的溶解度、稳定性和生物利用度。

另外,纳米材料还可以通过改变其表面性质,实现对药物的控制释放,提高药物在靶组织中的作用时间。

此外,纳米材料还可以通过改变其形状、结构或尺寸,实现对药物的靶向输送,减少药物在体内的分布和代谢,提高药物的效果。

总之,纳米材料在生物医学中的应用潜力巨大。

通过纳米技术的引入,可以实现对疾病的早期诊断、靶向治疗和药物传递的精准控制。

然而,纳米材料的安全性和生物相容性仍然是需要面对的挑战。

进一步的研究需要加强对纳米材料的毒性评估和生物安全性研究,以确保其在生物医学应用中的可持续发展和广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米材料在生物医学领域的应用摘要目前应用于生物医学中的纳米材料的主要类型有纳米碳材料、纳米高分子材料、纳米复合材料等。

纳米材料在生物医学的许多方面都有广泛的应用前景。

关键词纳米材料生物医学应用1 应用于生物医学中的纳米材料的主要类型及其特性1.1 纳米碳材料纳米碳材料主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等。

碳纳米管有独特的孔状结构[1],利用这一结构特性,将药物储存在碳纳米管中并通过一定的机制激发药物的释放,使可控药物变为现实。

此外,碳纳米管还可用于复合材料的增强剂、电子探针(如观察蛋白质结构的AFM探针等)或显示针尖和场发射。

纳米碳纤维通常是以过渡金属Fe、Co、Ni及其合金为催化剂,以低碳烃类化合物为碳源,氢气为载体,在873K~1473K的温度下生成,具有超常特性和良好的生物相溶性,在医学领域中有广泛的应用前景。

类金刚石碳(简称DLC)是一种具有大量金刚石结构C)C键的碳氢聚合物,可以通过等离子体或离子束技术沉积在物体的表面形成纳米结构的薄膜,具有优秀的生物相溶性,尤其是血液相溶性。

资料报道,与其他材料相比,类金刚石碳表面对纤维蛋白原的吸附程度降低,对白蛋白的吸附增强,血管内膜增生减少,因而类金刚石碳薄膜在心血管临床医学方面有重要的应用价值。

1.2 纳米高分子材料纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1nm~1000nm范围。

这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。

1.3 纳米复合材料目前,研究和开发无机-无机、有机-无机、有机-有机及生物活性-非生物活性的纳米结构复合材料是获得性能优异的新一代功能复合材料的新途径,并逐步向智能化方向发展,在光、热、磁、力、声[2]等方面具有奇异的特性,因而在组织修复和移植等许多方面具有广阔的应用前景。

国外已制备出纳米ZrO2增韧的氧化铝复合材料,用这种材料制成的人工髋骨和膝盖植入物的寿命可达30年之久[3]。

研究表明,纳米羟基磷灰石胶原材料也是一种构建组织工程骨较好的支架材料[4]。

此外,纳米羟基磷灰石粒子制成纳米抗癌药,还可杀死癌细胞,有效抑制肿瘤生长,而对正常细胞组织丝毫无损,这一研究成果引起国际的关注。

北京医科大学等权威机构通过生物学试验证明,这种粒子可杀死人的肺癌、肝癌、食道癌等多种肿瘤细胞。

此外,在临床医学中,具有较高应用价值的还有纳米陶瓷材料,微乳液等等。

2 纳米材料在生物医学应用中的前景2.1 用纳米材料进行细胞分离利用纳米复合体性能稳定,一般不与胶体溶液和生物溶液反应的特性进行细胞分离在医疗临床诊断上有广阔的应用前景。

20世纪80年代后,人们便将纳米SiO2包覆粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮胶体溶液中,使所需要的细胞很快分离出来。

目前,生物芯片材料已成功运用于单细胞分离、基因突变分析、基因扩增与免疫分析(如在癌症等临床诊断中作为细胞内部信号的传感器[5])。

伦敦的儿科医院、挪威工科大学和美国喷气推进研究所利用纳米磁性粒子成功地进行了人体骨骼液中癌细胞的分离来治疗病患者[6]。

美国科学家正在研究用这种技术在肿瘤早期的血液中检查癌细胞,实现癌症的早期诊断和治疗。

2.2 用纳米材料进行细胞内部染色比利时的De Mey博士等人利用乙醚的黄磷饱和溶液、抗坏血酸或柠檬酸钠把金从氯化金酸(HAuCl4)水溶液中还原出来形成金纳米粒子,(粒径的尺寸范围是3nm~40nm),将金纳米粒子与预先精制的抗体或单克隆抗体混合,利用不同抗体对细胞和骨骼内组织的敏感程度和亲和力的差异,选择抗体种类,制成多种金纳米粒子)抗体复合物。

借助复合粒子分别与细胞内各种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下呈现某种特征颜色(如10nm的金粒子在光学显微镜下呈红色),从而给各种组织贴上了不同颜色的标签,为提高细胞内组织分辨率提供了各种急需的染色技术。

2.3 纳米材料在医药方面的应用2.3.1 纳米粒子用作药物载体一般来说,血液中红血球的大小为6000nm~9000nm,一般细菌的长度为2000nm~ 3000nm[7],引起人体发病的病毒尺寸为80nm~100nm,而纳米包覆体尺寸约30nm[8],细胞尺寸更大,因而可利用纳米微粒制成特殊药物载体或新型抗体进行局部的定向治疗等。

专利和文献资料的统计分析表明,作为药物载体的材料主要有金属纳米颗粒、无机非金属纳米颗粒、生物降解性高分子纳米颗粒和生物活性纳米颗粒。

磁性纳米颗粒作为药物载体,在外磁场的引导下集中于病患部位,进行定位病变治疗,利于提高药效,减少副作用。

如采用金纳米颗粒制成金溶液,接上抗原或抗体,就能进行免疫学的间接凝聚实验,用于快速诊断[9]。

生物降解性高分子纳米材料作为药物载体还可以植入到人体的某些特定组织部位,如子宫、阴道、口(颊、舌、齿)、上下呼吸道(鼻、肺)、肛门以及眼、耳等[10]。

这种给药方式避免了药物直接被消化系统和肝脏分解而代谢掉,并防止药物对全身的作用。

如美国麻省理工学院的科学家已研制成以用生物降解性聚乳酸(PLA)制的微芯片为基础,能长时间配选精确剂量药物的药物投送系统,并已被批准用于人体。

近年来生物可降解性高分子纳米粒子(NPs)在基因治疗中的DNA载体以及半衰期较短的大分子药物如蛋白质、多肽、基因等活性物质的口服释放载体方面具有广阔的应用前景。

药物纳米载体技术将给恶性肿瘤、糖尿病和老年痴呆症的治疗带来变革。

2.3.2 纳米抗菌药及创伤敷料Ag+可使细胞膜上蛋白失去活性从而杀死细菌,添加纳米银粒子制成的医用敷料对诸如黄色葡萄球菌、大肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用。

2.3.3 智能-靶向药物在超临界高压下细胞会变软,而纳米生化材料微小易渗透,使医药家能改变细胞基因,因而纳米生化材料最有前景的应用是基因药物的开发。

德国柏林医疗中心将铁氧体纳米粒子用葡萄糖分子包裹,在水中溶解后注入肿瘤部位,使癌细胞部位完全被磁场封闭,通电加热时温度达到47℃,慢慢杀死癌细胞。

这种方法已在老鼠身上进行的实验中获得了初步成功[11]。

美国密歇根大学正在研制一种仅20nm的微型智能炸弹,能够通过识别癌细胞化学特征攻击癌细胞,甚至可钻入单个细胞内将它炸毁。

2.4 纳米材料用于介入性诊疗日本科学家利用纳米材料,开发出一种可测人或动物体内物质的新技术。

科研人员使用的是一种纳米级微粒子,它可以同人或动物体内的物质反应产生光,研究人员用深入血管的光导纤维来检测反应所产生的光,经光谱分析就可以了解是何种物质及其特性和状态,初步实验已成功地检测出放进溶液中的神经传达物质乙酰胆碱。

利用这一技术可以辨别身体内物质的特性,可以用来检测神经传递信号物质和测量人体内的血糖值及表示身体疲劳程度的乳酸值,并有助于糖尿病的诊断和治疗。

2.5 纳米材料在人体组织方面的应用纳米材料在生物医学领域的应用相当广泛,除上面所述内容外还有如基因治疗、细胞移植、人造皮肤和血管以及实现人工移植动物器官的可能。

目前,首次提出纳米医学的科学家之一詹姆斯贝克和他的同事已研制出一种树形分子的多聚物作为DNA导入细胞的有效载体,在大鼠实验中已取得初步成效,为基因治疗提供了一种更微观的新思路。

纳米生物学的设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。

纳米机器人是纳米生物学中最具有诱惑力的内容,第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗(疏通脑血管中的血栓,清除心脏脂肪沉积物,吞噬病菌,杀死癌细胞,监视体内的病变等)[12];还可以用来进行人体器官的修复工作,比如作整容手术、从基因中除去有害的DNA,或把正常的DNA安装在基因中,使机体正常运行或使引起癌症的DNA突变发生逆转从而延长人的寿命。

将由硅晶片制成的存储器(ROM)微型设备植入大脑中,与神经通路相连,可用以治疗帕金森氏症或其他神经性疾病。

第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置,可以用其吞噬病毒,杀死癌细胞。

第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。

这种纳米机器人一旦问世将彻底改变人类的劳动和生活方式。

瑞典正在用多层聚合物和黄金制成医用微型机器人,目前实验已进入能让机器人捡起和移动肉眼看不见的玻璃珠的阶段[13]。

纳米材料所展示出的优异性能预示着它在生物医学工程领域,尤其在组织工程支架、人工器官材料、介入性诊疗器械、控制释放药物载体、血液净化、生物大分子分离等众多方面具有广泛的和诱人的应用前景。

随着纳米技术在医学领域中的应用,临床医疗将变得节奏更快,效率更高,诊断检查更准确,治疗更有效。

参考文献[1]Philippe P, Nang Z Let al. Science,1999,283:1513[2]孙晓丽等.材料科学与工艺,2002,(4):436-441[3]赖高惠编译.化工新型材料,2002,(5):40[4]苗宗宁等.实用临床医药杂志,2003,(3):212-214[5]崔大祥等.中国科学学院院刊,2003,(1):20-24[6]顾宁,付德刚等.纳米技术与应用.北京:人民邮电出版社, 2002: 131- 133[7]胥保华等.生物医学工程学杂志,2004,(2):333-336[8]张立德,牟季美.纳米材料和结构.北京:科学出版社,2001:510[9]刘新云.安徽化工,2002,(5):27-29[10]姚康德,成国祥.智能材料.北京:化学工业出版社,2002:71[11]李沐纯等.中国现代医学杂志,2003,13:140-141[12]张莉芹.武汉科学大学学报(自然科学版),2003,(3):23[13]姜忠义,成国祥.纳米生物技术.北京:化学工业出版社,2003:131。

相关文档
最新文档