四年级奥数专题07:鸡兔同笼问题
四年级数学下册鸡兔同笼问题讲解

四年级数学下册鸡兔同笼问题讲解1.问题描述在一个笼子里,有若干只鸡和若干只兔子,它们的总数是m,总腿数是n。
问这个笼子里有多少只鸡和多少只兔子?2.解题思路设鸡的头数为x,兔子的头数为y,由于笼子中只有鸡和兔子,可以列出以下两个方程:(1)x + y = m(2)2x + 4y = n把两个方程同时乘以不同的系数,使得方程(1)中的y和方程(2)中的x同为正负数,然后将两个方程相加即可。
3.解题步骤步骤一:设鸡的头数为x,兔子的头数为y,写出两个方程:(1)x + y = m(2)2x + 4y = n步骤二:将公式(1)中的y移项,变成y = m - x,并将其代入公式(2)中,得到:2x + 4(m - x) = n化简得:2x + 4m - 4x = n化简得:2m - 2x = n步骤三:同时乘以不同的系数,使得方程(1)中的y和方程(2)中的x同为正负数,然后将两个方程相加即可,得到:(3)3x = n - 2m(4)y = m - x步骤四:求出x和y的具体值,即可得到笼子中鸡和兔子的数量。
4.举例说明假设笼子里有9只头,26只脚,请问笼子里有多少只鸡和兔子?(1)设鸡的头数为x,兔子的头数为y,则有:x + y = 9(2)由于一只鸡有2只腿,一只兔子有4只腿,所以有:2x + 4y = 26(3)将公式(1)中的y移项,得到:y = 9 - x(4)将公式(3)代入公式(2)中,得到:2x + 4(9 - x) = 26化简得:-2x + 36 = 26化简得:-2x = -10化简得:x = 5(5)将x的值代入公式(3)中,得到:y = 9 - 5 = 4因此,笼子中有5只鸡和4只兔子。
5.小结通过以上例子的分析,可以发现鸡兔同笼问题的解题方法是通过列方程、联立方程、消元以及代入计算的方式来求解。
只要掌握了这个方法,就能够轻松解决各种鸡兔同笼问题。
奥数专题:鸡兔同笼(讲练测)-数学四年级下册人教版

奥数专题:鸡兔同笼(讲练测)-数学四年级下册人教版知识点讲解鸡兔同笼,这是一个古老的数学问题,在现实生活中也是普遍存在的.重点掌握鸡兔同笼问题的解法——假设法,并会将这种方法应用到一些实际问题中.解鸡兔同笼问题的基本关系式是:鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数练习巩固一、选择题1.某新兵连进行野外军训,晴天每天行20千米,雨天每天行10千米,8天共行了140千米(假设8天只有晴天和雨天),晴天有()天。
A.2B.3C.5D.62.在数学活动课上,可可用115根小棒摆了35个三角形和正方形,正方形摆了几个?下面列式正确的是()。
A.(115-35×3)÷4B.(35×4-115)÷(4-3)C.(115-35×3)÷(4-3)D.(35×4-115)÷43.山水酒店有3人房和2人房共50间,总共可以住112位客人,则该酒店有()。
A.3人房12间,2人房38间B.3人房38间,2人房12间C.3人房16间,2人房34间D.3人房8间,2人房42间4.鸡兔同笼,头共50个,脚共140只,鸡有()只。
5.组装车间要装配两轮摩托车和三轮摩托车共21辆,需要51个轮胎。
两轮摩托车有()辆。
A.12B.10C.9D.86.动物园里的孔雀和梅花鹿共有20只,共有脚52只,其中孔雀有()只。
A.14B.12C.10D.67.小明买了钢笔和圆珠笔共6支,其中钢笔每支12元,圆珠笔每支7元,用了52元,小明共买钢笔()支。
A.5B.4C.3D.28.一次学法知识竞赛共20道题,做对一题得5分,做错或者不做倒扣2分,小林考了79分,他答对了()道题。
四年级鸡兔同笼

“鸡兔同笼”问题公式:1、(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
2、(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
1. 鸡兔同笼,共有头100个,足316只,那么鸡有_______只,兔有______只.2.小明花了4元钱买贺年卡和明信片,共14张,贺年卡每张3角5分,明信片每张2角5分.他买了几张贺年卡,几张明信片.3.东湖小学六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了几题?4.30枚硬币,由2分和5分组成,共值9角9分,2分硬币有几个,5分有几个?5.有钢笔和铅笔共27盒,共计300支.钢笔每盒10支,铅笔每盒12支,则钢笔有几盒,铅笔有几盒?6.鸡兔同笼,共有足248只,兔比鸡少52只,那么兔有几只,鸡有几只?7.工人运青瓷花瓶250个,规定完整运一个到目的地给运费20元,损坏一个倒赔100元,运完这批花瓶后,工人共得4400元,则损坏了几只?8.班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?9.大油瓶一瓶装4千克,小油瓶2瓶装1千克.现有100千克油装了共60个瓶子.问大、小油瓶各多少个?10.小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣1分,又知道他做错的题和没做的一样多.问小毛做对几道题 ?11.有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿,蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀),三种动物各几只?。
小学四年级奥数之鸡兔同笼

鸡兔共100只,共有腿280条,问鸡兔各有几只?
解法一: 假设都是兔子, 应有腿400条, 增加腿数为 400-280=120(条) 所以有小鸡 120÷2=60(只) 有小兔 100-60=40(只)
解法二: 假设都是小鸡, 应有腿200条, 减少腿数为 280-200=80(条) 所以有小兔 80÷2=40(只) 有小鸡 100-40=60(只)
解:假设100人全部是教师,每个学生栽1棵小树 苗,则每位教师可以栽9棵小树苗。 学生人数为(100×9-100×3)÷(9-1)=75(人) 教师人数为100-75=25(人)
练习(2):一辆汽车运实验仪器360个,每个运费5元, 若损坏一个仪器不但不能获得运费,还要赔50元,结 果司机只收到1250元运费,问损坏了几个仪器?
一只鸡变兔子增加两条腿
增加的腿数:30×4-88=32(条)
还有没有
小鸡的数量:32÷2=16(只) 别的想法
兔子的数量:30-16=14(只)
吗?
笼子里有鸡和兔共30只,总共有88条腿。 问鸡和兔各有几只?
一只兔子变鸡减少两条腿
减少的腿数:88-30×2=28(条) 兔子的数量:28÷2=14(只) 小鸡的数量:32-14=16(只)
换个情境
(2)四(5)班学生共44人,春 游划船时共租用8条船,每条大 船坐6人,每条小船坐4人,刚好
坐满。求租用的大船、小船各多 少只?
解法一:
解法二:
假设都租小船,
假设都租大船,
则乘坐32人,
则乘坐48人,
少坐了44-32=12(人)
多出了48-44=4(人)
所以有大船12÷2=6(只) 所以有小船4÷2=2(只)
解析:假设将鸡和兔像变形金刚一样进行合体,合 体后的动物就是每只6条腿。 所以这样的合体动物就有(122+106)÷(2+4)=38(只) 又因为兔子比鸡多了(122-106)÷2=8(只) 所以鸡有(38-8)÷2=15(只) 兔子有15+8=23(只)。
小学奥林匹克数学之鸡兔同笼问题

第一讲
知识引导
“鸡兔同笼”问题,是讲诉了一个笼子里 有鸡和兔两种动物,只告诉你它们头的总 个数和腿的总条数,计算出鸡和兔各有多 少只的问题。
“鸡兔同笼”问题,是ห้องสมุดไป่ตู้国古代著名的数 学趣题之一。在小学数学竞赛中,关于此 类问题比较常见。
解题思维
鸡兔同笼问题也叫置换问题,顾名思义就是将 鸡的量置换成兔的量,或者将兔的量置换成鸡 的量。 解题步骤: 1. 以兔(或鸡)去置换鸡(或兔),从而推算出 鸡或兔的只数。 2. 基本公式: 3. (实际足数-鸡足数×总头数)÷每只鸡兔足 数差=兔数 4. (兔足数×总头数-实际足数)÷每只鸡兔足 数差=鸡数
练练手
鸡兔同笼有8只,腿20条,笼中鸡和兔各有 多少只?
例题二
鸡兔同笼,共20个头,50条腿。笼中鸡兔 各多少只?
这么多 怎么画
运用公式 兔数=(实际足数-鸡足数×总头数)÷每只鸡兔足数差
解: 兔子数: (50-2×20)÷(4-2) =(50-40)÷2 = 10 ÷2 = 5(只) 鸡数: 20-5=15(只) 答:笼中的鸡有15只,兔子有5只。
提升练习
马路边上有一些自行车和三轮车,一共有8 辆车,18个轮子,算一算,自行车和三轮 车各有多少辆?
一只青蛙4条腿,一只蛐蛐6条腿。现在有 青蛙和蛐蛐共11只,腿54条。青蛙和蛐蛐 各有多少只?
妈妈买了螃蟹和鸽子共10只,共68条腿。 螃蟹和鸽子各多少只?
I’m a superman.
Thank you!
例题一
鸡和兔在一个笼子里,一共有3个头,8条 腿,请你算出,笼子里有鸡和兔各多少只 ?
你会算吗?
思维向导
一只鸡有_2_条腿,一只兔子有_4_条腿,它们腿的 条数不一样,所以给我们解题带来了麻烦。假如 兔子把它的前面两条腿藏起来,那么这只兔子也 就是_2_条腿,这样就和鸡的腿数一样。
鸡兔同笼小学奥数题

小学奥数题:鸡兔同笼(含义+公式+例题答案)鸡兔同笼含义:已知笼子里鸡、兔共有多少只头和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
公式:【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)例题答案:1、鸡和兔在一个笼子里,共有35个头,94只脚,那么鸡有多少只,兔有多少只?解:设笼子里全部都是鸡,每只鸡有2只脚,那么一共应该有35×2=70(只)脚,而实际有94只脚,这多出来的脚就是把兔子当作鸡多出来的,每只兔子比鸡多2只脚,一共多了94-70=24(只),则兔子有24÷2=12(只),那么鸡有35-12=23(只)。
2、李阿姨的农场里养了一批鸡和兔,共有144条腿,如果鸡数和兔数互换,那么共有腿156条。
鸡和兔一共有多少只?解:根据题意可得:前后鸡的总只数=前后兔的总只数。
把1只鸡和1只兔子看做一组,共有6条腿。
前后鸡和兔的总腿数有144+156=300(条),所以共有300÷6=50(组),也就是鸡和兔的总只数有50只。
3、鸡兔同笼,共有45个头,146只脚。
笼中鸡兔各有多少只?解:解法一:假设全是兔子(4×45-146)÷(4-2)=17(只)——→鸡45-17=28(只)——→兔解法二:假设全是鸡(146-2×45)÷(4-2)=28(只)——→兔45-28=17(只)——→鸡所以:鸡有17只,兔子有28只。
四年级《鸡兔同笼》奥数教案
备课教员:第二讲鸡兔同笼一、教学目标:知识目标1.了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2.能尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设和列方程的一般性。
能力目标在解决问题的过程中,培养学生的思维能力,并向学生渗透转化、函数等数学思想和方法。
情感目标1.感受拓展思维的快乐,增加学生学习数学的乐趣。
2.感知生活中处处有数学。
二、教学重点:学会用假设法解决“鸡兔同笼”问题。
三、教学难点:鸡变兔和兔变鸡思路形成的过程。
四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:初步了解鸡兔问题的由来,并引入本堂课讲解重点】师:同学们,今天跟老师一起来学习一道我国古代非常有名的数学经典趣题。
多媒体出示:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”(PPT投影展示原题)①师:到底是怎样的经典趣题,想不想知道,一起来看大屏幕。
(播放PPT)②师:同学们,这道题是以文言文的方式表述的,哪位同学看懂他的意思了?(学生表述基本正确都要给予肯定,并在此时出示正确意思。
)(课件展示)③师:现在大家都看懂这道题是什么意思了,这就是著名的“鸡兔同笼”问题【板书课题:鸡兔同笼】鸡兔同笼问题是我国古代三大趣题之一,记载于《孙子算经》一书中,距今已有1500多年,今天就让我们一起来研究古人留给大家的珍贵问题吧。
师:会做“鸡兔同笼”这类题吗?会做的我们今天进一步来学习,不会的也没关系,通过这节课的学习,老师相信你们一定学会做的。
同学们,有没有信心把这节课的内容学好呢?生:(有、一定要学会哦!)二、探索发现授课(40分)(一)例题1:(10分)饲养大王家有几只调皮的鸡和兔从笼子里跑到院子里,饲养大王不知道鸡兔的只数,只知道鸡和兔一共有头25个,共有脚70只,问鸡、兔各有几只?讲解重点:掌握标准鸡兔同笼问题常用解题方法假设法解题,通过2种假设对象,不断加深学生对假设法的理解和应用。
四年级奥数——鸡兔同笼课件
第二次:鸡和兔再抬1条腿
18-8=10(条) 答:在这个笼子里鸡有3只、兔子有5只。
专题练习
Click here to add your title
1、笼子里有若干只鸡和兔,从上面数有15个头,从下面数34只脚,鸡和兔各有 多少只?
2、笼子里有若干只鸡和兔、从数头有24个,数脚60只,鸡、兔各几只?
方程解法
Click here to add your title
例三、在一个笼子里面关着一些鸡和一些兔。从上数鸡兔共65头,从下数鸡兔共160脚。问:鸡兔各
几只?
01 添加标题
设:鸡有X只,则兔有(65-X)只。
02
添加标题
点击文本框即可进行编辑输入相关内容点击文本框
即进行编辑输入相关内容
鸡的腿:2X
课后练习
Click here to add your title
2、全班一共有38人,共租了8条船,每条船都坐满了。 大、小船各租了几条?
课后练习
Click here to add your title
3、新星小学“环保卫士”小分队12人参加植树活动。 男同学每人栽了3棵树,女同学每人栽了2棵树,一共栽 了32棵树,男女同学各有几人?
假设法
Click here to add your title
例二 小梅数她家的鸡与兔,数头有16个,数脚有44只。问: 小梅家的鸡与兔各有多少只?
假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情 况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。如果我们以同样 数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。因此 只要算出12里面有几个2,就可以求出兔的只数。
四年级下册奥数试题-鸡兔同笼问题(含答案)全国通用
小学奥数:鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
例题:鸡兔同笼,头共有52个,脚共有136只,问鸡和兔各有多少只?根据上面所说的思路,套用公式方法1:把所有的鸡假设成兔子:鸡=(4 × 52 - 136 )÷(4 - 2 )= 36兔= 52 - 36 = 16方法2:把所有的兔子假设成鸡:兔=(136 - 2 × 52 )÷ ( 4 - 2 ) = 16鸡= 52 - 16 = 36特点:公式所得那个种类与假设的种类相反1、某玩具店购进飞机和汽车模型共30个,其中飞机模型每个有3个轮子,汽车模型每个有4个轮子,这些玩具模型共有110个轮子,那么新购进的飞机模型和汽车模型各有多少个?解:假设全为飞机模型全为飞机情况下总轮数:3×30=90 (个)汽车模型数量:20÷1=20(个)与实际总轮子数之差:110-90=20(个)飞机模型数量:30-10(个)每单位轮子数之差:4-3=1(个)公式综合算式:汽车=(110-3×30)÷(4-3)=20(个)2、某商店买了儿童上衣和裤子共30件,其中一件上衣20元,一条裤子15元,一共花了515元,求买了几件上衣和几条裤子?解:假设全为上衣全为上衣情况下总价格:20×30=600(元)裤子数量:85÷5=17(条)与实际总价之差:600-515=85(元)衣服数量:30-17=13(件)每单位价格之差:20-15=5(元)公式综合算式:裤子=(20×30-515)÷(20-15)=17(条)3、一些2角和5角的硬币放在同一个存钱罐里,一共50枚,总钱数是14元8角,求各有多少枚?解:假设全为2角硬币 ,14元8角=148角全为2角时总钱数:2×50=100(角) 5角数量:48÷3=16(枚)与实际钱数之差:148-100=48(角) 2角数量:50-16=34(枚)每单位钱数之差:5-2=3(角)公式综合算式:(148-2×50)÷(5-2)=16(枚)4、现有大油瓶和小油瓶一共35个,其中大油瓶可装5千克,小油瓶可装3千克,一共装了145千克的由,求有大小油瓶各有几个?解:假设全为大油瓶全为大油瓶时总容量:5×35=175(千克)小油瓶数量:30÷2=15(个)与实际容量之差:175-145=30(千克)大油瓶数量:35-15=20(个)每单位容量之差:5-3=2(千克)公式综合算式:(5×35-145)÷(5-3)=15(个)5、亮亮参加数学竞赛,一共20道题,按照规定每答对一道题得5分,答错一道或者不答倒扣2分,一共得了72分,请问答对了几道题?解:假设全为答对的全为答对时总得分数:5×20=100(分)答错题数:28÷7=4(题)与实际得分之差:100-72=28(分)答对题数:20-4=16(题)每单位得分之差:5-(-2)= 5+2=7(分)公式综合算式:(5×20-72)÷(5+2)=4(题)*本题由于答对得5分,答错扣2分,故一共相差为7分*6、鸡和兔子关在同一个笼子里,鸡比兔子多28只,一共有176条腿,求鸡和兔各有几只?解:把兔子数量看做单位数鸡比兔子多28只,除这28只以外,鸡与兔子一样多,兔子的腿数量是鸡的2倍(鸡×2)那么得出脚的数量算式:(鸡+鸡×2+28)×2 = 176等式两边扩大或缩小相同倍数等式不变(鸡×3+28)×2÷2=176÷2鸡×3+28 = 88等式两边增加或减少相同的数等式不变鸡×3+28-28 = 88-28鸡×3=60等式两边扩大或缩小相同倍数等式不变鸡×3÷3=60÷3鸡=20只此得数为单位数,故兔子=20只,鸡=20+28=48只。
鸡兔同笼奥数教案(6篇)
鸡兔同笼奥数教案(6篇)最新鸡兔同笼奥数教案(精选6篇)教案中需要对教学方法进行详尽的探讨,以使教师能够更好地操作和运用教具资源。
这里给大家分享一些关于最新鸡兔同笼奥数教案,供大家参考学习。
最新鸡兔同笼奥数教案【篇1】教学内容:人教版《数学》四年级下册P103——P104页数学广角——《鸡兔同笼》。
教材分析:“鸡兔同笼”问题是我国民间广为流传的有趣的数学问题,最早出现在《孙子算经》中。
教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。
对于四年级的学生来说,解决“鸡兔同笼”问题最好的方法是列表法或假设法。
“假设法”有利于培养学生的逻辑推理能力,列表法可以让学生经历猜测、验证等解决问题的基本策略。
通过两种方法的探究让学生感知解决问题的多样性。
因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
教学目标:1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、经历自主探究解决问题的过程,能够用列表、假设的方法解决“鸡兔同笼”问题,使学生感知解决问题的多样性。
3、在解决问题的过程中,培养学生的逻辑推理能力,增强应用意识和实践能力。
教学重点:1、理解掌握解决问题的不同思路和方法。
2、学会用不同的方法解决实际生活中有关“鸡兔同笼”的问题。
教学难点:理解掌握假设法,能运用假设法解决数学问题。
教学具准备:表格教学过程:一、导入师生谈话导入新知(设计理念:通过谈话营造轻松的学习环境,同时引出课题,让学生感知我国古代数学文化的源远流长激发学生的民族自豪感;通过谈话引出问题为下一教学环节做好铺垫。
)二、探究新知1、质疑:提问:(1)一只鸡和一只兔不看外表单从数量上看有什么相同点和不同点?(2)鸡和兔相比:什么比什么多?多多少?(3)出示:如果有4只兔和3只鸡同笼,一共有多少个头和多少只脚呢?(4)尝试解决,交流想法;(5)出示交换已知条件以后的题目。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年级______班_____ 姓名_____得分_____
1.某校有100名学生参加数学竞赛,平均分是63分,其中男生平均分是60分,女生平均分是70分,男同学比女同学多________人.
2.有黑白棋子一堆,其中黑子的个数是白子个数的2倍,如果从这堆棋子中每次同时取出黑子4个,白子3个,那么取出________次后,白子余1个,而黑子余18个.
3.学生买回4个篮球5个排球一共用185元,一个篮球比一个排球贵8元,篮球的单价是________元.
4.小强爱好集邮,他用1元钱买了4分和8分的两种邮票,共20张.那么他买了4分邮票________张.
5.松鼠妈妈采松子,晴天每天采20个,雨天每天可采12个,它一连采了112个,平均每天采14个,这几天中有________天是雨天.
6.一些2分与5分的硬币共299分,其中2分的个数是5分个数的4倍,5分的有_____个.
7.某人领得工资240元,有2元,5元,10元三种人民币共50张,其中2元和5元的张数一样多,那么10元的有________张.
8.一件工程甲独做12天完成,乙独做18天完成,现在由甲先做若干天后,再由乙单独完成余下的任务,这样前后共用了16天,甲先做了_______天.
9.买一些4分、8分、1角的邮票共15张,用币100分最多可买1角的______张。
10.买一些4分与8分的邮票共花6元8角,已知8分的邮票比4分的多40张,那么8分的邮票有______张.
二、分析解答题:
11.鸡兔共200只,鸡的脚比兔的脚少56只,则鸡有几只,兔有几只?
12.有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379.6元,问这次搬运中玻璃损坏了几只?
13.某次数学测验共20题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分,问他做对几题?
14.甲乙两人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分,每人各射10发,共命中14发,结算分数时,甲比乙多10分,问甲、乙各中几发?
年级______班_____ 姓名_____得分_____
1. 鸡兔同笼,共有头100个,足316只,那么鸡有_______只,兔有______只.
2.小明花了4元钱买贺年卡和明信片,共14张,贺年卡每张3角5分,明信片每张2角5分.他买了_______张贺年卡,_______张明信片.
3.东湖小学六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了________题.
4.鸡兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只,则鸡______只.兔有_______只.
5.100个馒头100个和尚吃,大和尚每人吃3个,小和尚3人吃一个,则大和尚有_______个,小和尚有_______个.
6.30枚硬币,由2分和5分组成,共值9角9分,2分硬币有_______个,5分有________个.
7.有钢笔和铅笔共27盒,共计300支.钢笔每盒10支,铅笔每盒12支,则钢笔有_______盒,铅笔有_______盒.
8.鸡兔同笼,共有足248只,兔比鸡少52只,那么兔有______只,鸡有______只.
9.工人运青瓷花瓶250个,规定完整运一个到目的地给运费20元,损坏一个倒赔100元,运完这批花瓶后,工人共得4400元,则损坏了______只.
10.有2角,5角和1元人民币20张,共计12元,则1元有_______张,5角有______张,2角有_______张.
二、分析与解答题:
1.班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?
2.大油瓶一瓶装4千克,小油瓶2瓶装1千克.现有100千克油装了共60个瓶子.问大、小油瓶各多少个?
3.小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣1分,又知道他做错的题和没做的一样多.问小毛做对几道题?
4.有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿,蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀),三种动物各几只?
———————————————答案——————————————————————
一、填空题答案:
1. 40人
女生: (63⨯100-60⨯100)÷(70-60)=30(人)
男生: 100-30=70(人)
70-30=40(人)
2. 8次
由黑子的个数是白子个数的2倍,假如每次取出白子2个(黑子的一半)的话,那么最后余下黑子18个,白子应余下18÷2=9(个)
现在只余下一个白子,这是因为实际每次取3个比假设每次多取一个,故共取(9-1)÷(3-2)=8(次)
3. 25元
(185-4⨯8)÷(5+4)+8=25(元)
4. 15张
(20⨯8-100)÷(8-4)=15(张)
5. 6天
(112÷14⨯20-112)÷(20-12)=6(天)
6. 23个
299÷(2⨯4+5)=23(个)
7. 10张
(10⨯50-240)÷[10-(2+5)÷2]=40(张)
[ 240-(2+5)⨯(40÷2)]÷10=10(张)
8. 4天
把这项工程设为36份,甲每天做3份,乙每天做2份,甲先做4天,乙再做12天才完成.
9. 6张
假如都买4分邮票,共用4⨯15=60(分),就多余100-60=40(分).买一张1角邮票,可以认为40分换1角,要多6分,40÷6=6……4,就多买6张.最后多余4分,加上一张4分邮票,恰好买一张8分邮票.
10. 70张
4分:(680-8⨯40)÷(8+4)=30(张)
8分:30+40=70(张)
二、分析解答题.
1. 兔76只,鸡124只.
兔:(200+56÷2)÷(2+1)=76(只)
鸡:200-76=124(只)
2. 17只
(0.2⨯2000-379.6)÷(1+0.2)=17(只)
3. 16题
76分比满分少24分.做错一题少6分,不做少5分,24分只能做错4题,那么没有没做,16题做对.
4.甲中8发,乙中6发.
假设甲中10发,乙就中14-10=4(发).甲得4⨯10=40(分),乙得5⨯4-3⨯6=2(分).此题条件“甲比乙多10分”相差(40-2)-10=28(分),甲少中1发,少4+2=6(分),乙可增加5+3=8(分). 28÷(8+6)=2. 10-2=8(发)……甲.
14-8=6(发)……乙.
———————————————答案——————————————————————1.鸡有42只,兔有58只.
兔: (316-100⨯2)÷(4-2)=58(只), 鸡: 100-58=42(只).
2. 明信片有9张,贺年卡有5张.
明信片: (35⨯14-400)÷(35-25)=9(张)
贺年卡: 14-9=5(张).
3. 15题.
20-(5⨯20-60)÷(5+3)=15(题).
4. 鸡有14只,兔有18只.
因鸡和兔互换,脚数减少100-92=8(只),所以原来的兔比鸡多8÷(4-2)=4(只),这4只兔子共有4⨯4=16只脚.因此,相等的鸡和兔共有脚100-16=84(只).
由于兔和鸡的脚数有6只,所以鸡有84÷6=14(只),兔有14+4=18(只).
5. 大和尚25人,小和尚75人.
小和尚: 3⨯[(3⨯100-100)÷(3⨯3-1)=75(人),
大和尚: 100-75=25(人).
6. 2分币17枚,5分币13枚.
2分: (5⨯30-99)÷(5-2)=17(枚)
5分: 30-17=13(枚).
7. 钢笔12盒,铅笔15盒.
钢笔: (12⨯27-300)÷(12-10)=12(盒),
铅笔: 27-12=15(盒).
8. 鸡76只,兔24只.
兔: (248-52⨯2)÷(2+4)=24(只),
鸡: 24+52=76(只).
9. 5个.
(20⨯250-4400)÷(100+20)=5(只).
10. 1元7张,5角8张,2角5张.
2角的张数必须是5的倍数,因此只能是5张. 5角和1元共15张,合计11元.
5角: (150-110)÷(10-5)=8(张), 1元: 20-8-5=7(张).
二、分析与解答题:
1. 男生15人,女生35人.
男生: (120-5-2⨯50)÷(3-2)=15(人).
女生: 50-15=35(人)
2. 大油瓶20个,小油瓶40个.
大油瓶: (100-0.5⨯60)÷(4-0.5)=20(个).
小油瓶: 60-20=40(个).
3. 14道.
因为做错的和没做的一样多,就假定这两种情况都倒扣1分.所以没做或做错的有(5⨯20-64)÷(5+1)=6(道),做对的有20-6=14(道).
4. 蜘蛛5只,蜻蜓7只,蝉6只.
蜘蛛: (118-6⨯18)÷(8-6)=5(只),
那么6条腿的虫应有: 18-5=13(只).
蜻蜓: (20-1⨯13)÷(2-1)=7(只).
蝉: (2⨯13-20)÷(2-1)=6(只).。