2013届中考数学押轴题备考复习测试题17
2013年中考数学压轴题精选

2013年中考数学冲刺必备压轴题汇编安徽10.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( )A .10B .54C . 10或54D .10或172解析:考虑两种情况.要分清从斜边中点向哪个边沿着垂线段过去裁剪的.解答:解:如下图,54)44()22(22=++⨯,1054)44()32(22=++⨯14.如图,P 是矩形ABCD 内的任意一点,连接PA 、PB 、PC 、PD ,得到△PAB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论: ①S 1+S 2=S 3+S 4 ② S 2+S 4= S 1+ S 3 ③若S 3=2 S 1,则S 4=2 S 2 ④若S 1= S 2,则P 点在矩形的对角线上其中正确的结论的序号是_____________解析:过点P 分别向AD 、BC 作垂线段,两个三角形的面积之和42S S +等于矩形面积的一半,同理,过点P 分别向AB 、CD 作垂线段,两个三角形的面积之和31S S +等于矩形面积的一半. 31S S +=42S S +,又因为21S S =,则32S S +=ABCD S S S 2141=+,所以④一定成立 安徽22.如图1,在△ABC 中,D 、E 、F 分别为三边的中点,G 点在边AB 上,△BDG 与四边形ACDG 的周长相等,设BC =a 、AC =b 、AB =c .(1)求线段BG 的长;(2)求证:DG 平分∠EDF ;(3)连接CG ,如图2,若△BDG 与△DFG 相似,求证:BG ⊥CG . 解(1)∵D 、C 、F 分别是△ABC 三边中点 ∴DE ∥21AB ,DF ∥21AC , 又∵△BDG 与四边形ACDG 周长相等 即BD +DG +BG =AC +CD +DG +AG∴BG =AC +AG ∵BG =AB -AG ∴BG =2AC AB +=2cb +(2)证明:BG =2c b +,FG =BG -BF =2c b +-22bc = ∴FG =DF ,∴∠FDG =∠FGD 又∵DE ∥AB∴∠EDG =∠FGD ∠FDG =∠EDG ∴DG 平分∠EDF (3)在△DFG 中,∠FDG =∠FGD , △DFG 是等腰三角形,∵△BDG 与△DFG 相似,∴△BDG 是等腰三角形,∴∠B =∠BGD ,∴BD =DG , 则CD = BD =DG ,∴B 、CG 、三点共圆, ∴∠BGC =90°,∴BG ⊥CG23.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y =a (x -6)2+h .已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m 。
2013中考数学压轴题(含答案)

1、如图12,已知直线12y x =与双曲线(0)k y k x =>交于A B ,两点,且点A 的横坐标为4. (1)求k 的值;(2)若双曲线(0)ky k x =>上一点C 的纵坐标为8,求A O C △的面积;(3)过原点O 的另一条直线l 交双曲线(0)ky k x =>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.解:(1)∵点A 横坐标为4 , ∴当 x = 4时,y = 2 .∴ 点A 的坐标为( 4,2 ).∵ 点A 是直线 与双曲线 (k>0)的交点 , ∴ k = 4 ×2 = 8 .(2) 解法一:如图12-1,∵ 点C 在双曲线上,y = 8时,x = 1∴ 点C 的坐标为 ( 1, 8 ) .过点A 、C 分别做x 轴、y 轴的垂线,垂足为M 、N ,得矩形DMON .S 矩形ONDM = 32 , S △ONC = 4 , S △CDA = 9, S △OAM = 4 .S △AOC = S 矩形ONDM - S △ONC - S △CDA - S △OAM = 32 - 4 - 9 - 4 = 15 .解法二:如图12-2,过点 C 、A 分别做x 轴的垂线,垂足为E 、F ,∵ 点C 在双曲线8y x =上,当y = 8时,x = 1 .∴ 点C 的坐标为 ( 1, 8 ).图12O x A y B x y 21x y 8=∵ 点C 、A 都在双曲线8y x =上 ,∴ S △COE = S △AOF = 4 。
∴ S △COE + S 梯形CEFA = S △COA + S △AOF .∴ S △COA = S 梯形CEFA .∵ S 梯形CEFA = 12×(2+8)×3 = 15 ,∴ S △COA = 15 .(3)∵ 反比例函数图象是关于原点O 的中心对称图形 ,∴ OP=OQ ,OA=OB .∴ 四边形APBQ 是平行四边形 .∴ S △POA = S 平行四边形APBQ = ×24 = 6 .设点P 的横坐标为m (m > 0且4m ≠),得P ( m , ) .过点P 、A 分别做x 轴的垂线,垂足为E 、F ,∵ 点P 、A 在双曲线上,∴S △POE = S △AOF = 4 .若0<m <4,如图12-3,∵ S △POE + S 梯形PEFA = S △POA + S △AOF ,∴ S 梯形PEFA = S △POA = 6 .∴ 18(2)(4)62m m +⋅-=.4141m8解得m = 2,m = - 8(舍去) .∴ P (2,4).若 m > 4,如图12-4,∵ S △AOF + S 梯形AFEP = S △AOP + S △POE ,∴ S 梯形PEFA = S △POA = 6 .∴18(2)(4)62m m +⋅-=,解得m = 8,m = - 2 (舍去) .∴ P (8,1).∴ 点P 的坐标是P (2,4)或P (8,1).2、如图,抛物线212y x mx n =++交x 轴于A 、B 两点,交y 轴于点C ,点P 是它的顶点,点A的横坐标是-3,点B 的横坐标是1.(1)求m 、n 的值;(2)求直线PC 的解析式;(3)请探究以点A 为圆心、直径为5的圆与直线 PC 的位置关系,并说明理由.(参考数:2 1.41≈,3 1.73≈,5 2.24≈) 解: (1)由已知条件可知: 抛物线212y x mx n =++经过A (-3,0)、B (1,0)两点. ∴ 903,210.2m n m n ⎧=-+⎪⎪⎨⎪=++⎪⎩ ……………………………………2分解得 31,2m n ==-. ………………………3分 (2) ∵21322yx x =+-, ∴ P (-1,-2),C 3(0,)2-. …………………4分设直线PC 的解析式是y kx b =+,则2,3.2k b b -=-+⎧⎪⎨=-⎪⎩ 解得13,22k b ==-. ∴ 直线PC 的解析式是1322yx =-. …………………………6分 说明:只要求对1322k b ==-,,不写最后一步,不扣分.(3) 如图,过点A 作AE ⊥PC ,垂足为E .设直线PC 与x 轴交于点D ,则点D 的坐标为(3,0). ………………………7分 在Rt△O CD 中,∵ O C =32,3O D =, ∴ 2233()3522C D =+=. …………8分∵ O A =3,3O D =,∴AD =6. (9)分 ∵ ∠C O D =∠AED =90o ,∠CD O 公用,∴ △C O D ∽△AED . ……………10分 ∴ OCC D AEAD =, 即335226AE =. ∴ 655AE =. …………………11分 ∵ 65 2.688 2.55> ,∴ 以点A 为圆心、直径为5的圆与直线PC 相离. …………12分。
中考数学压轴题100题精选(21-30题)2013

中考数学压轴题100题精选(21-30题)(答案在本人文辑中寻找)【021】如图,点P 是双曲线11(00)k y k x x=<<,上一动点,过点P 作x 轴、y 轴的垂线,分别交x 轴、y 轴于A 、B 两点,交双曲线y =xk 2(0<k 2<|k 1|)于E 、F 两点. (1)图1中,四边形PEOF 的面积S 1= ▲ (用含k 1、k 2的式子表示); (2)图2中,设P 点坐标为(-4,3).①判断EF 与AB 的位置关系,并证明你的结论;②记2PEF OEF S S S ∆∆=-,S 2是否有最小值?若有,求出其最小值;若没有,请说明理由。
【022】一开口向上的抛物线与x 轴交于A (m -2,0),B (m +2,0)两点,记抛物线顶点为C ,且AC ⊥BC .(1)若m 为常数,求抛物线的解析式;(2)若m 为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点?(3)设抛物线交y 轴正半轴于D 点,问是否存在实数m ,使得△BCD 为等腰三角形?若存在,求出m 的值;若不存在,请说明理由.【023】如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.(1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y 与x 的函数关系式;(3)在(2)中:①当动点P 、Q 运动到何处时,以点P 、M 和点A 、B 、C 、D 中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当y 取最小值时,判断PQC △的形状,并说明理由.【024】如图,已知ABC ∆为直角三角形,90ACB ∠=︒,AC BC =,点A 、C 在x 轴上,点B 坐标为(3,m )(0m >),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B 、D . (1)求点A 的坐标(用m 表示); (2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结 BQ 并延长交AC 于点F ,试证明:()FC AC EC +为定值.ADCB P MQ60°【025】如图12,直线4+-=x y 与两坐标轴分别相交于A 、B 点,点M 是线段AB 上任意一点(A 、B 两点除外),过M 分别作MC ⊥OA 于点C ,MD ⊥OB 于D .(1)当点M 在AB 上运动时,你认为四边形OCMD 的周长是否发生变化?并说明理由; (2)当点M 运动到什么位置时,四边形OCMD 的面积有最大值?最大值是多少?(3)当四边形OCMD 为正方形时,将四边形OCMD 沿着x 轴的正方向移动,设平移的距离为)40<<a a (,正方形OCMD 与△AOB 重叠部分的面积为S .试求S 与a 的函数关系式并画出该函数的图象.图12(1)图12(2)图12(3)【026】如图11,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH∶AC=2∶3(1)延长HF交AB于G,求△AHG的面积.(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图12).探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系.【027】阅读材料:如图12-1,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题:如图12-2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结PA ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ∆; (3)是否存在一点P ,使S △PAB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.图12-2xC Oy ABD 1 1【028】如图,已知抛物线与x 交于A(-1,0)、E(3,0)两点,与y 轴交于点B(0,3)。
2013学年苏教版数学中考压轴题(带解析)

2013学年苏教版数学中考压轴题考试范围:xxx;考试时间:100分钟;命题人:xxx题号一二三四五总分得分1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释评卷人得分一、单选题(注释)图象上的概率是()A.B.C.D.【答案】D【解析】在数-1,1,2中任取两个数作为点坐标共有六种组合,当x=-1时,y=-3;当x=1时,y=-3;当x=2时,y=0;当y=-1时,x=1;当y=1时,x=3;当y=2时,x=4,所以概率是。
2、如图,直角梯形AOCD的边OC在x轴上,O为坐标原点,CD垂直于x 轴,D(5,4),AD=2.若动点E、F同时从点O出发,E点沿折线OA→AD→DC运动,到达C点时停止;F点沿OC运动,到达C点是停止,它们运动的速度都是每秒1个单位长度.设E运动秒x时,△EOF的面积为y (平方单位),则y关于x的函数图象大致为()【答案】C【解析】解:∵D(5,4),AD=2.∴OC=5,CD=4 OA=5∴运动x秒(x<5)时,OE=OF=x,作EH⊥OC于H,AG⊥OC于点G,∴EH∥AG∴△EHO∽△AGO即:∴EH=x∴S△EOF=OF?EH=×x×x=x2,故A.B选项错误;当点F运动到点C时,点E运动到点A,此时点F停止运动,点E在AD上运动,△EOF的面积不变,点在DC上运动时,如图,EF=11﹣x,OC=5∴S△EOF=OC?CE=×(11﹣x)×5=﹣x+是一次函数,故C正确,故选C.3、若二次函数.当≤ 3时,随的增大而减小,则的取值范围是()A.= 3 B.>3 C.≥ 3D.≤ 3【答案】C【解析】∵二次函数的解析式y=(x-m)2-1的二次项系数是1,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(m,-1),∴该二次函数图象在[-∞,m]上是减函数,即y随x的增大而减小;而已知中当x≤3时,y随x的增大而减小,∴x≤3,∴x-m>0,∴m≥3.故选C.4、记抛物线的图象与正半轴的交点为A,将线段OA分成2012等份,设分点分别为P 1, P2,…,P2011,过每个分点作轴的垂线,分别与抛物线交于点Q1,Q2,…,Q2011,再记直角三角形OP1Q1,P1P2Q2,…的面积分别为S1,S2,…,这样就记,W的值为()A.505766 B.505766.5 C.505765 D.505764【答案】B【解析】根据抛物线的特征及每个小三角形的面积的特征即可计算出=505766.5,故选B。
2013中考部分地市中考数学压轴题集(含答案)

2013中考压轴试题代数几何综合1、(2013年潍坊市压轴题)如图,抛物线c bx ax y ++=2关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭⎫ ⎝⎛232,D 在抛物线上,直线是一次函数()02≠-=k kx y 的图象,点O 是坐标原点.()求抛物线的解析式;()若直线平分四边形OBDC 的面积,求k 的值.()把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由.答案:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0),由点D(2,1.5)在抛物线上,所以⎩⎨⎧=++=+-5.1240c b a c b a ,所以3a+3b=1.5,即a+b=0.5,又12=-a b ,即b=-2a,代入上式解得a =-0.5,b =1,从而c=1.5,所以23212++-=x x y . ()由(1)知23212++-=x x y ,令x=0,得c(0,1.5),所以CD//AB,令kx -2=1.5,得l 与CD 的交点F(23,27k ),令kx -2=0,得l 与x 轴的交点E(0,2k),根据S 四边形OEFC =S 四边形EBDF 得:OE+CF=DF+BE,即:,511),272()23(272=-+-=+k k k k k 解得 (3)由(1)知,2)1(21232122+--=++-=x x x y所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为221x y -=假设在y 轴上存在一点P(0,t),t >0,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线MM 1、NN 1,垂足分别为M 1、N 1,因为∠MPO=∠NPO,所以Rt △MPM 1∽Rt △NPN 1, 所以1111PN PM NN MM =,………………(1) 不妨设M(x M ,y M )在点N(x N ,y N )的左侧,因为P 点在y 轴正半轴上, 则(1)式变为NMN M y t y t x x --=-,又y M =k x M -2, y N =k x N -2,把2交(((D (点A(-1,0)、点B 是二次函数y=ax 2-2 的图象与x 轴的交点,a-2=0,a=2. 二次函数的解析式为y=2x 2-2;②点B 与点A(-1,0)关于直线x=0对称,点B 的坐标为(1,0); (2)∠BOC=∠PDB=90º,点P 在直线x=m 上,设点P 的坐标为(m,p ), OB=1, OC=2, DB= m-1 , DP=|p| ,①当△BOC ∽△PDB 时,OB OC = DP DB ,12= |p|m-1 ,p= m-12 或p = 1- m2,点P 的坐标为(m ,m-12 )或(m ,1- m2 );②当△BOC ∽△BDP 时,OB OC = DB DP ,12= m-1|p|,p=2m-2或p=2-2m, 点P 的坐标为(m ,2m-2)或(m ,2-2m );综上所述点P 的坐标为(m ,m-12 )、(m ,1- m2 )、(m ,2m-2)或(m ,2-2m );(3)不存在满足条件的点Q 。
2013年河北省中考数学压轴题

2013年河北省中考数学压轴题年河北省中考数学压轴题2013)分14本小题满分 (.26 一直在水平桌面上,容器底部的倾斜AB 装有一些液体,棱 A′B′C′-ABCD′一透明的敞口正方体容器∠( α角为.)所示 17-1,如图α= CBE BB′,并与棱 CD,液面恰巧过棱 17-1 如图研究,此时液体的形状为直三棱柱,其三视图及Q 点交于所示.解决问题:17-2 尺寸如图; dm____________的长是 BQ,___________的地点关系是 BE与 CQ)1()AB高×S 底面积 = V 参照算法:直棱柱体积 (求液体的体积; )2(BCQ液33 求 )3()注: .(的度数α=tan37 °,= cos41=°sin49 °4417-1 在图拓展或图 17-3 图但不可以使液体溢出,为轴将容器向左或向右旋转,AB以棱的基础上,BQ,x= PC ,设P 交于点CB.是其正面表示图17-4求17-4和图17-3分别或 C′C若液面与棱就图 .y=.的范围α的函数关系式,并写出相应的x 与y] 温馨提示:下页还有题![页2共页1第厚度忽视不 (的基础上,于容器底部正中间地点,嵌入一平行于侧面的长方形隔板17-4 在图延长,CM= BM,=1 dmNM ,隔板高 17-5,获得图 )计时,经过计 = 60°α持续向右迟缓旋转,当.BC⊥ NM.4 dm算,判断溢出容器的液体可否达到3:分析研究分2··3BE∥分4·(2)) (dm·液 2分2013年河北省中考数学压轴题6·o,BCQ=37∠=∴ BCQ=∠ tan中, BCQ△Rt 在 (3)分 7 ·············o37≤o≤3,0当容器向左旋转时,如图拓展( +3x-分 9·∵液体体积不变,∴·∴,2分10·,,同理得4 当容器向右旋转时,如图重合时,如图’B与点 Q 当液面恰巧到达容器口沿,即点,得,且 =4’BB由 =3.2∠=o,∴ 37=,得∠=∠tan∴由此时分 12 ··············不影响得分】<“≤”为“【注:本问的范围中,,EB∥ FN 所示,设6o 时,如图 =60 当延伸中,△Rt ,在 H 于点⊥GH作 G 过点 EB,∥,∠ GH=MB=2<MN MG=BH=∴ . = o,∴30=,此时容器内液体形成两层液面, G'MBB . 为底面的直棱柱和直角梯形 NFM△Rt 液体的形状分别是以311131∵NFM△G'MBB6222 31122∴, )>4(dm= 溢出 633. · 4dm∴溢出液体可以达到分14·页2共页 2 第。
07-13年深圳中考数学压轴题含答案--选择题
07-13年深圳中考数学压轴题—选择题(含答案)2013年12.如图3,已知321////l l l ,相邻两条平行直线间的距离相等,若等腰直角△ABC 的三个项点分别在这三条平行直线上,则 sin 的值是( )A.31B.176C.55D.1010答案:D解析:分别过点A ,B 作设平行线间距离为d =1,CE =BF =1,AE =CF =2,AC =BC =5,AB =10, 则2012年12.如图4,已知:∠MON=30o,点A 1、A 2、A 3 在射线ON 上,点B 1、B 2、B 3…..在射线OM 上,△A 1B 1A 2. △A 2B 2A 3、△A 3B 3A 4……均为等边三角形,若OA 1=l ,则△A 6B 6A 7 的边长为 A .6 B .12 C .32 D .64答案:C解:∵△A 1B 1A 2是等边三角形, ∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°, ∴∠2=120°, ∵∠MON=30°,∴∠1=180°-120°-30°=30°, 又∵∠3=60°,∴∠5=180°-60°-30°=90°, ∵∠MON=∠1=30°, ∴OA 1=A 1B 1=1, ∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°, ∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°, ∴A 2B 2=2B 1A 2,B 3A 3=2B 2A 3, ∴A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8, A 5B 5=16B 1A 2=16,以此类推:A 6B 6=32B 1A 2=32. 故答案是:32.2011年12、如图4,△ABC 与△DEF 均为等边三角形,O 为BC 、EF 的中点,则AD :BE 的值为A.3:1 B. 2:1 C.5:3 D.不确定解:连接OA 、OD ,∵△ABC 与△DEF 均为等边三角形,O 为BC 、EF 的中点, ∴AO ⊥BC ,DO ⊥EF ,∠EDO=30°,∠BAO=30°, ∴OD :OE=OA :OB=√ 3:1,∵∠DOE+∠EOA=∠BOA+∠EOA 即∠DOA=∠EOB , 又OD/OD=OA/OB∴△DOA ∽△EOB ,∴OD :OE=OA :OB=AD :BE= √3:1. 故为√ 3:12010年12.如图2,点P (3a ,a )是反比例函y =kx(k >0)与⊙O 的一个交点, 图中阴影部分的面积为10π,则反比例函数的解析式为 A .y =3x B .y =5x C .y =10x D .y =12x解:设圆的半径是r ,根据圆的对称性以及反比例函数的对称性可得: π*r^2=4*10π P (3a ,a )在圆上所以0p^2=r^2=(3a)^2+a^2=10a^2 r^2=40=10a^2 a=2k=x*y=3a^2=12则反比例函数的解析式是:y=12/xxO yP 图210.如图,已知点A 、B 、C 、D 均在已知圆上,AD //BC ,AC 平分BCD ∠,120ADC = ∠,四边形ABCD 的周长为10cm .图中阴影部分的面积为( ) A .32B . 3C . 23D . 43S △ADC=S △ADO=32008年10.如图2,边长为1的菱形ABCD 绕点A 旋转,当B 、C 两点恰好落在扇形AEF 的弧EF 上时,弧BC 的长度等于A.6π B.4π C.3π D.2π解:连接AC,AB=AC=扇形半径; 又因为菱形四边相等所以BC=AB; 故△ABC 为等边三角形,所以∠BAC=60°; 所以:弧BC=60°/360°×2πr=π/3图 2FED CB A10.在同一直角坐标系中,函数(0)ky k x=≠与(0)y kx k k =+≠的图象大致是( )答案:CA.xy B.xy C.xy D.xy。
2013中考数学压轴题练习
2013中考数学压轴题练习1.某数学兴趣小组开展了一次活动,过程如下: 设∠BAC =θ(0°<θ<90°).现把小棒依次摆放在两射线AB ,AC 之间,并使小棒两端分别落在两射线上. 活动一:如图甲所示,从点A 1开始,依次向右摆放小棒,使小棒与小棒在两端点处互相垂直,A 1A 2为第1根小棒. 数学思考:(1)小棒能无限摆下去吗?答: .(填“能”或“不能”) (2)设AA 1=A 1A 2=A 2A 3=1. ①θ= 度;②若记小棒A 2n-1A 2n 的长度为a n (n 为正整数,如A 1A 2=a 1,A 3A 4=a 2,),求此时a 2,a 3的值,并直接写出a n (用含n 的式子表示).图甲活动二: 如图乙所示,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第1根小棒,且A 1A 2= AA 1.数学思考:(3)若已经向右摆放了3根小棒,则1θ= ,2θ= ,3θ= ;(用含θ的式子表示) (4)若只能..摆放4根小棒,求θ的范围.图乙2.数学课上,李老师出示了如下框中的题目.在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED=EC ,如图.试确定线段AE 与DB 的大小关系,并说明理由.EABCD小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论当点E 为AB 的中点时,如图1,确定线段AE 与DB 的大小关系,请你直接写出结论: AE DB (填“>”,“<”或“=”).EA BCDEA BCD(2)特例启发,解答题目解:题目中,AE 与DB 的大小关系是:AE DB (填“>”,“<”或“=”).理由如下:如图2,过点E 作//EF BC ,交AC 于点F . (请你完成以下解答过程) (3)拓展结论,设计新题 在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =.若ABC ∆的边长为1,2AE =,求CD 的长(请你直接写出结果).3.已知:二次函数y =x 2+bx -3的图像经过点P (-2,5). (1)求b 的值,并写出当1<x ≤3时y 的取值范围;(2)设点P 1(m ,y 1)、P 2(m +1,y 2)、P 3(m +2,y 3)在这个二次函数的图像上. ①当m =4时,y 1、y 2、y 3能否作为同一个三角形的三边的长?请说明理由;②当m 取不小于5的任意实数时,y 1、y 2、y 3一定能作为同一个三角形三边的长,请说明理由.第2题图1 第2题图24.已知抛物线:y=x²-2x +m-1 与x 轴只有一个交点,且与y 轴交于A 点, 如图,设它的顶点为B (1)求m 的值;(2)过A 作x 轴的平行线,交抛物线于点C ,求证是△ABC 是等腰直角三角形;yxCEA O BF(3)将此抛物线向下平移4个单位后,得到抛物线C',且与x 轴的左半轴交于E 点,与y 轴交于F 点,如图.请在抛物线C'上求点P ,使得△EFP 是以EF 为直角边的直角三角形.5.如图(1),矩形ABCD 的一边BC 在直角坐标系中x 轴上,折叠边AD,使点D 落在x 轴上点F 处,折痕为AE ,已知AB=8,AD=10,并设点B 坐标为(m,0),其中m >0.(1)求点E 、F 的坐标(用含m 的式子表示); (2)连接OA ,若△OAF 是等腰三角形,求m 的值;(3)如图(2),设抛物线y=a(x -m -6)2+h 经过A 、E 两点,其顶点为M ,连接AM ,若∠OAM=90°,求a 、h 、m 的值.。
2013中考数学压轴题及答案40例(7)学生版
2013中考数学压轴题及答案40例(7)28.如图,Rt △ABC 的顶点坐标分别为A (0,3),B (-21,23),C (1,0),∠ABC =90°,BC 与y 轴的交点为D ,D 点坐标为(0,33),以点D 为顶点、y 轴为对称轴的抛物线过点B .(1)求该抛物线的解析式;(2)将△ABC 沿AC 折叠后得到点B 的对应点B ′,求证:四边形AOCB ′是矩形,并判断点B ′是否在(1)的抛物线上;(3)延长BA 交抛物线于点E ,在线段BE 上取一点P ,过P 点作x 轴的垂线,交抛物线于点F ,是否存在这样的点P ,使四边形PADF 是平行四边形?若存在,求出点P 的坐标,若不存在,说明理由.29.如图1,平移抛物线F 1:y =x 2后得到抛物线F 2.已知抛物线F 2经过抛物线F 1的顶点M 和点A (2,0),且对称轴与抛物线F 1交于点B ,设抛物线F 2的顶点为N .(1)探究四边形ABMN 的形状及面积(直接写出结论);(2)若将已知条件中的“抛物线F 1:y =x 2”改为“抛物线F 1:y =ax 2”(如图2),“点A (2,0)”改为“点A (m ,0)”,其它条件不变,探究四边形ABMN 的形状及其面积,并说明理由;(3)若将已知条件中的“抛物线F 1:y =x 2”改为“抛物线F 1:y =ax 2+c ”(如图3),“点A (2,0)”改为“点A (m ,c )”其它条件不变,求直线AB 与y 轴的交点C 的坐标(直接写出结论).30.如图,抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B .(1)求抛物线的解析式;(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;(3)连结OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标;若不存在,说明理由.31.如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.。
2013年中考数学压轴题真题分类汇编二次函数
2013年中考数学压轴题真题分类汇编:二次函数四、二次函数1.(北京)已知二次函数y =(t +1)x 2+2( t +2)x +32在x =0和x =2时的函数值相等. (1)求二次函数的解析式;(2)若一次函数y =kx +6的图象与二次函数的图象都经过点A (-3,m ),求m 和k 的值; (3)设二次函数的图象与x 轴交于点B ,C (点B 在点C 的左侧),将二次函数的图象在点B ,C 间的部分(含点B 和点C )向左平移n (n >0)个单位后得到的图象记为G ,同时将(2)中得到的直线y =kx +6向上平移n 个单位.请结合图象回答:平移后的直线与图象G 有公共点时,n 的取值范围.2.(北京模拟)已知抛物线y =-x2+(m -2)x +3(m +1). (1)求证:无论m 为任何实数,抛物线与x 轴总有交点;(2)设抛物线与y 轴交于点C ,当抛物线与x 轴有两个交点A 、B (点A 在点B 的左侧)时,如果∠CAB 或∠CBA 这两角中有一个角是钝角,求m 的取值范围;(3)在(2)的条件下,P 是抛物线的顶点,当△P AO 的面积与△ABC 的面积相等时,求该抛物线的解析式.3.(上海模拟)如图,在平面直角坐标系xO y 中,二次函数y =-13x 2+bx +c 的图象经过点A (-1,1)和点B (2,2),该函数图象的对称轴与直线OA 、OB 分别交于点C 和点D . (1)求这个二次函数的解析式和它的对称轴; (2)求证:∠ABO =∠CBO ;(3)如果点P 在直线AB 上,且△POB 与△BCD 相似,求点P4.(安徽)如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y =a (x -6)2+h .已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m .(1)当h =2.6时,求y 与x 的关系式(不要求写出自变量x 的取值范围); (2)当h =2.6时,球能否越过球网?球会不会出界?请说明理由; (3)若球一定能越过球网,又不出边界,求h 的取值范围.5.(安徽某校自主招生)已知二次函数y =x2-2mx +1.记当x =c 时,相应的函数值为y c ,那么,是否存在实数m ,使得对于满足0≤x≤1的任意实数a 、b ,总有y a +y b≥1.如果存在,求出实数m 的取值范围;如果不存在,请说明理由.6.(浙江模拟)已知二次函数y =x2+ax +a -2.(1)证明:不论a 取何值,抛物线y =x2+ax +a -2的顶点P 总在x 轴的下方;(2)设抛物线y =x2+ax +a -2与y 轴交于点C ,如果过点C 且平行于x 轴的直线与该抛物线有两个不同的交点,并设另一个交点为点D ,问:△QCD 能否是等边三角形?若能,请求出相应的二次函数解析式;若不能,请说明理由;(3)在第(2)的条件下,设抛物线与x 轴的交点之一为点A ,则能使△ACD 的面积等于14的抛物线有几条?请证明你的结论.7.(江苏镇江)对于二次函数y =x2-3x +2和一次函数y =-2x +4,把y =t (x2-3x +2)+( 1-t )( -2x +4)称为这两个函数的“再生二次函数”,其中t 是不为零的实数,其图象记作抛物线E . 现有点A (2,0)和抛物线E 上的点B (-1,n ),请完成下列任务: 【尝试】(1)当t =2时,抛物线y =t (x2-3x +2)+( 1-t )( -2x +4)的顶点坐标为____________; (2)判断点A 是否在抛物线E 上; (3)求n 的值;【发现】通过(2)和(3)的演算可知,对于t 取任何不为零的实数,抛物线E 总过定点,坐标为____________.【应用1】二次函数y =-3x2+5x +2是二次函数y =x2-3x +2和一次函数y =-2x +4的一个“再生二次函数”吗?如果是,求出t 的值;如果不是,说明理由;【应用2】以AB 为边作矩形ABCD ,使得其中一个顶点落在y 轴上,若抛物线E 经过A 、B 、C 、D 其中的三点,求出所有符合条件的t 的值.8.(江苏模拟)如图,建立平面直角坐标系xO y ,1千米.某炮位于坐标原点,把发射后的炮弹看成点,其飞行的高度y y =kx -120(1+k2)x2(k >0),其中k 与发射方向有关,炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.9.(江苏模拟)已知一次函数y =kx +b 与二次函数y =2ax2+2mx +c (m 为整数)的图象交于A (2-22,3-22)、B (2+22,3+22)两点,二次函数y =2ax2+2mx +c 和y =ax2+mx +c -1的最小值的差为l .(1)若一次函数y =kx +b 与二次函数y =ax2+mx +c -1的图象交于C 、D 两点,求|CD |值.(2)问是否存在点P ,从点P 作一射线分别交两个二次函数的图象于M ,N ,使得PMPN为常数?若存在,求出点P 的坐标和该常数;若不存在,请说明理由. 10.(四川某校自主招生)一开口向上抛物线与x 轴交于A (m -2,0)、B (m +2,0)两点,顶点为C ,AC 且⊥BC . (1)若m 为常数,求抛物线解析式;(2)点Q 在直线y =kx +1上移动,O 为原点,当m =4时,直线上只存在一个点Q 使得∠OQB =90°,求此时直线解析式.11.(湖南娄底)已知二次函数y =x2-(m2-2)x -2m 的图象与x 轴交于点A (x 1,0)和点B (x 2,0),x 1<x 2,与y 轴交于点C ,且满足1x 1+1 x 2=1 2. (1)求这个二次函数的解析式;(2)探究:在直线y =x +3上是否存在一点P ,使四边形P ACB 为平行四边形?如果有,求出点P 的坐标;如果没有,请说明理由.12.(湖北荆州、荆门)已知:y 关于x 的函数y =(k -1)x2-2kx +k +2的图象与x 轴有交点. (1)求k 的取值范围;(2)若x 1,x 2是函数图象与x 轴两个交点的横坐标,且满足(k -1)x 12+2kx 2+k +2=4x 1x 2.①求k 的值;②当k ≤x≤k +2时,请结合函数图象确定y 的最大值与最大值. 13.(湖北随州)在-次数学活动课上,老师出了-道题:(1)解方程x2-2x -3=0.巡视后,老师发现同学们解此题的方法有公式法、配方法和十字相乘法(分解因式法). 接着,老师请大家用自己熟悉的方法解第二道题:(2)解关于x 的方程mx2+(m -3)x -3=0(m 为常数,且m ≠0).老师继续巡视,及时观察、点拨大家.再接着,老师将第二道题变式为第三道题:(3)已知关于x 的函数y =mx2+(m -3)x -3(m 为常数).①求证:不论m 为何值,此函数的图象恒过x 轴、y 轴上的两个定点(设x 轴上的定点为A ,y 轴上的定点为C );②若m ≠0时,设此函数的图象与x 轴的另一个交点为B ,当△ABC 为锐角三角形时,求m 的取值范围;当△ABC 为钝角三角形时,观察图象,直接写出m 的取值范围.请你也用自己熟悉的方法解上述三道题..14.(广东肇庆)已知二次函数y =mx2+nx +p 图象的顶点横坐标是2,与x 轴交于A (x 1,0)、B (x 2,0),x 1<0<x 2,与y 轴交于点C ,O 为坐标原点,tan ∠CAO -tan ∠CBO =1. (1)求证:n +4m =0; (2)求m 、n 的值;(3)当p >0且二次函数图象与直线y =x +3仅有一个交点时,求二次函数的最大值. 15.(福建模拟)在平面直角坐标系中,已知函数y 1=2x 和函数y 2=-x +6,不论x 取何值,y 0都取y 1与y 2二者之中的较小值. (1)求y 0关于x 的函数关系式;(2)现有二次函数y =x2-8x +c ,若函数y 0和y 都随着x 的增大而减小,求自变量x 的取值范围; (3)在(2)的结论下,若函数y 0和y 的图象有且只有一个公共点,求c 的取值范围.Ox y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
操作探究
1.)如图,有一张长为5宽为3的矩形纸片ABCD,要通过适当的剪拼,得到一个与之面积相等的正方形。
(Ⅰ)该正方形的边长为(结果保留根号);
【点评】:本题以正方形判定、图形变换等知识为载体,综合考察了动手操作、探究创新等多方面能力,难点在于找到解题切入点,不断尝试;(Ⅰ)难度较小,(Ⅱ)难度较大。
2.如图,在一张△ABC纸片中,∠C=90°, ∠B=60°,DE是中位线,现把纸片沿中位线DE剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方
形.那么以上图形一定能被拼成的个数为( )
A.1
B.2
C.3
D.4
【解题思路】以上图形一定能被拼成:AE与BE重合拼成邻边不等的矩形;AD与DC重合拼成等腰梯形;AD与CD重合拼成有一个角为锐角的菱形;不能拼成正方形。
【答案】C
【点评】考察了学生的能手能力,可以通过实际操作来完成,当然也有图形判断方面的考察,有三个角是90°的四边形是矩形,有两个角相等的梯形是等腰梯形,邻边相等的平行四边形是菱形等。
难度中等。
23.(本小题满分9分)
根据给出的下列两种情况,请用直尺和圆规找到一条直线,把△ABC恰好分割成两个等腰三角形(不写做法,但需保留作图痕迹);并根据每种情况分别猜想:∠A与∠B有怎样的数量关系时才能完成以上作图?并举例验证猜想所得结论。
(1)如图①△A BC中,∠C=90°,∠A=24°
第23题图①
①作图:
②猜想:
③验证:
(2)如图②△ABC中,∠C=84°,∠A=24°.
第23题图②
①作图:
②猜想:
③验证:
【解题思路】在三角形中找到等腰三角形的方法就是做一边的垂直平分线,然后根据角的度数来判断是不是等腰三角形。
第一题可以通过做AC、BC边的垂直平分线来完成。
第二题可以通过做AB边的垂直平分线来完成。
再找一下角的关系。
【答案】
(1)①作图:痕迹能体现作线段AB(或AC、或BC)的垂直平分线,或作∠ACD=∠A(或∠BCD=∠B)两类方法均可,
在边AB上找出所需要的点D,则直线CD即为所求………………2分
②猜想:∠A+∠B=90°,………………4分
③验证:如在△ABC中,∠A=30°,∠B=60°时,有∠A+∠B=90°,此时就能找到一条把△ABC恰好分割成两个等腰三角形的直线。
………………5分
(2)答:①作图:痕迹能体现作线段AB(或AC、或BC)的垂直平分线,或作∠ACD=∠A或在线段CA上截取CD=CB三种方法均可。
在边AB上找出所需要的点D,则直线CD即为所求………………6分
②猜想:∠B=3∠A………………8分
③验证:如在△ABC中,∠A=32°,∠B=96,有∠B=3∠A,此时就能找到一条把△ABC恰好分割成两个等腰三角形的直线。
………………9分
24.( 山东省威,
AB
∴∠KNM=∠1,∵∠KMN=∠1,
∴∠KNM=∠KMN, ∵∠1=70°,
∴∠KNM=∠KMN=70°, ∴∠MKN=40°.
(2)不能.
过M作ME⊥DN,垂足为E,则ME==AD=1,∴由(1)知:∠KMN=∠KNM,
∴MK=NK,又MK≥ME,
∴NK≥1,∴S△MNK=1
NK·ME≥
1
. MN K的面积
3、在平面上,七个边长为1的等边三角形,分别用①至⑦表示(如图),从④⑤⑥⑦组成的图形中,取出一个三角形,是剩下的图形经过一次平移,与①②③组成的图形拼成一个正
六边形。
(1)你取出的是哪个三角形?写出平移的方向和平移的距离;
(2)将取出的三角形任意放置在拼成的正六边形所在平面上,问:正六边形没有被三角形
盖住的面积能否等于5
?请说明理由。
2
【点评】本题考查平移、面积的计算。
探索性较强,在考查知识点的同时也考查了学生的探究能力。
难度中等
4.(本题8分)七巧板是我们祖先的一项卓越创造,用它可以拼出多种图形.请你用七巧板中标号为①,②,③的三块板(如图1)经过平移、旋转拼成图形.
⑴拼成矩形,在图2中画出示意图;
⑵拼成等腰直角三角形,在图3中画出示意图.
注意:相邻两块板之间无空隙,无重叠;示意图的顶点画在小方格顶点上.
【解题思路】进行空间想象或进行模拟一下进行验证。
【答案】参考图形如下(答案不唯一)
【点评】图形拼接是是近几年来考查的热点之一,考查了学生的基本操作作图能力,以及基础知识的掌握情况.属于中等难度的试题,具有一定的区分度.操作题在中考题中总占一定比例,这类题答案不唯一,解题方法灵活。