矩形波发生器的实现8页
单片机矩形波发生器

单片机系统应用设计题目:周期脉宽可控式矩形波发生器(AT89C51)摘要:矩形波发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。
本次设计使用AT89C51单片机构成产生矩形波信号,波形的周期和脉宽可以用程序改变,具有线路简单,结构紧凑等优点。
本设计添加了按钮控制和显示功能,可通过按钮设定周期和脉宽,并通过数码管显示出周期和脉宽。
设计中如有不足之处请指导老师给与指正。
关键词:51单片机矩形波周期脉宽功能介绍:(1)矩形波发生器技术指标波形:矩形波幅值电压:5V 最小脉宽:10ms 最大周期:2s(2)操作设计:上电后,系统初始化,脉宽数码显示4个0,周期数码管显示4个0,四个按钮分别控制脉宽的加10ms减10ms,和周期的加10ms减10ms,数码管即时显示当前脉宽和周期。
设计思路:方波信号由P3.0引脚发出,分别用AT89C51单片机的两个定时器T0和T1控制方波的脉宽和周期,设置两定时器均为工作方式1,同样写入计数初值0D8F0H,开放中断,允许T0和T1中断,使定时器定时10ms产生定时中断,另外分别用R3和R4寄存器存放定时中断次数,初始状态设P3.0为高电平,定时器T0溢出R3次后信号变为低电平,定时器T1溢出R4次后信号变为高电平,通过两个按钮对R3和R4进行加一和减一操作,实现脉宽和周期的增减,脉宽增按钮接在P0.0引脚,脉宽减按钮接在P0.1引脚,周期增按钮接在P0.2引脚,周期减按钮接在P0.3引脚。
在P1和P2口接八个数码管,动态显示脉宽和周期,用查表指令使各数码管显示0~9的十进制数,其中P1口产生控制位选信号,P2口产生控制段码信号。
具体设计:1、硬件设计,见硬件结构图。
单片机的内部时钟用12MHZ的晶振电路产生,这样没一个机器周期为1微秒。
复位信号由TL7705芯片产生。
EA引脚接高电平。
P0口第四位分别接四个控制按钮,各串联10K ,上拉电阻,当按键按下,先P0引脚输入高电平。
(完整word版)矩形波发生器

实验二占空比可调的矩形波发生器实验一、实验目的1.掌握NE555、ICM7555等定时器芯片的使用方法;2.了解占空比可调的矩形波发生器的设计方法。
二、实验原理1.定时器介绍555定时器是一种多用途的单片中规模集成电路。
该电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器。
因而在波形的产生与变换、测量与控制、家用电器和电子玩具等许多领域中都得到了广泛的应用。
目前生产的定时器有双极型和CMOS两种类型,其型号分别有NE555(或5G555)和C7555等多种。
通常,双极型产品型号最后的三位数码都是555,CMOS产品型号的最后四位数码都是7555,它们的结构、工作原理以及外部引脚排列基本相同。
一般双极型定时器具有较大的驱动能力,而CMOS定时电路具有低功耗、输入阻抗高等优点。
555定时器工作的电源电压很宽,并可承受较大的负载电流。
双极型定时器电源电压范围为5~16V,最大负载电流可达200mA;CMOS定时器电源电压变化范围为3~18V,最大负载电流在4mA以下。
图1为555集成电路内部结构框图。
其中由三个5KΩ的电阻R1、R2和R3组成分压器,为两个比较器C1和C2提供参考电压,当控制端VM悬空时(为避免干扰V M端与地之间接一0.01μF左右的电容),VA=2VCC/3,VB=VCC/3,当控制端加电压时V A=V M,V B=V M/2。
放电管TD 的输出端Q'为集电极开路输出,其集电极最大电流可达50mA ,因此具有较大的带灌电流负载的能力。
555集成电路的输出级为推拉式结构。
D R 是置零输入端,若复位端D R 加低电平或接地,不管其他输入状态如何,均可使它的输出VO 为“0”电平。
正常工作时必须使DR 处于高电平。
2.功能555定时器的功能主要是由两个比较器C1和C2的工作状况决定的。
由图1可知,当V6>VA 、V2>VB 时,比较器C1的输出VC1=0、比较器C2的输出VC2=1,基本RS 触发器被置0,TD 导通,同时VO 为低电平。
三角波-方波(锯齿波-矩形波)发生器实验报告

三角波-方波(锯齿波-矩形波)发生器实验报告一、实验背景及目的在电子技术中,经常需要产生特定频率和形态的波形信号。
三角波-方波(锯齿波-矩形波)发生器可以产生多种波形信号,因此应用广泛。
本实验的目的是学习如何设计和制作三角波-方波(锯齿波-矩形波)发生器,并且深入理解相关电路的工作原理。
二、实验原理本实验中,我们使用反相输入放大器作为比较器。
比较器会将输入的连续波形信号与阈值进行比较,若输入信号高于阈值,则输出高电平;反之,则输出低电平。
通过将两个反相输入放大器连接形成反馈环路,可以得到三角波和锯齿波的信号。
通过在反馈环路中添加开关管,可以将三角波信号转化为矩形波信号。
三、实验器材1. 实验板2. 集成电路 LM3583. 可变电阻4. 电容5. 二极管6. 开关管四、实验步骤1. 将 LM358 集成电路插入实验板正确位置。
2. 连接反馈电路:将时序电容和可变电阻串联,连接到反相输入端口。
将电容和电阻的另一端连接到非反相输入端口。
3. 连接反馈电路:将正输入端口连接到负电源的直流电压。
4. 连接输出端口:将反相输出端口连接到非反相输入端口。
5. 连接输出端口:将输出端口连接到输出负载电阻。
6. 添加电容:将一个电容连接到输出负载电阻的另一端,并将其连接到微调电器。
7. 连接矩形波开关管:将开关管连接到反馈环路中,通过它进行转换。
8. 连接锯齿波开关管:将开关管连接到反馈环路中,通过它进行转换。
9. 测试电路:检查电路是否连接正确。
10. 调节电阻:根据需要调节可变电阻以产生不同的波形信号。
五、实验结果在实验中,我们成功地设计和制作了三角波-方波(锯齿波-矩形波)发生器,并且得到了以下结果:1. 通过调节电阻,我们可以产生不同的波形信号,包括三角波、锯齿波和矩形波。
2. 我们发现,当添加了矩形波开关管时,产生的矩形波信号的占空比由电阻决定。
3. 我们发现,在添加锯齿波开关管时,电容和电阻的值将会影响锯齿波的斜率。
实验五 三角波-方波(锯齿波-矩形波)发生器实验报告

实验五三角波-方波(锯齿波-矩形波)发生器实验报告实验目的:学习、理解、掌握由运算放大器构成的施密特比较器、积分器的原理,掌握锯齿波-矩形波(三角波-方波)发生器的构成方式,波形参数与电路元件值的关系,通过对理论计算、仿真、测试的数据对比分析获得对电路原理及实践能力的提升。
实验设备及器件:笔记本电脑(软件环境:Multisim13.0、WaveForms2015)AD2口袋仪器电容:0.1μF电阻:200Ω、10kΩ*4、30kΩ*3二极管:发光二极管*2(红色或绿色)、普通二极管*2运放:μA741*2面包板、连接线等实验内容:用两片μA741构成的三角波-方波发生器(施密特触发器+积分电路)见图1。
图1 三角波-方波电路1.测试(使用红色发光二极管):(1)按图1搭建电路,使用AD2测试vo1和vo的波形(屏幕拷贝波形并贴于下方,图2),观察测试的波形,给出方波及三角波的高电平、低电平、方波的高电平持续时间、方波的低电平的持续时间、占空比、振荡周期,并填入表1。
图2 三角波-方波电路的测试波形(2)令图1中的R4=10 kΩ,其他器件参数不变,构成锯齿波-矩形波发生器,使用AD2测试vo1和vo2的波形(屏幕拷贝波形并贴于下方,图3),通过波形给出锯齿波及矩形波的高电平、低电平、矩形波的高电平持续时间、矩形波的低电平的持续时间、占空比、振荡周期,并填入表2。
图3 锯齿波-矩形波电路的测试波形2.计算(1)利用测试(1)所得的方波高电平和低电平值(输出vo1,也就是发光二极管在该工作条件下的正向压降,计算周期时可使用正负峰值的平均值计算),并根据电路器件参数,理论计算三角波输出端(vo)的高电平和低电平值、方波高电平持续时间、方波低电平的持续时间、占空比、振荡周期,并填入表1。
(计算时需要考虑D3、D4二极管正向压降的影响,鉴于选用二极管的特性及实验中流过D 3、D4二极管的电流只有100μA左右,取正向压降为0.5V)。
矩形波发生器自激振荡原理

矩形波发生器自激振荡原理矩形波发生器是一种可将输入信号转换为具有特定频率和占空比的矩形波形的电路。
自激振荡是指一个电路可以在没有外部输入信号激励的情况下,通过自身反馈产生振荡信号。
本文将详细解释矩形波发生器自激振荡的基本原理,包括其工作原理、电路组成、振荡条件以及常见的实现方式。
1. 工作原理矩形波发生器自激振荡的工作原理可以简单描述为:通过反馈网络将一部分输出信号馈回到输入端,形成自激振荡回路。
具体来说,矩形波发生器的工作原理涉及以下几个关键要素:•反馈网络:反馈网络将一部分输出信号引入到输入端,以实现自激振荡。
反馈网络一般由电阻、电容和开关等元件组成,其具体结构和参数会直接影响振荡频率和波形的稳定性。
•比较器:比较器通常是矩形波发生器的核心,用于将输入信号与反馈信号进行比较,产生一个矩形波形的输出信号。
比较器的工作原理基于参考电压和输入信号的比较,产生相应的输出。
•积分器/延迟网络:积分器(也称为延迟网络)用于对比较器的输出信号进行积分或延迟处理,以满足矩形波发生器的振荡条件。
积分器一般由电容和电阻组成,可以提供一定的时间延迟和滤波功能。
•放大器:放大器用于放大矩形波发生器的输出信号,以输出较高的电压和电流。
放大器可以增加信号的幅度,并对输出信号进行修整和控制,以满足设定的波形要求。
综上所述,矩形波发生器自激振荡的基本原理是通过反馈网络将一部分输出信号馈回到输入端,并经过比较、延迟处理和放大,形成稳定的矩形波形输出。
2. 电路组成矩形波发生器的电路结构可以根据具体实现方式而异,但通常会包含以下几个基本组成部分:•比较器:比较器是矩形波发生器的核心,用于对输入信号和反馈信号进行比较,并产生相应的输出。
常见的比较器结构包括比较器集成电路、运算放大器等。
•反馈网络:反馈网络将一部分输出信号引回到比较器的输入端,以实现自激振荡。
反馈网络一般由电阻、电容和开关等元件组成,其具体结构和参数会直接影响振荡频率和占空比。
矩形波

脉宽可调型矩形波发生器1.原理图:脉宽可调矩形波发生电路由图可见,集成运放与电阻R1、R2组成滞回比较器,将滞回电压比较器的输出信号通过RC电路反馈到输入端,即组成矩形波信号发生器。
电路中的R和C组成积分电路,将滞回电压比较器输出的矩形波信号,转换成三角波信号输入滞回电压比较器的输入端,驱动滞回电压比较器产生矩形波信号输出。
图中的稳压管VDz和电阻R3的作用是钳位,将滞回比较器的输出电压限制在稳压管的稳定电压值+Uz或-Uz。
电位器R P用来调节输出信号的占空比即脉宽。
二极管VD1和VD2的作用是改变充、放电电路的时间常数,实现脉宽可变的目的。
2.工作原理:(1)设某个瞬间电路的输出电压为+Uz,此时滞回比较器的门限电压为UTH2,输出信号经电阻R对电容C充电,充电信号的波形如右图(a)所示。
当该电压上升到UTH2时,电路的输出电压变为-Uz,门限电压也随着变为UTH1,电容C经电阻R放电,放电信号的波形如右图(a)所示。
当该电压下降到UTH1时,输出电压又回到+Uz,电容又开始充电的过程,周而复始输出矩形波信号。
(2)振荡周期:当输出信号为+Uz时,二极管D1通、D2断,输出信号经电位器RP的上半部,二极管D1和电阻R对电容C充电;当输出信号为-Uz时,二极管D2通、D1断,电容C经电阻R、二极管D 2和电位器RP的下半部放电。
充放电时间分别为1T、2T。
输出波形1121222('')ln(1)2(')ln(1)p p R T R R C R R T R R C R =++=++ 其振荡周期为:11222(2)ln(1)p R T T T R R C R =+=++该电路的工作波形图如图所示。
优点:本电路操作简单,仅改变变位器划片的位置就可以实现对脉宽和占空比的控制; 缺点:只可以改变占空比,不可以改变周期,所以不可以将脉宽加宽到很大。
3.感想:通过课程设计,我对矩形波发生电路有了更深一层的了解,它使我将在课堂上学的理论知识与实际相结合,懂得矩形波脉宽调节可以通过调节电容的充放电来实现。
简易矩形波发生器报告
数字电路设计研讨--简易矩形波信号发生器姓名:尹晨洋学号:13211023班级:通信1301同组成员:程永涛学号:13211007指导老师:任希目录一、综述************************************************************ 1二、电路元件结构及工作原理***************************** 11)、555计数器******************************************************** 1 2)、74ls160同步计数器************************************************ 2 3)、74ls175 4位寄存器************************************************* 4三、频率可调的矩形波发生器***************************** 4 1)、频率可调的矩形波发生器电路图仿真电路图******************************* 4 2)、频率可调的矩形波发生器工作原理分析*********************************** 4 3)、仿真结果分析******************************************************** 5四、可显示频率计数器***************************************** 6 1)、可显示频率计数器仿真电路图******************************************** 6 2)、工作原理分析********************************************************* 6 3)、仿真结果分析********************************************************** 7 4)、实验误差************************************************************** 9五、总结与体会************************************************** 9六、参考文献******************************************************* 9一、综述信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。
基于Multisim10的矩形波信号发生器仿真与实现
Q"#z-.%&'HëìíîY017)H 4iA2KT7)H344i7A:ùr01H-Ø 4i75"Í·ì7AHÜg 6ù
# %&'()*)+ !, 3456
Y 5/0,&6&7 $N ª *+o ! ! H" # z - . % &' 7 c 8 9 c ¯ : ; 7 ) H < x @ = ï : > ^ HC ¨ U ] $ K 7 ) 4 i z # H Õ NKBGVL ? ª Õ N ¨ z # · 7 D # Q @c¯ A ó ! K 7)H> Bà á32
X 7 @] f b ) ¡ ¢ ] f £ |û@R !" ]fáâ ùú|û@ü¿À9 u!" ] f /
¤¥¦ r§ ]f ¥¦ ]f¨] 9u à ¸ ® ý þ !" ú f ÿ Ã! " 1 ß Ã ö # $
©ª ] © «¬ ® ¯° « ¬ ® ± ² ³{ ´ µ ¶ · ¯ ¸ %ºý !" &Ù]ýþ_e÷'(®/±² µ ¶ X × Ù
Qu"#z%&'4i78Hèé2 K ê| 7)ë ì Híî Y! # 7)4i6 : « ïð¬ 7¢'{4i78âãÜñï{Üñ78òóT0 1B7Aôõö÷H231Ø7)=@¤]Üñ7A_
矩形波发生器
目录一、设计任务与要求 (2)1.1 设计任务 (2)1.2 设计要求 (2)二、设计方案与论证 (2)2.1 矩形波发生电路 (2)2.2(发挥部分)三角波发生电路 (4)三、设计原理及电路图 (6)3.1电路设计原理 (6)3.2总原理图 (6)3.3PCB图 (6)四、元器件清单 (7)4.1元件清单 (7)五、元器件识别与检测 (7)5.1电阻(色环电阻的识别) (7)5.2电容 (9)5.3整流管 (10)5.4双向稳压管 (11)5.5集成运放UA741 (11)六、硬件制作与调试 (12)七、设计心得 (12)八、参考文献 (13)一、设计任务与要求1.1 设计任务制作一占空比可调的矩形波发生电路1.2 设计要求1 .频率为几百Hz ~1KHz 以内的某个定值;2 .输出电压为u o =±8V ;3 .占空比的调节范围不小于[0.1,0.9]。
二、设计方案与论证2.1 矩形波发生电路2.1.1 电路组成及工作原理因为矩形波电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要组成部分;因为产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈;因为输出状态应按一定的时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来切丁每种状态维持的时间。
图示为矩形波发生电路,它由反相输入的滞回比较器和RC 电路组成。
RC 回路既作为延迟环节,又作为反馈网络,通过RC 充放电实现输出状态的自动转换。
图中滞回比较器的输出电压,阈值电压Z T U R R R U ⋅+±=±211 (1)因而电压传输特性如图所示:设某一时刻输出电压Uo=±Uz ,则相同输入端点位Up=±Ut 。
Uo 通过R3对电容C 正向充电,如图中实线箭头所示。
反相输入端电位Un 随时间t 增长而逐渐升高,当t 趋近于无穷时Un 趋近于+Uz ;但是一旦Un=+Ut ,再稍增大,Uo 就从+Uz 跃变为-Uz ,与此同时Up 从+Ut 跃变为-Ut 。
矩形波发生器
O
R2 R3
Uz
-Uz
T1
T2
(a) 充> 放, 负 向 锯 齿 波 形
t
+ VDz3
VD2
A2 + +
uo
uo
uo1
R′
VDz4 ±Uz
R″
Uz
R2 R3
Uz
O
R2 R3
Uz
-Uz
T1
T2
t
图 8 – 8 锯齿波产生电路
(b) 充< 放, 正 向 锯 齿 波 9 锯齿波产生电路波形
0
RbC
RaC t
R2
RR21
R3
VDz3
VDz4
(a)
图 8 – 5 占空比可调电路
±Uz
UoL
D T2 RW' (b)rd1 R T RW rd1 rd2 2R
二、 三角波产生电路
R3
R2
C
△ △
- ∞ Ro A1 +
uo1 R
-∞
+ VDz1
A2 + +
uo
R′
VDz2
±Uz
R″
uC C
R
-
△
∞
Ro
+
+
uo uC
+Uz
R2 R2 R3
Uz
Uz T2
uo
O
t
R3
VDz1
R2
VDz2
±Uz
R2 R2
R3
Uz
-Uz
T1
-Uz
当输出U0为高电平时:U
R2 R2 R3
UOH
FU OH
当输出U0为低电平时:U
R2 R2 R3
UOL
FU OL
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青 岛 科 技 大 学 本 科 课 程 设 计 报 告题 目 __________________________________指导教师__________________________学生姓名__________________________学生学号_________________________________________________________学院(部)____________________________专业________________班______年 ___月 ___日矩形波发生器的实现 靳庆庆 1108030204 信息科学技术 电子信息工程 11级2 2019 1 12矩形波发生器的实现1 概述1.1矩形波发生电路在测量、自动控制、通讯、无线电广播和遥控等许多技术领域中有着广泛的应用,甚至在收音机、电视机和电子表等日常生活用品中也离不开它。
总之矩形波发生电路广泛地用于工业生产、科学实验和日常生活等各个领域中。
2设计内容2.1设计任务:用一个集成运放组成一个滞回比较器和一个RC 充放电回路构成一个矩形波发生器。
2.2.设计要求:(1)、进行电路参数分析计算;(2)、设计电路;(3)、焊接,组装、调试硬件,测试结果;(4)、撰写实验报告,要求有电路图、原理说明、电路所需元件清单、电路参数计算、元件选择、测试结果分析等。
2.3电路组成及工作原理:矩形波发生电路实际上是由一个滞回比较器和一个 RC 充放电回路组成。
其中,集成运放和电阻 R1 和 R2 组成滞回比较器,电阻 R 和电容 C 构成充放电回路,稳压管和电阻 R3 的作用是钳位,将滞回比较器的电压限制在稳压管的稳定电压±UZ。
在矩形波发生电路中,如图 1 所示电位器 Rw 和二极管 D1、D2 的作用是将电容充电和放电的回路分开,并调节充电和放电两个时间常数的比。
矩形波发生电路没有稳态,它有两个暂态,一个是低电平,另一个是高电平。
要想达到这种效果可采用滞回比较器,同时利用 RC 充放电回路来改变集成运放反向输入端的输入电压即 u-=uc。
当电容上的电压上升到 u-=u+时,滞回比较器的输出端将发生跳变,由高电平跳变成低电平。
当电容上的电压下降到 u-=u+时,滞回比较器的输出端将再次发生跳变,由低电平跳变成高电平。
以后又重复上述过程。
如此电容反复地进行充电和放电,滞回比较器的输出端反复地在高电平和低电平之间跳变,于是产生了正负交替的矩形波。
因此,在选择矩形波发生电路时,采用滞回比较器和 RC 充放电回路来构成矩形波发生器。
2.4设计方案选择论证及参数计算:矩形波发生器的电路实际上由一个滞回比较器和一个RC充放电回路组成。
其中集成运放和电阻组成滞回比较器,电阻和电容构成充放电回路,稳压管和电阻的作用是钳位,将滞回比较器的输出电压限制在稳压管的稳定电压值。
如果要求矩形波的占空比能够根据需要进行调节,则可以通过改变电路中充电和放电的时间常数来实现。
2.4.1.设计方案图:设计方案的整体框图如图所示2.4.2.单元电路设计:(1)RC充放电回路的设计RC充放电回路如图2所示。
设C=0.01μF,R=20K;2.4.3滞回比较器电路的设计电路如图3所示因为将1式带入上式得故2.4.4占空比可调的矩形波发生电路的设计如果要求矩形波的占空比能够根据需要进行调节,则可以通过改变电路中充电和放电的时间常数来实现,如图4所示当忽略二极管VD1、VD2的导通电阻时,可求得电容充电和放电的时间分别为输出波形的震荡周期为:矩形波的占空比为:按设计要求占空比:0.2~0.8连续可调,则R/(2R+Rw)=0.2; (R+Rw)/(2R+Rw)=0.82.5.原理图完整原理图如图5所示电容C两端的电压Uc以及输出电压Uo的波形如图6所示图5占空比可调的矩形波发生器原理图2.6元器件的选择选择元器件只要清楚“需要什么”和“有什么”,问题就好解决了。
所谓“需要什么”是指根据具体问题的要求选择方案,需要什么样的元器件,即每个元器件各应具有哪些功能和什么样的性能指标;所谓“有什么”是指哪些元器件,哪些在市场上买得到,他们的性能如何、价格如何、体积多大等。
众所周知,电子元器件的种类繁多,而且不断的出现新产品,这就需要用户经常关心元器件的新信息和新动向,多查阅资料。
①集成电路的选择集成电路的广泛运用,不仅减少了电子设备的体积和成本,提高了可靠性,使安装调试和维修变得比较简单,而且大大简化了电子电路的设计。
但是,并不是采用集成电路就一定比采用分立元器件好。
有时功能相当简单的电路,只要用一只二极管或三极管就能解决问题,若采用集成电路反而会使问题复杂化,而且增加成本。
但在一般的情况下,应优先选用集成电路,必要时可画出两种电路进行比较。
集成电路的种类繁多,选用方法一般是“先粗后细”,即先根据主体方案考虑应选用什么功能的集成电路,再进一步考虑它的具体性能,然后再根据价格等因素选用什么型号。
选择的集成电路不仅要在功能和特性上实现设计方案,而且要满足功耗、电压、温度、价格等多方面的要求,而且应考虑封装方式。
集成电路常见的封装方式有双列直插式、扁平式和直立式三种(其他封装形式还有:引线载体式、无引线载体式、锯齿双列式等十余种),一般尽可能选用双列直插式,因为这种封装易更换。
选用集成电路时,还应尽量选择全国集成电路标准化委员会提出的优选集成电路系列中的产品。
②电阻器的选择电阻器除阻值和功耗等参数以外,还应从以下几方面进行考虑:掌握所设计电路对电阻器的特殊要求,所谓特殊要求是指对高频特性、过载能力、精度、温度系数等方面的技术要求。
优先选用通用型电阻器,因为此类电路价格低、货源足。
根据电路的工作频率要求,选用相应的电阻器。
各种电阻器由于他们的结构与制造工艺不同,分布参数也不同。
RX 型绕线电阻器的分布电容和分布电感较大,仅用于工作频率低于50KHz 的电路中;RH 型合成膜电阻器的RS 型有机实心电阻器的工作频率在数十MHz 左右;RT 型碳膜电阻器的工作频率可达100MHz;RJ 型氧化膜电阻器的工作频率可高达数百MHz。
按照电路对温度稳定性的要求,选择温度系数不同的电阻器。
在实际的电路中,有时需要选用正(或负)温度系数的电阻器作为温度补偿元件。
在高增益前置放大电路中,应选用噪声电动势小的电阻器。
RJ 型、RX 型电阻器以及RT 型电阻器均具有较小的噪声电动势。
所选电阻器的额定功率必须大于实际承受功率的两倍③电容器的选择选择电容器除容量和耐压等主要参数外,还应从以下几个方面进行考虑:a.合理确定对电容器精度的要求。
在延时电路、音调控制电路、滤波器以及接收机的本振电路和中频放大电路中,对某些电容器的精度要求较高或很高,应选用高精度的电容器来满足电路的要求。
而在旁路、去耦合、低频耦合等电路中对电容及精度无很严格的要求,因此,仅需按设计值选用相近的容量或稍大容量的电容器。
b.注意所设计电路对电容器绝缘电阻和损耗角正切值tanδ的要求。
绝缘电阻小的电容器,漏电流则较大,漏电流产生的功率损耗将使电容器发热升温,从而导致漏电流进一步上升,轻则是电路性能恶化,重则是电容器失效甚至爆炸。
对在高温和高压下工作的电阻器尤其要注意绝缘电阻参数。
在保持采样电路和电桥电路中作为桥臂使用的电容器,其绝缘电阻值的高低将直接影响测量精度。
电容器的损耗有时也直接影响到电路性能,在震荡电路、中频回路和滤波器等电路中,要求tanδ尽可能小,以提高电路的品质因数Q。
c.注意对电容器高频特性的要求。
在高频应用时某些电容器不可忽视的自身电感、引线电感和高频损耗,会使电容器自身频率下降,导致电路不能正常工作。
有时为了解决电容器自身分布的影响,常在自身等效电感较大的电容器的两端并接一个自身等效电感很小的小容量电容器。
④电位器的选择。
电位器的主要参数有标称电阻、精度、额定功率、电阻温度系数、阻值变化规律、噪声、分辨率、绝缘电阻、耐磨寿命、平滑性、零位电阻、起动力矩、耐潮性等。
其制作材料、结构形式和调节方式繁多,选用时应根据设计电路的要求确定。
选择电位器的结构形式和调节方式。
在电视机及许多测量仪器中,电源开关和亮度(或音量)、灵敏度的控制常要求用一个旋钮来实现,这是可选用带开关的电位器;在校正电路中,可选用紧锁型电位器;在计算机伺服系统及某些精密仪器中,常选用多圈电位器;在晶体管放大器的偏置电路中,可选用半可调型电位器。
选择电位器的阻值变化规律。
为了适应各种不同的用途,电位器的阻值变化规律通常做成三种,即直线式、对数式、反对数式(亦称指数式)。
直线式电位器可用于示波器和电视接收机总控制示波管和显像管的聚焦和亮度。
在稳压电源的取样电路中,也可选用直线式电位器。
此外,直线式电位器还可用于晶体管电路中工作点的调节,接收机AGC 电压的控制以及电视机中帧线性、帧幅、行同步、帧同步等的调节;反对数电位器阻值在转角较小时变化较大,以后逐渐变小。
这种变化规律使用于音调调制电路以及电视机中对比度的调节。
对数式电位器可用于音响设备、收音机及电视机的接收机的音量控制电路中。
因为人耳对声音响度的听觉特性是符合对数规律的,即在声音微弱时,若声音响度稍有增加,人耳的感觉十分灵敏,但当声音增大到一定程度,再继续增大声音响度,人耳的反映反而比较迟钝了。
音量电位器选用对数式阻值变化规律,恰可与人耳的听觉特性相互补偿,使音量电位器转角从零开始逐渐增大时,人对音量的增加有均匀的感觉。
⑤分立元器件的选择分立元器件包括二极管、三极管、场效应管、晶闸管等,选择器件的种类不同,注意事项也不同。
例如三极管,应考虑是PNP 管还是NPN 管,是大功率管还是小功率管,是高频管还是低频管,并注意管子的电流放大倍数、击穿电压、特征频率、静态功耗等是否满足电路设计的要求。
2.7元器件参数名称型号数量双踪示波器 VP5220D或GOS622B 1台集成运算放大器μA7411台面包板 1块电阻R 10k 2个名称型号数量电阻R3 2k 1个电阻R 20k 1个滑动变阻器最大阻值100k 1个稳压管 4.3V 2个数字万用 DT-890 1台直流稳压电源 JWY-30 1台电容 0.01μF 1个3测试与调试3.1焊接电路3.1.1组装实物图如下所示:3.2焊接过程事先准备好焊接板与焊接设备,按照上边搭建的电路进行实际组装和焊接,焊接过程中出现的问题如下:(1)、焊接中布线的问题,防止出现错误。
(2)、确定焊接线路时电路连接不会出错,以及不会漏焊(3)、在确保上述电路焊接完整准确的同时要提高焊接点的美观度3.3调试过程在将各元器件安装并焊接完成后,接入示波器,观察示波器波形,并记录波形和电压。
调试注意事项a.调试之前要熟悉各种仪器的使用方法,并仔细加以检查,避免由于仪器使用不当或出现故障而做出的错误判断。