八年级下册《分式》检测题(一)
八年级数学下第五章分式与分式方程单元检测试卷(北师大带答案和解释)

八年级数学下第五章分式与分式方程单元检测试卷(北师大带答案和解释)【新北师大版八年级数学(下)单元测试卷】第五《分式与分式方程》班级:___________ 姓名:___________ 得分:___________一选择题:(每小题3分共36分)1.在,,,中,是分式的有()A.1个B.2个.3个D.4个2.每千克元的糖果x千克与每千克n元的糖果千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为()A.元B.元.元D.元3.当x=2时,下列分式中,值为零的是()A.B..D.4.下列分式是最简分式的是()A.B..D..若,则的值为()A.1 B..D.6.计算所得的正确结论是()A B1 D-17.a÷b× ÷× ÷d×等于()A.a B..D.ab d8.计算的结果为:()A.B.-.-D.9.分式的分子分母都加1,所得的分式的值比()A.减小了B.不变.增大了D.不能确定10.若,则=()A B D11.关于x的方式方程的解是正数,则可能是()A.﹣4 B.﹣.﹣6 D.﹣712.如果关于x的方程的解不是负值,那么a与b的关系是()A.a>b B.b≥ a .a≥3b D.a=3b二、填空题:(每小题3分共12分)13.化简:= .14.已知,则的值是。
1.计算:= .16.若关于的分式方程无解,则= .三解答题:(共2分)17.(分)计算:(﹣)÷.18.(分)计算:.19.(6分)先化简再求值:,其中a=2,b=﹣1.20.(6分)A、B两地相距200千米,甲车从A地出发匀速开往B 地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.21.(10分)某商店经销一种纪念品,9月份的销售额为2000元,为扩大销售,10月份该商店对这种纪念品打九折销售,结果销售量增加20,销售额增加700元.(1)求这种纪念品9月份的销售价格?(2)若9月份销售这种纪念品获利800元,问10月份销售这种纪念品获利多少元?22.(10分)某工程承包方指定由甲、乙两个工程队完成某项工程,若由甲工程队单独做需要40天完成,现在甲、乙两个工程队共同做20天后,由于甲工程队另有其他任务不再做该工程,剩下的工程由乙工程队再单独做了20天才完成任务.(1)求乙工程队单独完成该工程需要多少天?(2)如果工程承包方要求乙工程队的工作时间不能超过30天,要完成该工程,甲工程队至少要工作多少天?23.(10分)一项工程,甲、乙两公司合做,12天可以完成,共需付工费102000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间甲公司的1倍,乙公司每天的施工费比甲公司每天的施工费少100元。
2020-2021学年北师大版八年级下册 第五章《分式与分式方程》实际应用常考综合题专练(一)

八年级下册第五章《分式与分式方程》实际应用常考综合题专练(一)1.我市计划对城区居民供暖管道进行改造,该工程若由甲队单独施工,则恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍,如果由甲乙两队先合作15天,那么余下的工程由甲队单独完成还需要5天.(1)这项工程的规定天数是多少天?(2)已知甲队每天的施工费用是6500元,乙队每天的施工费用是3500元.为了缩短工期,工程指挥部最终决定该工程由甲、乙两队合作,则该工程的施工费用是多少?2.某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价6元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1680元所购该书的数量比第一次多50本,当按定价售出300本时,出现滞销,便以定价的4折售完剩余的书.(1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?3.列分式方程解应用题:刘峰和李明相约周末去野生动物园游玩,根据他们的谈话内容,求李明乘公交车、刘峰骑自行车每小时各行多少千米?4.列方程解应用题为了提高学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,某校开展了“阳光体育天天跑活动”,初中男生、女生分别进行1000米和800米的计时跑步,在一次计时跑步中,某班一名女生和一名男生的平均速度相同,且这名女生跑完800米所用时间比这名男生跑完1000米所用时间少56秒,求这名女生跑完800米所用时间是多少秒.5.扎西与卓玛共同清点一批图书,已知扎西清点完300本图书所用的时间与卓玛清点完200本所用的时间相同,扎西平均每分钟比卓玛多清点10本,求卓玛平均每分清点图书的数量?6.为满足防护新冠疫情需要,现有甲乙两种机器同时开工制造口罩.甲加工90个口罩所用的时间与乙加工120个口罩所用的时间相等,已知甲乙两种机器每秒钟共加工35个口罩,求甲乙两种机器每秒各加工多少个口罩?7.甲、乙两车分别从A、B两地同时出发,沿同一公路相向而行,开往B、A两地.已知甲车每小时比乙车每小时多走20km,且甲车行驶350km所用的时间与乙车行驶250km所用的时间相同.甲、乙两车的速度各是多少km/h?8.明德中学需要购进甲、乙两种笔记本电脑,经调查,每台甲种电脑的价格比每台乙种电脑的价格少0.2万元,且用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同.(1)求每台甲种电脑、每台乙种电脑的价格分别为多少万元;(2)学校计划用不超过34万元购进甲、乙两种电脑共80台,其中乙种电脑的数量不少于甲种电脑数量的1.5倍,学校有哪几种购买方案?9.2020年初,一场突如其来的新型冠状病毒肺炎疫情,打破了我们宁静的生活,为了预防新型冠状病毒肺炎,人们已经习惯出门戴口罩.某口罩生产企业在若干天内加工120万个口罩(每天生产数量相同),在实际生产时,由于提高了生产技术水平,每天加工的个数是原来的1.5倍,从而提前2天完成任务,问该企业原计划每天生产多少万个口罩?10.为了抗击疫情,支援武汉一线,某工厂接到上级下达赶制60万只医用一次性口罩的任务,为使医用一次性口罩早日到达防疫一线,开工后每天加工口罩的数量是原计划的1.5倍,结果提前5天完成任务,则该厂原计划每天加工多少万只医用一次性口罩?参考答案1.解:(1)设这项工程规定x天完成,15+5=20(天),根据题意得:,解得:x=30,经检验:x=30是原方程的解,且符合题意,答:这项工程规定30天完成.(2)总施工费用:(元),答:该工程的施工费用是180000元.2.解:(1)设第一次购书的进价是每本书x元,则第二次购书时,每本书的批发价是(1+20%)x元,根据题意得:﹣=50,解得:x=4,经检验,x=4是原方程的解,答:第一次购书的进价是每本书4元;(2)第一次购书为1200÷4=300(本),第二次购书为300+50=350(本),第一次赚钱为300×(6﹣4)=600(元),第二次赚钱为300×(6﹣4×1.2)+(350﹣300)×(6×0.4﹣4×1.2)=240(元),所以两次共赚钱为:600+240=840(元),答:该老板两次售书总体上是赚钱了,共赚了840元.3.解:设刘峰骑自行车每小时行x千米,则李明乘公交车每小时行3x千米,由题意得:=+,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴3x=60,答:李明乘公交、刘峰骑自行车每小时分别行60千米、20千米.4.解:设这名女生跑完800米所用时间为x秒,则这名男生跑完1000米所用时间(x+56)秒,根据题意得:,解得:x=224,经检验,x=224是所列方程的解,并且符合实际问题的意义.答:这名女生跑完800米所用时间是224秒.5.解:设卓玛平均每分钟清点图书x本,则扎西平均每分钟清点(x+10)本,依题意,得:=.解得:x=20.经检验,x=20是原方程的解.答:卓玛平均每分钟清点图书20本.6.解:设甲每秒加工x个口罩,则乙每秒加工(35﹣x)个口罩.由题意得:=,解得:x=15,经检验:x=15是原方程的根,且x=15,35﹣x=20符合题意,答:甲每秒加工15个口罩,乙每天加秒20个口罩.7.解:设乙车的速度是xkm/h,则甲车的速度是(x+20)km/h,依题意得:=,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+20=70.答:甲车的速度是70km/h,乙车的速度是50km/h.8.解:(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据题意得:=,解得:x=0.3,经检验,x=0.3是原分式方程的解,且符合题意,∴x+0.2=0.3+0.2=0.5.答:每台甲种电脑的价格为0.3万元、每台乙种电脑的价格为0.5万元.(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据题意得:,解得:48≤m≤50.又∵m为整数,∴m可以取48,49,50.∴学校有三种购买方案,方案1:购买甲种电脑32台,乙种电脑48台;方案2:购买甲种电脑31台,乙种电脑49台;方案3:购买甲种电脑30台,乙种电脑50台.9.解:设该企业原计划每天生产x万个口罩,则在实际生产时每天生产1.5x万个口罩,由题意得:﹣=2,解得:x=20,经检验:x=20是原分式方程的解,且符合题意,答:该企业原计划每天生产20万个口罩.10.解:设该厂原计划每天加工x万只医用一次性口罩,则实际每天加工1.5x万只医用一次性口罩,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:该厂原计划每天加工4万只医用一次性口罩.。
(完整版)初二数学《分式》练习题及答案.doc

分式练习题一、选择题 (共 8 题,每题有四个选项,其中只有一项符合题意。
每题3 分,共 24 分 ):1. 下列运算正确的是 ( )A.x 10÷ x 5=x 2B.x-4· x=x -3 C.x3· x 2 =x 6 D.(2x -2 ) -3=-8x62. 一件工作 , 甲独做 a 小时完成 , 乙独做 b 小时完成 , 则甲、乙两人合作完成需要 ( )小时 .A.11 B. 1 C. a b ab 3. 化简a b 等于( )1aba b D.a ba b a bA.a 2b 2 B.(a b) 2 C.a 2b 2D.( a b)2a 2b 2a 2b 2a 2b 2a 2b 24. 若分式x 2 4的值为零 , 则 x 的值是 ( )x 2x 2A.2 或 -2B.2C.-2D.42x 5 y5. 不改变分式2 x 2 的值 , 把分子、分母中各项系数化为整数 ,结果是()y 3A.2 x15 yB.4 x5 y C.6x 15 y D. 12x 15 y4x y2 x3 y4 x 2 y 4 x 6 y6. 分式 : ①a2 , ② ab , ③ 4a , ④ 1 中, 最简分式有 ( )a 23a 2b 2 12( a b) x 2A.1 个B.2个C.3 个D.4个7. 计算x x x x4x 的结果是 ( )2 2 2 xA. -1 B.1 C.-1D.12x 2x8. 若关于 x 的方程xac有解 , 则必须满足条件 ( )b x dA. a ≠ b ,c ≠ dB. a ≠b , c ≠ -dC.a ≠ -b , c≠d C.a ≠-b , c≠-d9. 若关于 x 的方程 ax=3x-5 有负数解 , 则 a 的取值范围是 ( )A.a<3B.a>3C.a≥ 3D.a≤ 310. 解分式方程2 3 6x 1 x 1 x 2, 分以下四步 , 其中 , 错误的一步是 ( )1A. 方程两边分式的最简公分母是 (x-1)(x+1)B. 方程两边都乘以 (x-1)(x+1), 得整式方程 2(x-1)+3(x+1)=6C. 解这个整式方程 , 得 x=1D. 原方程的解为 x=1二、填空题 : ( 每小题 4 分, 共 20分)11. 把下列有理式中是分式的代号填在横线上.(1) - 3x ;(2) x ;(3) 2 x 2 y 7xy 2;(4) - 1x ;(5)5 ; (6) x 21 ;(7) - m2 1 ; (8) 3m 2 .y38y 3x 1 0.512. 当 a时,分式a1有意义.2a313. 若 x= 2 -1, 则 x+x -1 =__________.14. 某农场原计划用 m 天完成 A 公顷的播种任务 , 如果要提前 a 天结束 , 那么平均每天比原计划要多播种 _________公顷 .115. 计算 ( 1)21 5 (2004) 0 的结果是 _________.216. 已知 u=s 1 s 2(u ≠ 0), 则 t=___________.t1xm17. 当 m=______时 , 方程2 会产生增根 .x 3 x 318. 用科学记数法表示 :12.5 毫克 =________吨 .19. 当 x 时,分式3 x的值为负数.2 x20. 计算 (x+y) ·x 2 y 2x 2 y 2=____________.y x三、计算题 : ( 每小题 6 分, 共 12分)36x 5xy 2x 4 yx 221.;22.yx 2 .x 1 x x2xx y x y x 4 4 y 2四、解方程 :(6 分 )23.1 2 12 。
初二分式考试题及答案

初二分式考试题及答案一、选择题(每题3分,共30分)1. 下列分式中,分母为零的分式是()A. \frac{2}{x-1}B. \frac{3}{x+2}C. \frac{4}{0}D.\frac{5}{x}2. 计算分式 \frac{1}{x} + \frac{1}{y} 的结果为()A. \frac{y+x}{xy}B. \frac{x+y}{x}C. \frac{x+y}{xy}D.\frac{y-x}{xy}3. 若分式 \frac{2}{x} = \frac{3}{y},则x与y的关系是()A. x = \frac{2}{3}yB. x = 3yC. y = \frac{2}{3}xD. y = 3x4. 将分式 \frac{a+b}{c+d} 化简为最简形式,正确的做法是()A. 直接约分B. 先通分再约分C. 先约分再通分D. 不能约分5. 已知 \frac{1}{x} + \frac{1}{y} = \frac{1}{2},求\frac{2x+2y}{x+y} 的值是()A. 2B. 4C. 6D. 86. 计算分式 \frac{3x-2}{2x+1} \cdot \frac{2x-1}{3x+2} 的结果为()A. \frac{1}{2}B. \frac{1}{3}C. \frac{1}{4}D. \frac{1}{5}7. 将分式 \frac{a^2-1}{a^2-2a+1} 化简,正确的结果为()A. \frac{a+1}{a-1}B. \frac{a-1}{a+1}C. \frac{a+1}{a}D. \frac{a-1}{a}8. 已知 \frac{2}{x} + \frac{3}{y} = 5,求 \frac{x+y}{xy} 的值是()A. \frac{1}{5}B. \frac{1}{10}C. \frac{1}{15}D. \frac{1}{20}9. 计算分式 \frac{1}{x-1} - \frac{1}{x+1} 的结果为()A. \frac{2}{x^2-1}B. \frac{2}{x^2+1}C. \frac{2x}{x^2-1}D.\frac{2x}{x^2+1}10. 将分式 \frac{x^2-1}{x^2-4} 化简,正确的结果为()A. \frac{x+1}{x-2}B. \frac{x-1}{x-2}C. \frac{x+1}{x+2}D.\frac{x-1}{x+2}二、填空题(每题4分,共20分)1. 计算 \frac{2x}{3} \div \frac{x}{2} 的结果为\frac{4x}{3} 。
初二分式练习题及答案

初二分式练习题及答案初二分式练习题及答案初二是学生们学习生涯中的一个重要阶段,也是他们逐渐进入高中阶段的过渡期。
为了帮助初二学生提高数学能力,下面将提供一些分式练习题及答案。
练习题一:1. 计算:$\frac{2}{3} + \frac{3}{4}$。
2. 计算:$\frac{5}{6} - \frac{1}{3}$。
3. 计算:$\frac{2}{5} \times \frac{3}{4}$。
4. 计算:$\frac{7}{8} \div \frac{2}{3}$。
5. 计算:$\frac{2}{3} + \frac{4}{5} - \frac{1}{2}$。
答案一:1. $\frac{17}{12}$2. $\frac{1}{2}$3. $\frac{3}{10}$4. $\frac{21}{16}$5. $\frac{11}{30}$练习题二:1. 计算:$\frac{3}{5} + \frac{2}{7}$。
2. 计算:$\frac{1}{2} - \frac{1}{4}$。
3. 计算:$\frac{2}{3} \times \frac{3}{4}$。
4. 计算:$\frac{5}{6} \div \frac{2}{3}$。
5. 计算:$\frac{1}{2} + \frac{3}{4} - \frac{1}{3}$。
答案二:1. $\frac{29}{35}$2. $\frac{1}{4}$3. $\frac{1}{2}$4. $\frac{5}{4}$5. $\frac{7}{12}$练习题三:1. 计算:$\frac{4}{5} + \frac{3}{8}$。
2. 计算:$\frac{2}{3} - \frac{1}{6}$。
3. 计算:$\frac{1}{4} \times \frac{3}{5}$。
4. 计算:$\frac{5}{6} \div \frac{1}{2}$。
5. 计算:$\frac{2}{3} + \frac{1}{4} - \frac{1}{6}$。
新人教版八年级数学下册第章分式单元测试试卷及答案附答案

10.下列计算结果正确的是 )、选择题1.下列各式中,不是分式方程的是(A.1x1 C. ----- ------ 1 10 x2 x3.把分式2x 2y 中的x,y 都扩大2倍,则分式的值(.扩大2倍 C .扩大4倍 D .缩小2倍.无解.无法确定第十五章 分式单元复习姓名:2 .如果分式| x | 5的值为x 5x0,那么x 的值是( 4.下列分式中, 最简分式有(3 a xc 2 , ~ 3x x 22m n~22,m n2ab b 22ab b 25.分式方程4 x 29的解是(6.若 2x+y=0,则2xy y 22xy x 的值为( 7.关于x 的方程 8.使分式 k— 化为整式方程后,x 3会产生一个解使得原分式方程的最简公分母为 0,则k 的值为()无法确定0的x 值为(9.下列各式中正确的是( A.—— a C.-aaB.—— a D. -----a b1B.-(x 1) x x 1 1D.-[-(x 1)3 21]B.、填空题1计算:—1 x. 1 一 2 17 .已知 x+ -=3,贝U x 2+-!2=.x x,“,2x 18 .已知分式 ---- :当x= 时,分式没有意义;当x=时,分式的值为0;当x= —2时,分式的值为 x 29 .当a=时,关于x 的方程2ax 3 =5的解是x=1 .a x 410 . 一辆汽车往返于相距 akm 的甲、乙两地,去时每小时行mkm 返回时每小时行三、解答题1 .计算题:2.化简求值.12abm n C.-x xa b / 2 小1 B. --- (a ab) -2a a 3xy 2 xy D1) 9xy -45a 5a2.3.4.若分式以5. ,一5的值等于 0, 则y=在比例式9:5=4:3x b 1 a 1 计算: ---- g ---a b当x> 中, x= b 1 a 1 工- ------------,…,2一时,分式 ----- 的值为正数.1 3x5.6.当分式上上与分式x 1x23x 2的值相等时, x 21x 须满足nkm,则往返一次所用的时间是2⑴三a 2a 8(a 224)g —4a 4x 2 1 4x 4(x21)f3x 2(1) (1+ —) + ( 1-—),其中 x=—1;x 1 x 1 2-1 x3 i 1(2) -2 ------ (x 2 ------ ),其中 x=一.x 2 2 x x 2 23.解方程:x 2x 1 2x 2 ,, ——2 的值.小明x 1 x 1看,说:“太复杂了,怎么算呢? "你能帮小明解决这个问题吗? ?请你写出具体的解题过程.… , , ,, x 31 ...................... .5.对于试题:“先化简,再求值: 三产其中x=2.”小亮写出了如下解答过程:10 2x 11 2x=2;⑵肃x 3x 21x=3, 5—2 72, 7+73时,求代数式4.课堂上,李老师给大家出了这样一道题:当x 1 1 x.一二________ x_^ _____ L ①x2 1 1 x (x 1)(x 1) x 11.下列各式中,不是分式方程的是( D)_x_2_ _x_J_ ②(x 1)(x 1) (x 1)(x 1)=x —3— (x+1) =2x—2, ③・・・当x=2 时,原式=2X 2-2=2. ④(1)小亮的解答在哪一步开始出现错误:①(直接填序号);(2)从②到③是否正确:不正确;若不正确,错误的原因是把分母去掉了(3)请你写出正确的解答过程.6.小亮在购物中心用12.5元买了若干盒饼干,但他在一分利超市发现,同样的饼干,这里要比购物中心每盒便宜0.5元.因此当他第二次买饼干时,便到一分利超市去买,如果用去14元,买的饼干盒数比第一次买的盒数多-,?5 问他第一次在购物中心买了几盒饼干?第十六章分式单元复习题及答案一、选择题1.下列各式中,不是分式方程的是(D)(a 2 ab)_ m n n C.- x x m、填空题1 A.— x1 .. .. C. ----- ------ 1 10 x2 x1B.-(x 1) x 1 x 1 1D.-[-(x 1) 1] 1 3 22 .如果分式| x | 5的值为x 5x0, 那么x 的值是(B )3.把分式2x 2y 中的x,y 都扩大2倍,则分式的值(A ).扩大2倍 C .扩大4倍 D .缩小2倍4 .下列分式中, 最简分式有(C )3a x2~~2 , ~3x x22m n~22,2a ~2 a2ab b 2 2ab b 25 .分式方程 的解是( B).无解6 .若 2x+y=0,xy 2xy 2y2x 的值为(B ) 7 .关于x 的方程8 .使分式x 2 x 24B..无法确定k—化为整式方程后,会产生一个解使得原分式方程的最简公分母为等于0的x 值为(D )9 .下列各式中正确的是(A.—— a aB.—— aC.—D..无法确定10 .下列计算结果正确的是 B)0,则k 的值为(A )2abD.2xy9xy571 x 21(x 2)(x 1)解:原式(x 1)(x (x 2)2 1) 1 (x 1)(x 2) gxng2 .化简求值.(1) (1+1 .一 (1 ------ ),其中 x=- x 1「x 1 1解:原式二x 1 1x 1 1 -;2 x,1 , (1)当x=- 1时,原式=1 2 ⑵-21 x (x 解:原式=(X(x 2)(x 2)x 21.若分式1y1 5的值等于0,则y= — 5 .5 y202 .在比例式9: 5=4: 3x 中,x= ——.27c b 1 a 1 b 1 a 1 ",士 02(a b)3 .——g ————g ——的值是 — -----------a b a bab12 4 .当x> 1时,分式 一二的值为正数.31 3x _ 1 121 x 1 x 1 x 26 .当分式 2_2与分式x 23x 2的值相等时,x 须满足x w±1x 1x 1一, 1 2 17 .已知 x+ -=3,贝U x + —= 7x x,… , 2x 11 8 .已知分式 ----- ,当x=2 时,分式没有意义;当x=-- 时,分式的值为0;当x=— 2时,分式的值为x 2 217 2ax 359 .当a= - 17 时,关于x 的方程2ax 3 = 5的解是x=1 .三、解答题1 .计算题.10. 一辆汽车往返于相距akm 的甲、乙两地,去时每小时行 mkm ?返回时每小时行 nkm,则往返一次所用的时间是(3)请你写出正确的解答过程.2, 1 , (4)当x=1时,原式=—3.解方程.(1)10 解: (2)2x 1 7 x=—.4 2x 13=2;1 2xx 3 x 2 1解:用(x+1) (x —1)同时乘以方程的两边得,2 (x+1) —3 (x — 1) =x+3.解得x=1经检验,x=1是增根. 所以原方程无解.4 .课堂上,李老师给大家出了这样一道题:当2x=3, 5-272 , 7+J 3时,求代数式 土刀 x2x 1 2x 2 ..a ■匕的值.小明x 1看,说:“太复杂了,怎么算呢? "你能帮小明解决这个问题吗? ?请你写出具体的解题过程.解:原式=^L^g(x 1)(x 1) 2(x 1) 2由于化简后的代数中不含字母 x,故不论x 取任何值,所求的代数式的值始终不变. 所以当x=3, 5 —2夜,7+s/3时,代数式的值都是5 .对于试题:“先化简,再求值: 。
(必考题)初中数学八年级数学下册第五单元《分式与分式方程》测试卷(包含答案解析)(1)
一、选择题1.甲乙两地相距60km ,一艘轮船从甲地顺流到乙地,又从乙地立即逆流到甲地,共用8小时,已知水流速度为5km/h ,若设此轮船在静水中的速度为x km/h ,可列方程为( ) A .6060855x x +=+- B .120120855x x +=+- C .6058x += D .6060855x x +=+- 2.已知一个三角形三边的长分别为5,7,a ,且关于y 的分式方程45233y a a y y++=--的解是非负数,则符合条件的所有整数a 的和为( ) A .24 B .15 C .12 D .73.H7N9病毒直径为30纳米,已知1纳米=0.000 000 001米.用科学记数法表示这个病毒直径的大小,正确的是( )A .93010-⨯米B .83.010-⨯米C .103.010-⨯米D .90.310-⨯米 4.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 5.定义:若两个分式的和为n (n 为正整数),则称这两个分式互为“n 阶分式”.例如,分式31x +与31x x+互为“3阶分式”.设正数x ,y 互为倒数,则分式22x x y +与22y y x +互为( )A .二阶分式B .三阶分式C .四阶分式D .六阶分式6.若数a 关于x 的不等式组()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y 的分式方程13y 2a 2y 11y--=---的解为正数,则所有满足条件的整数a 的值之和是( ) A .2 B .3 C .4 D .57.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2± B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xy x y-中的,x y 都扩大3倍,分式的值不变 D .分式211x x ++是最简分式8.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =± D .0m = 9.已知2,1x y xy +==,则y x x y +的值是( ) A .0 B .1 C .-1 D .210.已知:x 是整数,12,21x x M N x +==+.设2y N M =+.则符合要求的y 的正整数值共有( )A .1个B .2个C .3个D .4个11.不改变分式的值,下列各式变形正确的是( ) A .11x x y y +=+ B .1x y x y -+=-- C .22x y x y x y +=++ D .22233x x y y ⎛⎫-= ⎪⎝⎭12.冬季来临,为防止疫情传播,某学校决定用420元购买某种品牌的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多了20瓶,求原价每瓶多少元.设原价每瓶x 元,则可列出方程为( )A .420420200.5x x -=- B .420420200.5x x -=+ C .420420200.5x x -=+ D .420200.5x =- 二、填空题13.人类进入5G 时代,科技竞争日趋激烈.据报道,我国某种芯片的制作工艺已达到28纳米,居世界前列.已知1纳米=1×10﹣9米,则28纳米等于多少米?将其结果用科学记数法表示为_____.14.关于x 的分式方程211m x =-+无解,则m 的取值是_______. 15.一艘轮船在静水中的最大航速为60km/h ,它以最大航速沿江顺流航行240km 所用时间与以最大航速逆流航行120km 所用时间相同,则江水的流速为________km/h .16.已知215a a+=,那么2421a a a =++________.17.使式子2x +有意义的x 的取值范围是______. 18.对于实数a 、b ,定义一种运算“⊗”为:2(1)a a b ab a-⊗=-有下列命题: ①1(3)3⊗-=;②a b b a ⊗=⊗;③方程1102x 的解为12x =;④若函数(2)y x =-⊗的图象经过(1,)A m -,(3,)B n 两点,则m n <,其中正确命题的序号是__.(把所有正确命题的序号都填上)19.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品?根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________.(2)乙型机器人每小时搬运产品_______________kg .20.如果方程322x m x x-=-- 无解,则m=___________. 三、解答题21.先化简,再求值:222444142x x x x x x+-++⎛⎫-÷- ⎪-⎝⎭,其中22150x x +-=. 22.(1)先化简,再求值:2222213214x x x x x x x x -⎛⎫÷-- ⎪+++-⎝⎭,其中12x =. (2)解方程:11322x x x--=--. 23.计算: (1)()()()3223m n m n mn ⋅-÷-; (2)()()()22x y x y x y y ⎡⎤+-+-÷⎣⎦; (3)2269243a a a a a-+-⋅--. 24.(1)化简:22121a a a a a--+÷; (2)把(1)中化简的结果记作A ,将A 中的分子与分母同时加上1后得到B ,问:当1a >时,B 的值与A 的值相比变大了还是变小了?试说明理由.25.先化简,再求值2111x x x x x ⎛⎫-+÷ ⎪++⎝⎭,其中整数x 满足13x -≤<. 26.列分式方程解应用题:2020年玉林市倡导市民积极参与垃圾分类,某小区购进A 型和B 型两种分类垃圾桶,购买A 型垃圾桶花费了2500元,购买B 型垃圾桶花费了2000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个B 型垃圾桶比购买一个A 型垃圾桶多花30元,求购买一个A 型垃圾桶、一个B 型垃圾桶各需多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】本题关键描述语是:“共用去8小时”.等量关系为:顺流60千米用的时间+逆流60千米用的时间=5,根据等量关系列出方程即可.【详解】 解:由题意,得:6060855x x +=+-, 故选:D .【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.注意顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度. 2.B解析:B【分析】根据三角形的三边关系确定a 的取值范围,再根据分式方程的解是非负数确定a 的取值范围,从而求出符合条件的所有整数即可得结论.【详解】 解:45233y a a y y++=-- 去分母得:4526y a a y +-=-移项得:6y a -=-+∴6y a =-∵分式方程的解为非负数,∴60a -≥∴6a ≤,且a≠3∵三角形的三边为:5,7,a ,∴212a <<∴26a <≤,又∵a≠3,且为整数,∴a 可取4,5,6,和为15.故选:B.【点睛】本题考查了三角形的三边关系、分式方程的解,解决本题的关键是根据不等式(组)解集,求出不等式(组)的整数解.3.B解析:B【分析】由于1纳米=10-9米,则30纳米=30×10-9米,然后根据幂的运算法则计算即可.【详解】解:1纳米=0.000 000 001米=10-9米,30纳米=30×10-9米=3×10-8米.故选:B .【点睛】本题考查了科学记数法-表示较小的数:用a×10n (1≤a <10,n 为负整数)表示较小的数. 4.B解析:B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点睛】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解. 5.A解析:A【分析】根据题意得出xy =1,可以用1x 表示y ,代入22x x y ++22y y x +,计算结果为2即可. 【详解】由题意得:xy =1,则y =1x, 把 y =1x ,代入22x x y ++22y y x +,得: 原式=221x x x ++221x x x+=3321x x ++321x +=2 ∴22x x y +与22y y x +互为“2阶分式”, 故选A .【点睛】本题是一道新定义型题目,主要考查分式的相关计算,有一定难度,熟练掌握分式的运算法则是解题的关键.6.A解析:A【分析】先解不等式得出解集x≤2且x≥2a -,根据其有两个整数解得出0<2a -≤1,解之求得a 的范围;解分式方程求出y =2a −1,由解为正数且分式方程有解得出2a −1>0且2a - 1≠1,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案.【详解】 解:()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥--⎩①②,解不等式①得:x≤2,解不等式②得:x≥2a -,∵不等式组恰有三个整数解,∴-1<2a -≤0,解得12a ≤<, 解分式方程132211y a y y--=---, 得:21y a =-,由题意知210211a a ->⎧⎨-≠⎩, 解得12a >且1a ≠, 则满足12a ≤<,12a >且1a ≠的所有整数a 的值是2, 所有满足条件的整数a 的值之和为2.故选择:A .【点睛】 本题主要考查解一元一次不等式组和求方程的正数解,解题的关键是根据不等式组整数解和方程的正数解得出a 的范围,再求和即可.7.D解析:D【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案.【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误; B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误; C 、分式32xy x y -中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误; D 、分式211x x ++是最简分式,正确; 故选:D .【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.8.B解析:B【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可.【详解】解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1.故选B .【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.9.D解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.10.C解析:C【分析】先求出y 的值,再根据x ,y 是整数,得出x +1的取值,然后进行讨论,即可得出y 的正整数值.【详解】解:∵12,21x x M N x +==+ ∴42222221111x x y x x x x ++=+==+++++. ∵x ,y 是整数, ∴21x +是整数, ∴x +1可以取±1,±2.当x +1=1,即x =0时2241y =+=>0; 当x +1=−1时,即x =−2时,2201y =+=-(舍去); 当x +1=2时,即x =1时,2232y =+=>0; 当x +1=−2时,即x =−3时,2212y =+=->0; 综上所述,当x 为整数时,y 的正整数值是4或3或1.故选:C .【点睛】 此题考查了分式的加减法,熟练掌握分式的加减运算法则,求出y 的值是解题的关键. 11.B解析:B【分析】根据分式的基本性质即可求出答案.【详解】解:A 、11x x y y ++≠,不符合题意; B 、=1x y x y-+--,符合题意; C 、22x y x y x y+≠++,不符合题意; D 、22239x x y y ⎛⎫-= ⎪⎝⎭,不符合题意; 故选:B .【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 12.A解析:A【分析】根据“原价买的瓶数-实际价格买的瓶数=20”列出方程即可.【详解】 解:原价买可买420x 瓶,经过还价,可买4200.5x -瓶.方程可表示为: 420420200.5x x-=-. 故选:A .【点睛】考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系.本题要注意还价前后商品的单价的变化.二、填空题13.8×10-8米【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值≥10时n 是正数;解析:8×10-8米【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将28纳米用科学记数法表示为2.8×10-8米,故答案为:2.8×10-8米.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.【分析】分式方程去分母转化为整式方程由分式方程无解确定出x 的值代入整式方程计算即可求出m 的值【详解】解:去分母得:由分式方程无解得x+1=0即x=-1把x=-1代入得:解得:m=0故答案为:m=0【解析:0m =【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母得:21m x =--,由分式方程无解,得x+1=0,即x=-1,把x=-1代入21m x =--得:2110m =-=,解得:m=0,故答案为:m=0.【点睛】本题主要考查分式方程的解,理解分式方程的增根产生的原因是解题的关键.15.20【分析】由顺水船速=静水船速+水速逆水船速=静水船速﹣水速设未知数根据两不同航程时间相同列出方程即可求出答案【详解】解:设江水的流速为根据题意可得:解得:经检验:是原方程的根故答案为20【点睛】 解析:20【分析】由顺水船速=静水船速+水速,逆水船速=静水船速﹣水速,设未知数根据两不同航程时间相同列出方程即可求出答案.【详解】解:设江水的流速为/x km h ,根据题意可得:2401206060x x=+-, 解得:20x ,经检验:20x 是原方程的根,故答案为20.【点睛】此题主要考查了分式方程的应用,正确得出等量关系是解题关键.16.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】 将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案.【详解】 ∵215a a+=, ∴21a +=5a ,∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 17.且【分析】根据分式的分母不能为0二次根式的被开方数大于或等于0列出式子求解即可得【详解】由题意得:解得且故答案为:且【点睛】本题考查了分式和二次根式有意义的条件熟练掌握分式和二次根式的定义是解题关键 解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键. 18.①④【分析】根据新定义对①②直接进行判断;根据新定义得解得经检验原方程无实数解可对③进行判断;根据新定义得到然后根据一次函数的性质对④进行判断【详解】解:所以①正确;所以②不正确;由于方程所以解得经解析:①④【分析】根据新定义对①②直接进行判断;根据新定义得2111210122x x x ,解得12x =,经检验原方程无实数解,可对③进行判断;根据新定义得到922y x ,然后根据一次函数的性质对④进行判断.【详解】 解:2(11)1(3)1(3)31,所以①正确; 2(1)a a b ab a-⊗=-,2(1)b b a ab b ,所以②不正确;由于方程1102x ,所以2111210122x x x ,解得12x =,经检验原方程无实数解,所以③错误;函数2(21)9(2)2222y x x x ,因为(1,)A m -,(3,)B n 在函数922y x =-,所以m n <,所以④正确;综上所述,正确的是:①④; 故答案为①④.【点睛】本题考查了命题,新定义下实数的运算,分式方程,一次函数的性质特点,熟悉相关性质是解题的关键.19.【分析】(1)设乙型机器人每小时搬运产品根据甲型机器人搬运所用时间与乙型机器人搬运所用时间相等列方程;设甲型机器人搬运所用时间为小时根据甲型机器人比乙型机器人每小时多搬运列方程;(2)设乙型机器人每解析:80060010x x =+80060010yy =+ 【分析】(1)设乙型机器人每小时搬运xkg 产品,根据甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等列方程;设甲型机器人搬运800kg 所用时间为y 小时,根据甲型机器人比乙型机器人每小时多搬运10kg 列方程;(2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得80060010x x=+,解方程即可. 【详解】 (1)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 设甲型机器人搬运800kg 所用时间为y 小时,由题意得80060010y y=+, 故答案为:80060010x x=+,80060010y y =+; (2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 解得x=30,经检验,x=30是方程的解,答:乙型机器人每小时搬运产品30kg .故答案为:30.【点睛】此题考查分式方程的实际应用,正确理解题意,利用直接设未知数的方法和间接设未知数的方法列方程解决问题,注意:解分式方程需检验.20.1【分析】先去分母把分式方程转化为整式方程再根据原方程无解可得x=2然后把x=2代入整式方程求解即可【详解】解:去分母得x -3=﹣m ∵原方程无解∴x -2=0即x=2把x=2代入上式得2-3=﹣m 所以解析:1【分析】先去分母把分式方程转化为整式方程,再根据原方程无解可得x =2,然后把x =2代入整式方程求解即可.【详解】解:去分母,得x -3=﹣m ,∵原方程无解,∴x -2=0,即x =2,把x =2代入上式,得2-3=﹣m ,所以m =1.故答案为1.【点睛】本题考查了分式方程的无解问题,属于常考题型,正确理解题意、掌握解答的方法是关键.三、解答题21.242x x +;415【分析】 先根据分式混合运算的法则把原式进行化简,再把22150x x +-=变形为2215x x +=,最后代入化简结果中进行计算即可.【详解】 解:222444142x x x x x x+-++⎛⎫-÷- ⎪-⎝⎭=22(2)4(2)(2)2x x x x x x x+--+÷-+- =22(2)(2)4(2)2x x x x x x x+-+-+⨯-- =242x x x x+++-=22444(2)x x x x x x ++--+ 242x x=+ 22150x x +-=2215x x ∴+=∴原式415=. 【点睛】 本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.(1)2x x +,15;;(2)3x = 【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把12x =代入计算即可求出值; (2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:原式2222123214x x x x x x x x x +--=÷-+++- ()()()()()22112122x x x x x x x x -+=⋅-++-+ 2222x x x x x x =-=+++ 当12x =原式2x x =+15=; (2)解:去分母得:()1321x x --=-,移项合并得:-2x =-6,解得:3x =,经检验3x =是分式方程的解【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.(1)72m n -;(2)x y +;(3)32a a --+ 【分析】(1)先根据积的乘方和幂的乘方化简原式中的各项后再进行乘除运算即可得到结果;(2)将中括号内的运用完全平方公式和平方差公式把小括号展开合并后,根据多项式除以单项式的运算法则计算出结果即可;(3)把分式中的分子与分母因式分解后约分即可得到答案.【详解】解:(1)()()()3223m n m n mn ⋅-÷- =()63322m n m n m n ⋅-÷=9422m n m n -÷=72m n -;(2)()()()22x y x y x y y ⎡⎤+-+-÷⎣⎦ ()222222x xy y x y y =++-+÷()2222xy y y =+÷x y =+;(3)2269243a a a a a-+-⋅-- ()()()232223a a a a a--=⋅+-- 32a a -=-+. 【点睛】此题主要考查了整式的运算和分式的化简,熟练掌握相关运算法则是解答此题的关键. 24.(1)1a a -;(2)B 的值与A 的值相比变小了,理由见解析 【分析】(1)把除变乘,同时将除式的分子分母因式分解,约分即可;(2)由1a A a =-先求出1a B a+=,作差1(1)B A a a -=--,然后判断1(1)a a --符号即可.【详解】 解:(1)原式221(1)a a a a -=⋅-. 1a a =-; (2)B 的值与A 的值相比变小了.理由如下:1,1a a A B a a+==-.∴21(1)(1)11(1)(1)a a a a a B A a a a a a a ++---=-==----. ∵1a >,∴10a ->,∴()11a a >0-, ∴0B A -<.∴B A <.∴B 的值与A 的值相比是变小了.【点睛】本题考查分式的除法,比较分式的大小,掌握分式的除法法则,和比较分式的大小的方法是解题关键.25.原式1x=,1x =时,原式1=;或2x =时原式12=. 【分析】根据分式的减法和除法可以化简题目中的式子,然后从-1≤x <3中选取使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】 解:2111x x x x x ⎛⎫-+÷ ⎪++⎝⎭ =2(1)(1)11x x x x x x--++⋅+ =221x x x-+ =1x, ∵x (x+1)≠0,∴x≠0,x≠-1,∵整数x 满足-1≤x <3,∴x=1或2,当x=1时,原式=11=1,当x=2时,原式=12. 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.26.一个A 型垃圾桶需50元,一个B 型垃圾桶需80元【分析】设一个A 型垃圾桶需x 元,则一个B 型垃圾桶需(x+30)元,根据购买A 型垃圾桶数量是购买B 品牌足球数量的2倍列出方程解答即可.【详解】解:设购买一个A 型垃圾桶需x 元,则一个B 型垃圾桶需()30x +元 由题意得:25002000230x x =⨯+, 解得:50x =,经检验:50x =是原方程的解,且符合题意,则:3080x +=,答:购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元.【点睛】此题考查了分式方程的应用,找出题目蕴含的等量关系列出方程是解决问题的关键.。
北师大版八年级数学下册第五章分式单元复习试题1(附答案).doc
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第五章复习一、填空题 1.当x 时,分式2+x x有意义。
2.在函数y=22-x 中,自变量x 的取值范围是 。
3.当m = 时,关于x 的分式方程213x mx +=--无解4.当x = 时,分式33x x --为0。
5.约分:112--x x = 。
6.化简211xx x -÷的结果是 . 7.方程423532=-+-xx x 的解是 . 8.某市对一段全长1500米的道路进行改造.原计划每天修x 米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了 天。
二.、选择题 9、代数式42,1,3,31nm b a b a ,x -++π中,分式有( ) A 、1个; B 、2个; C 、3个; D 、4个。
10.若分式122--x x 的值为0,则x 的值为( ) A. 1B. -1C. ±1D.211.计算22()ab ab的结果为( ) A.bB .aC.1 D1b12、将分式yx x +2中的x 、y 的值同时扩大3倍,则 扩大后分式的值( )A 、扩大3倍;B 、缩小3倍;C 、保持不变;D 、无法确定。
13.计算()a b a bb a a+-÷的结果为( )A .a b b - B .a b b + C .a b a - D .a ba+ 14、小马虎在下面的计算中只作对了一道题,他做对的题目是( )A 、b a b a 22=⎪⎭⎫ ⎝⎛ B 、23a a a =÷ C 、b a b a +=+211 D 、1-=---y x y x 15.一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时. A.11a b +; B.1ab ; C.1a b +; D.aba b+ 三.简答题 16.(212x x --2144x x -+)÷222x x -17、解方程:22221=-+-xxx18.先化简,再求值:221111121x x x x x +-÷+--+,其中31x =.19.(课堂上,李老师出了这样一道题:已知352008x -=,求代数式)1x 3x 1(1x 1x 2x 22+-+÷-+-,小明觉得直接代入计算太繁了,请你来帮他解决,并写出具体过程。
初二下册分式专题(全部题型)
分式专题题型一:分式的概念:【例题1】下列各式:5.043,23,33,,22,22-++-+x x y x x xy x x x π,其中分式有______个. ( )A 、1B 、2C 、3D 、4 【练一练】1. 下列式子中,属于分式的是 ( )A 、π1 B 、3x C 、11-x D 、52 2. 下列式子中,2a ,3x ,1m m +,23x +,5π,2a a ,23-.哪些是整式?哪些是分式?整式有:________________________________;分式有:________________________________;题型二:分式有意义,分式值为0:【例题2】下列各式中,(1)2m m +;(2)1||2m -;(3)239mm --.m 取何值时,分式有意义?【练一练】1. x 为任意实数,分式一定有意义的是 ( )A 、21x x - B 、112-+x x C 、112+-x x D 、11+-x x 2. 若代数式4-x x有意义,则实数x 的取值范围是________________. 3. (1)若分式11+x 有意义,则x 的取值范围是________________; (2)已知分式ax x x +--532,当2=x 时,分式无意义,则=a _______________________.4. 若不论x 取何实数,分式mx x x ++-6322总有意义,则m 的取值范围是______________________. 【例题3】当x 为何值时,(1)2132x x +-;(2)221x x x +-;(3)224x x +-.各式的值为0.【练一练】 1. 已知分式11+-x x 的值是零,那么x 的值是 ( ) A 、-1 B 、0 C 、1 D 、1±2. 若分式112--x x 的值是零,则x 的值为 ( )A 、-1B 、0C 、1D 、1±3.(1)如果分式212-+-x x x 的值为零,那么x 的值为_____________________;(2)当=x ______________时,分式123++x x 的值是零;(3)当=x ______________时,分式112--x x 的值为零.【例题4】当x 满足什么条件时,分式2122-++x x x 的值是负数?正数?【练一练】1.(1)若分式1232-a a 的值为负数,则a 的取值范围为__________________;(2)当整数=x _____________时,分式16-x 的值是负整数; (3)已知点)82017,22018(2-++n n n 在第四象限,则n 的取值范围是______________________. 2. 当x 为何值时,分式232-+x x 的值为正数?负数?题型三:分式的基本性质I (分子、分母同乘或除以一个不等于0的数或整式):【例题5】如果把分式中的都扩大3倍,那么分式的值 ( )A 、扩大3倍B 、不变C 、缩小3倍D 、扩大2倍 【例题6】不改变分式的值,将下列分式的分子、分母中的系数化为整数.(1)0.20.020.5x yx y+-(2)11341123x y x y +- 【练一练】1. 如果把分式yx xy+中的x 和y 都扩大为原来的2倍,那么分式的值 ( ) A 、扩大为原来的4倍 B 、扩大为原来的2倍 C 、不变 D 、缩小为原来的21 2. 如果把分式y x y x ++2中的x 和y 都缩小为原来的31,那么分式的值 ( ) A 、扩大为原来的3倍 B 、缩小为原来的31 C 、缩小为原来的91D 、不变 yx x232-y x ,3. 分式x--11可变形为 ( ) A 、11--x B 、x +-11 C 、x +11 D 、11-x 4. 不改变分式的值,将下列分式的分子、分母中的系数化为整数.并将较大的系数化成正数.(1) xx xx 24.03.12.001.032+- (2) yx y x +-5.12.041题型四:分式的基本性质II (约分和通分):【例题7】约分:(1); (2);(3)1616822-+-a a a ,其中5=a (4)y x y x ---2422,其中1,3==y x【练一练】 1. 约分:(1) 2323510c b a bc a - (2))(3)(2b a b b a a ++- (3)32)()(a x x a -- (4)393--x x (5)2222222y xy x xy y x +-- (6)2222)1()1()1(-+-x x x2. 先化简,再求值:(1) 22)2(1)(4-+--x x x x ,其中7-=x (2)已知212=-=+y x y x ,,求2222222y xy x y x ++-的值.【例题8】 通分:(1)分式abc b a ab 3,1,22的最简公分母是________;(2)分式222,7n m mnn m ---的最简公分母是____________; (3)分式122,1441,1232-+-+a a a a 的最简公分母是______________________; (4)分式2222222,2,b ab a cb ab a b b a a +-++-的最简公分母是_____________________________; (5)分式22941,461,461y y y x y x -+-的最简公分母是_____________________________________;(6)分式acbb ac c b a 107,23,5422的最简公分母是__________,通分时,这三个分式的分子分母依次乘以_______________,____________,_______________.【练一练】通分:(1)xz xz y x 45,34,2123 (2)32)1(,)1(,1a z a y a x --- (3)42,882,4422-+-+-a c a a b a a a【例题8】已知xy y x 4=-,求yxy x yxy x ---+2232的值【练一练】1. 若2=+abb a ,则=++++22224b ab a b ab a ___________;若311=-y x ,则代数式=----y xy x y xy x 22142____________; 2. 已知311=-y x ,求yxy x yxy x ----2232的值.题型五:分式的加减:【例题9】 计算:(1) (2)(3)(4) (5) (6). 22222333a b a b a b a b a b a b +--+-222422x x x x x +-+--222222222a ab b a b b a a b ++---21132a ab +2312224x x x x +-+--211a a a ---【练一练】1. (1)111+-+x x x =_________;(2)x y x y x y -+-=_________;(3)2222235b a a b a b a ---+=__________. 2. (1)已知1,3==+ab b a ,则=+a b b a ___________;(2)已知0322=++b ab a ,则=+ab b a __________. 3.(1) (2) (3)222442242x x x x x x-+-++-+【例题10】已知,求整式A ,B .22256343333a b b a a b a bc ba c cba +-++-2222()()a b a b b a ---34(1)(2)12x A Bx x x x -=+----【练一练】1. 若11)1)(1(3-++=-+-x Bx A x x x ,求整式A ,B.题型六:分式的乘除:【例题11】 计算:(1)(2) (3)(4).【练一练】 1.计算:422449158a b xx a b 222441214a a a a a a -+--+-222324a b a bc cd -÷2222242222x y x y x xy y x xy -+÷+++(1)32232)()2(y x x y -- (2)x x x x x x +-÷-+-22211122.先化简,再求值:(1)其中(2)其中=-1.3.已知求的值.题型七:分式方程:【例题12】解分式方程:,144421422x x x x x ++÷--14x =-⋅,a b .b b a a b a b a a 222224)()(+÷--,21=a b .0)255(|13|2=-+-+b a b a 323232236().()()a ab ba b b a-÷--(1)(2) (3)【练一练】 (1)0122=-+x x (2)22231--=-x x x(3)x x x -=+--23123 (4)1132-=+-x xx x题型七:分式方程增根问题:10522112x x +=--225103x x x x -=+-21233x x x -=---【例题13】(1)若分式方程有增根,求值;(2)若分式方程有增根,求的值.【练一练】 1、若关于x 的方程0111=----x xx m 有增根,则m 的值是 ( ) A 、3B 、2C 、1D 、-12、若关于x 的分式方程1322m x x x++=--有增根,则m 的值是 ( ) A 、1m =- B 、2m =C 、3m =D 、0m =或3m =3、若关于x 的方程0552=-+--x mx x 有增根,则m 的值是 ( ) A 、-2 B 、-3 C 、5 D 、3223242mx x x x +=--+m 2221151k k x x x x x---=---1x =-k4、如果方程有增根,那么增根是_____.若方程114112=---+x x x 有增根,则增根是______. 5、已知分式方程5133x mx x+=--有增根,则m 的值为 .6、(1)若关于x 的分式方程xx x m 2132=--+有增根,则该方程的增根为________________; (2)若关于x 的方程2222=-++-xm x x 有增根,则m 的值是__________________. 7、若关于x 的分式方程3232-=--x m x x 有增根,则2-m 的值为________________.题型八:分式方程无解问题:【例题14】 若关于x 的分式方程6523212+-=---x x x a x 总无解,求a 的值。
最新华师版八年级数学下册第16章分式专题复习测试题及答案全套
最新华师版八年级数学下册第16章分式专题复习测试题及答案全套专训1 分式求值的方法名师点金:分式的求值既突出了式子的化简计算,又考查了数学方法的运用,在计算中若能根据特点,灵活选用方法,往往会收到意想不到的效果.常见的分式求值方法有:直接代入法求值、活用公式求值、整体代入法求值、巧变形法求值、设参数求值等.直接代入法求值1.(中考·鄂州改编)先化简,再求值:⎝ ⎛⎭⎪⎫2a +1+a +2a 2-1÷a a -1,其中a =5.活用公式求值2.已知x 2-5x +1=0,求x 4+1x 4的值.3.已知x +y =12,xy =9,求x 2+3xy +y 2x 2y +xy 2的值.整体代入法求值4.已知x y +z +y z +x +z x +y =1,且x +y +z≠0,求x 2y +z +y 2z +x +z 2x +y 的值.巧变形法求值5.已知实数x 满足4x 2-4x +1=0,求2x +12x的值.设参数求值6.已知x 2=y 3=z 4≠0,求x 2-y 2+2z 2xy +yz +xz 的值.专训2 全章热门考点整合应用名师点金:本章主要考查分式的概念、分式有意义的条件、分式的性质及运算,考试中题型以选择题、填空题为主,分式的化简求值主要以解答题的形式出现.分式方程是中考的必考内容之一,一般着重考查解分式方程,并要求会用增根的意义解题,考题常以解答题的形式出现,有时也会出现在选择题和填空题中.其主要考点可概括为:三个概念、一个性质、一种运算、一个解法、一个应用、四种思想.三个概念概念1 分式1.下列说法中,正确的是( )A .分式的分子中一定含有字母B .分母中含有字母的式子是分式C .分数一定是分式D .当A =0,分式AB的值为0(A ,B 为整式)2.若式子1x 2-2x +m不论x 取任何数总有意义,则m 的取值范围是( )A .m≥1B .m>1C .m≤1D .m<1 概念2 分式方程3.关于x 的方程:①x 2-x -13=6;②x 900=500x -30;③x 3+1=32x ;④a 2x =1x ;⑤320x -400x =4; ⑥x a =35-x.分式方程有____________(填序号). 4.(中考·遂宁)遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各是多少万千克?设原计划每亩平均产量为x 万千克,则改良后平均每亩产量为1.5x 万千克,根据题意列方程为( )A .36x -36+91.5x =20 B .36x -361.5x=20C .36+91.5x -36x =20D .36x +36+91.5x =20 概念3 增根5.若关于x 的方程x -4x -5-3=a x -5有增根,则增根为( )A .x =6B .x =5C .x =4D .x =36.已知方程21+x -k 1-x =6x 2-1有增根x =1,求k 的值.7.若关于x 的分式方程2m +x x -3-1=2x无解,求m 的值.一个性质——分式的基本性质8.不改变下列分式的值,将分式的分子和分母中的各项的系数化为整数.(1)15x -12y 14x +23y ; (2)0.1x +0.3y 0.5x -0.02y .一种运算——分式的运算9.先化简,再求值:⎝ ⎛⎭⎪⎫2ab 2a +b 3÷⎝ ⎛⎭⎪⎫ab 3a 2-b 22·⎣⎢⎡⎦⎥⎤12(a -b )2,其中a =-12,b =23.一个解法——分式方程的解法10.(中考·嘉兴)小明解方程1x -x -2x =1的过程如下.请指出他解答过程中的错误,并写出正确的解答过程.解:方程两边同乘x ,得1-(x -2)=1.……① 去括号,得1-x -2=1.……② 合并同类项,得-x -1=1.……③ 移项,得-x =2.……④ 解得x =-2.……⑤∴原方程的解为x =-2.……⑥一个应用——分式方程的应用11.某超市用3 000元购进某种干果销售,由于销售状况良好,超市又调拨9 000元购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量比第一次的2倍还多300 kg.如果超市按9元/kg的价格出售,当大部分干果售出后,余下的600 kg按售价的八折售完.(1)该种干果第一次的进价是多少?(2)超市销售这种干果共盈利多少元?四种思想思想1数形结合思想12.如图,点A,B在数轴上,它们所表示的数分别是-4,2x+23x-5,且点A,B到原点的距离相等,求x的值.(第12题) 思想2整体思想13.已知实数a满足a2+4a-8=0,求1a+1-a+3a2-1·a2-2a+1a2+6a+9的值.思想3 消元思想14.已知2x -3y +z =0,3x -2y -6z =0,且z≠0,求x 2+y 2+z 22x 2+y 2-z 2的值.思想4 类比思想15.化简:⎝ ⎛⎭⎪⎫2a -b a +b -b a -b ÷a -2b a -b .答案专训11.解:原式=[2a +1+a +2(a +1)(a -1)]·a -1a=2(a -1)+(a +2)(a +1)(a -1)·a -1a=3a +1. 当a =5时,原式=35+1=12.2.解:由x 2-5x +1=0得x≠0,∴x+1x=5.∴⎝ ⎛⎭⎪⎫x +1x 2=25.∴x 2+1x 2=23.∴x 4+1x 4=⎝⎛⎭⎪⎫x 2+1x 22-2=232-2=527.点拨:在求解有关分式中两数(或两式)的平方和问题时,可考虑运用完全平方公式进行解答.3.解:x 2+3xy +y 2x 2y +xy 2=x 2+2xy +y 2+xy xy (x +y )=(x +y )2+xyxy (x +y ).因为x +y =12,xy =9, 所以原式=122+99×12=1712.4.解:因为x +y +z≠0,所以等式的两边同时乘(x +y +z),得x (x +y +z )y +z +y (x +y +z )z +x +z (x +y +z )x +y=x +y +z ,所以x 2y +z +x (y +z )y +z +y 2z +x +y (z +x )z +x +z 2x +y +z (x +y )x +y =x +y +z.所以x 2y +z +y 2z +x +z 2x +y +x +y +z =x +y +z.所以x 2y +z +y 2z +x +z 2x +y=0.点拨:条件分式的求值,如需对已知条件或所求条件分式变形,必须依据题目自身的特点,这样才能收到事半功倍的效果.条件分式的求值问题体现了数学中的整体思想和转化思想.5.解:∵4x 2-4x +1=0, ∴(2x-1)2=0.∴2x=1. ∴原式=1+11=2.6.解:设x 2=y 3=z4=k≠0,则x =2k ,y =3k ,z =4k.所以x 2-y 2+2z 2xy +yz +xz=(2k)2-(3k)2+2(4k)2 2k·3k+3k·4k+2k·4k=27k226k2=2726.专训21.B2.B点拨:∵x2-2x+m=x2-2x+1+m-1=(x-1)2+m-1,∴当m-1>0,即m>1时,式子1x2-2x+m总有意义.3.②④⑤4.A 5.B6.解:方程两边同乘x2-1,得2(x-1)+k(x+1)=6.整理得(2+k)x+k-8=0.∵原分式方程有增根x=1,∴2+k+k-8=0.解得k=3.7.解:方程两边都乘x(x-3),得(2m+x)x-x(x-3)=2(x-3),即(2m+1)x=-6.①(1)当2m+1=0时,此方程无解,∴原分式方程也无解.此时m=-0.5;(2)当2m+1≠0时,要使关于x的分式方程2m+xx-3-1=2x无解,则x=0或x-3=0,即x=0或x=3.把x=0代入①,m的值不存在;把x=3代入①,得3(2m+1)=-6,解得m=-1.5.∴m的值是-0.5或-1.5.8.解:(1)原式=12x-30y15x+40y.(2)原式=5x +15y25x -y.9.解:原式=(2ab 2)3(a +b )3·(a 2-b 2)2(ab 3)2·14(a -b )2 =8a 3b 6(a +b )3·(a +b )2(a -b )2a 2b 6·14(a -b )2 =2aa +b. 当a =-12,b =23时,原式=2×⎝ ⎛⎭⎪⎫-12-12+23=-6.10.解:步骤①去分母时,没有在等号右边乘x ; 步骤②括号前面是“-”号,去括号时,没有变号; 步骤⑥前没有检验. 正确的解答过程如下:解:方程两边都乘x ,得1-(x -2)=x , 去括号,得1-x +2=x ,移项、合并同类项,得-2x =-3, 解得x =32.经检验x =32是原分式方程的解.11.解:(1)设该种干果第一次的进价是x 元/kg ,则第二次的进价是(1+20%)x 元/kg. 由题意,得9 000(1+20%)x =2×3 000x +300.解得x =5.经检验,x =5是原分式方程的解,且符合题意. 答:该种干果第一次的进价是5元/kg.(2)[3 0005+9 0005×(1+20%)-600]×9+600×9×80%-(3 000+9 000)=5 820(元).答:超市销售这种干果共盈利5 820元.12.解:由题意得2x +23x -5=4.去分母,得2x +2=4(3x -5).解得x =2.2.经检验,x =2.2是原方程的根.所以x 的值是2.2.点拨:本题运用了数形结合思想,通过观察数轴上A ,B 两点的位置情况并结合已知条件“点A ,B 到原点的距离相等”可知,A ,B 两点所表示的数互为相反数,于是可建立方程求出x 的值.13.解:原式=1a +1-a +3(a +1)(a -1)·(a -1)2(a +3)2=1a +1-a -1(a +1)(a +3)=4(a +1)(a +3)=4a 2+4a +3.由a 2+4a -8=0得a 2+4a =8,故原式=411.点拨:本题根据已知条件求出a 的值很困难,因此考虑将已知条件变形后整体代入化简后的式子.14.解:由2x -3y +z =0,3x -2y -6z =0,z≠0,得到⎩⎨⎧2x -3y =-z ,3x -2y =6z.解得⎩⎨⎧x =4z ,y =3z.所以原式=(4z )2+(3z )2+z22(4z )2+(3z )2-z 2=16z 2+9z 2+z 232z 2+9z 2-z 2=1320.点拨:本题先用含z 的式子分别表示出x 与y ,然后代入所求式子消去x ,y 这两个未知数,从而简化求值过程,体现了消元思想.15.解:原式=(2a -b )(a -b )-b (a +b )(a +b )(a -b )·a -b a -2b =2a 2-2ab -ab +b 2-ab -b 2(a +b )(a -2b )=2a 2-4ab (a +b )(a -2b )=2a (a -2b )(a +b )(a -2b )=2aa +b.点拨:本题是类比思想的典范,分式的性质、运算顺序、运算律都可以类比分数的相关知识.专训2 分式的意义及性质的四种题型名师点金:1.从以下几个方面透彻理解分式的意义:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零;(4)分式值为正数⇔分子、分母同号;(5)分式值为负数⇔分子、分母异号.2.分式的基本性质是约分、通分的依据,而约分、通分为分式的化简求值奠定了基础.)分式的识别1.在3x 4x -2,-5x 2+7,4x -25,2m ,x 2π+1,2m 2m中,不是分式的式子有( ) A .1个 B .2个 C .3个 D .4个2.从a -1,3+π,2,x 2+5中任选2个构成分式,共有________个.分式有无意义的条件3.无论a 取何值,下列分式总有意义的是( )A .a +1a 2B .a -1a 2+1C .1a 2-1D .1a +1 4.当x =________时,分式x -1x 2-1无意义. 5.已知不论x 为何实数,分式3x +5x 2-6x +m总有意义,试求m 的取值范围.分式值为正、负数或0的条件6.若x +2x 2-2x +1的值为正数,则x 的取值范围是( ) A .x <-2 B .x <1C .x >-2且x≠1D .x >17.若分式3x -42-x的值为负数,则x 的取值范围是________. 8.已知分式a -1a 2-b 2的值为0,求a 的值及b 的取值范围.分式的基本性质及其应用9.下列各式正确的是( )A.ab=a2b2B.ab=aba+bC.ab=a+cb+cD.ab=abb210.要使式子1x-3=x+2x2-x-6从左到右变形成立,x应满足的条件是( )A.x>-2 B.x=-2 C.x<-2 D.x≠-211.已知x4=y6=z7≠0,求x+2y+3z6x-5y+4z的值.12.已知x+y+z=0,xyz≠0,求x|y+z|+y|z+x|+z|x+y|的值.专训2 分式运算的八种技巧名师点金分式的加减运算中起关键作用的就是通分.但对某些较复杂或具有特定结构的题目,使用一般方法有时计算量太大,容易出错,有时甚至算不出来,若能结合题目结构特征,灵活运用相关性质、方法、解题技巧,选择恰当的运算方法与技能,常常能达到化繁为简、事半功倍的效果.约分计算法1.计算:a 2+6a a 2+3a -a 2-9a 2+6a +9.整体通分法2.计算:a -2+4a +2.顺次相加法3.计算:1x -1+1x +1+2x x 2+1+4x 3x 4+1.换元通分法4.计算:(3m -2n)+(3m -2n )33m -2n +1-(3m -2n)2+2n -3m 3m -2n -1.裂项相消法⎝ ⎛⎭⎪⎫即1n (n +1)=1n -1n +15.计算:1a (a +1)+1(a +1)(a +2)+1(a +2)(a +3)+…+1(a +99)(a +100).整体代入法6.已知1a +1b =16,1b +1c =19,1a +1c =115,求abc ab +bc +ac的值.倒数求值法7.已知 x x 2-3x +1=-1,求x 2x 4-9x 2+1的值.消元法8.已知4x -3y -6z =0,x +2y -7z =0,且xyz≠0,求5x 2+2y 2-z 22x 2-3y 2-10z 2的值.答案专训11.C 点拨:4x -25,2m ,x 2π+1不是分式. 2.6 点拨:以a -1为分母,可构成3个分式;以x 2+5为分母,可构成3个分式,所以共可构成6个分式.3.B 4.±15.解:x 2-6x +m =(x -3)2+(m -9).因为(x -3)2≥0,所以当m -9>0,即m >9时,x 2-6x +m 始终为正数,分式总有意义.6.C 点拨:x 2-2x +1=(x -1)2.因为分式的值为正数,所以x +2>0且x -1≠0.解得x >-2且x≠1.7.x >2或x <438.解:因为分式a -1a 2-b 2的值为0,所以a -1=0且a 2-b 2≠0.解得a =1且b≠±1. 9.D 10.D11.解:设x 4=y 6=z 7=k(k≠0),则x =4k ,y =6k ,z =7k. 所以x +2y +3z 6x -5y +4z =4k +2×6k+3×7k 6×4k-5×6k+4×7k =37k 22k =3722. 12.解:由x +y +z =0,xyz≠0可知,x ,y ,z 必为两正一负或两负一正.当x ,y ,z 为两正一负时,不妨设x >0,y >0,z <0,则原式=x |-x|+y |-y|+z |-z|=1+1-1=1;当x ,y ,z 为两负一正时,不妨设x >0,y <0,z <0,则原式=x |-x|+y |-y|+z |-z|=1-1-1=-1. 综上所述,所求式子的值为1或-1.专训21.解:原式=a (a +6)a (a +3)-(a +3)(a -3)(a +3)2=a +6a +3-a -3a +3=9a +3. 点拨:在分式的加减运算中,若分式的分子、分母是多项式,则首先把能因式分解的分子、分母分解因式,其次把分子、分母能约分的先约分,然后再计算,这样可简化计算过程.2.解:原式=a -21+4a +2=a 2-4a +2+4a +2=a 2a +2. 点拨:整式与分式相加减时,可以先将整式看成分母为1的式子,然后通分相加减.3.解:原式=x +1x 2-1+x -1x 2-1+2x x 2+1+4x 3x 4+1=2x x 2-1+2x x 2+1+4x 3x 4+1=2x (x 2+1)+2x (x 2-1)(x 2-1)(x 2+1)+4x 3x 4+1=4x 3x 4-1+4x 3x 4+1=4x 3(x 4+1)+4x 3(x 4-1)(x 4-1)(x 4+1)=8x 7x 8-1. 点拨:此类题在计算时,采用“分步通分相加”的方法,逐步递进进行计算,达到化繁为简的目的.在解题时既要看到局部特征,又要全局考虑.4.解:设3m -2n =x ,则原式=x +x 3x +1-x 2-x x -1= x (x 2-1)+x 3(x -1)-x 2(x 2-1)-x (x +1)(x +1)(x -1)=-2x (x +1)(x -1)=4n -6m (3m -2n +1)(3m -2n -1). 5.解:原式=1a -1a +1+1a +1-1a +2+1a +2-1a +3+…+1a +99-1a +100=1a -1a +100=100a (a +100).点拨:对于分子是1,分母是相差为1的两个整式的积的分式相加减,常用1n(n+1)=1 n -1n+1进行裂项,然后相加减,这样可以抵消一些项.6.解:1a+1b=16,1b+1c=19,1a+1c=115,上面各式两边分别相加,得⎝⎛⎭⎪⎫1a+1b+1c×2=16+19+115,所以1a+1b+1c=31180.易知abc≠0,所以abcab+bc+ac=11c+1a+1b=18031.7.解:由xx2-3x+1=-1,知x≠0,所以x2-3x+1x=-1.所以x-3+1x=-1.即x+1x=2.所以x4-9x2+1x2=x2-9+1x2=⎝⎛⎭⎪⎫x+1x2-11=22-11=-7.所以x2x4-9x2+1=-17.8.解:以x,y为主元,将已知的两个等式化为⎩⎨⎧4x-3y=6z,x+2y=7z.解得x=3z,y=2z.因为xyz≠0,所以z≠0.所以原式=5×9z2+2×4z2-z22×9z2-3×4z2-10z2=-13.点拨:此题无法直接求出x,y,z的值,因此需将三个未知数的其中一个作为常数,解关于另外两个未知数的二元一次方程组,然后代入待求值的分式消元求值.专训3 巧用分式方程的解求字母的值名师点金:巧用分式方程的解求字母的值主要体现在以下几方面:(1)利用方程解的定义求字母的值,解决这类问题的方法是将其解代入分式方程,即可求出待定字母的值;(2)利用分式方程有解、有增根、无解求字母的取值范围或值时,一般都是列出关于待定字母的不等式或方程,通过解不等式或方程得到字母的取值范围或值.利用分式方程解的定义求字母的值1.已知关于x 的分式方程2x +4=m x 与分式方程32x =1x -1的解相同,求m 2-2m 的值.利用分式方程有解求字母的取值范围2.若关于x 的方程x -2x -3=m x -3+2有解,求m 的取值范围.利用分式方程有增根求字母的值3.若分式方程x x -1-m 1-x=2有增根,则m =________. 4.若关于x 的方程m x 2-9+2x +3=1x -3有增根,则增根是多少?并求方程产生增根时m 的值.利用分式方程无解求字母的值5.(中考·东营)若分式方程x -a x +1=a 无解,则a =________. 6.已知关于x 的方程x -4x -3-m -4=m 3-x无解,求m 的值.7.已知关于x 的分式方程x +a x -2-5x=1. (1)若方程的增根为x =2,求a 的值;(2)若方程有增根,求a 的值;(3)若方程无解,求a 的值.答案专训1.解:解分式方程32x =1x -1,得x =3. 经检验,x =3是该方程的解.将x =3代入2x +4=m x, 得27=m 3.解得m =67. ∴m 2-2m =⎝ ⎛⎭⎪⎫672-2×67=-4849. 2.解:去分母并整理,得x +m -4=0.解得x =4-m.∵分式方程有解,∴x=4-m 不能为增根.∴4-m≠3.解得m≠1.∴当m≠1时,原分式方程有解.3.-14.解:因为原方程有增根,且增根必定使最简公分母(x +3)(x -3)=0,所以x =3或x =-3是原方程的增根.原方程两边同乘(x +3)(x -3),得m +2(x -3)=x +3.当x =3时,m +2×(3-3)=3+3,解得m =6;当x=-3时,m+2×(-3-3)=-3+3,解得m=12.综上所述,原方程的增根是x=3或x=-3.当x=3时,m=6;当x=-3时,m=12.点拨:只要令最简公分母等于零,就可以求出分式方程的增根,再将增根代入分式方程化成的整式方程,就能求出相应的m的值.5.1或-16.解:原方程可化为(m+3)x=4m+8.由于原方程无解,故有以下两种情形:(1)若整式方程无实根,则m+3=0且4m+8≠0,此时m=-3;(2)若整式方程的根是原方程的增根,则4m+8m+3=3,解得m=1.经检验,m=1是方程4m+8m+3=3的解.综上所述,m的值为-3或1.7.解:(1)原方程去分母并整理,得(3-a)x=10.因为原方程的增根为x=2,所以(3-a)×2=10.解得a=-2.(2)因为原分式方程有增根,所以x(x-2)=0.解得x=0或x=2.因为x=0不可能是整式方程(3-a)x=10的解,所以原分式方程的增根为x=2.所以(3-a)×2=10.解得a=-2.(3)①当3-a=0,即a=3时,整式方程(3-a)x=10无解,则原分式方程也无解;②当3-a≠0时,要使原方程无解,则由(2)知,此时a=-2.综上所述,a的值为3或-2.点拨:分式方程有增根时,一定存在使最简公分母等于0的整式方程的解.分式方程无解是指整式方程的解使最简公分母等于0或整式方程无解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下册《分式》检测题(一)
(一)选择题(每题3分共30分)
1 下列式子
1a
x y x y
-+
5
m n -
1x
+3
3
x
π
2a 中,分式的个数为( )
A 2个
B 3个
C 4个
D 5个
2 当x 为全体实数时, 下列分式中一定有意义的是( )
A
2||
X X + B
4
22
--x x C
3
12
2
++x x D
2
)
3(||+x x
3 化简:—
()()
a b a b a b -+-+的结果为( )
A O B
1
a b
- C 1b a
- D 1b a
+
4 与分式 x x y
-- 的值相等的分式是( )
A x x y -- B
x x y
+ C x x y
-
- D
x x y
--+
5 若把分式:x y xy
+ 中的x 和y 都扩大2倍,那么分式的值( )
A 不变
B 扩大2倍
C 缩小2倍
D 扩大4倍
6 化简
a
b
b
b a a b a b a a 2
2
2
2
2
4
)()
(⨯
+÷
-- 的结果是( )
A
b
a a
-2
B
b
a a
+2
C
b
a b
+4
D
b
a b
-4
7 计算 d
d c
c b
b a 1112
⨯÷⨯÷⨯÷ 的结果是( )
A 2
a B
2
2
2
2d
c b a
C
bcd
a
2
D 其他结果
8 若
72
1
(2)(1)
A B x x x x x -+
=
+-+- 则A 和B 的值分别是( )
A 1和—7
B —7和1
C 3和—2
D —2和3
9 若关于X 的方程
14
4
x m x x -=
-- 无解 则m 的值为( )
A 4
B 3
C —3
D 1
10 已知有:0200952
=--x x 那么分式
2
1
)1()2(2
2-+---x x x 的值为( )
A 2008
B 2007
C 2010
D —2
(二)填空题(每题3分共30分) 1 若12a << 则
|2||1|||______2
1a a a a a
a
---
-
=--
2 若13x x
+= 则 分式
1
2
4
2++x x x
的值是___________
3已知实数x ,y 满足|5|4x y o -++= 那么代数式 2008
)
1(
y
x +的值为__________
4 已知
113x
y -
= 则分式
2322x xy y x xy y +--- 的值是________________
5 已知:y x m x
y
=-
y x n x
y
=
+ 那么2
2n m -等于_____________
6 若关于x 的方程 212
x m x +=-- 的解是最大的负整数 则 m=____________
7一个氧原子的质量为:2.67523
10-⨯ 克 则6
105⨯个氧原子的质量为____________
8 如果分式:
511
x x -
-有意义,那么x 的取值范围为____________
9 一份稿件,甲单独打字需a 天恰好完成,已单独打字需b 天恰好完成,两人共同打需_____天恰好完成。
10 观察下列式子:444455
⨯
=-
55556
6
⨯=- 66667
7
⨯=- 设n 表示正整数
(4n ≥)用含n 的等式表示这个规律是_________________
(三)解答题
1计算(每题5分共10分)
(1) 0
1
)13(|1|)21
(-+-+-
(2)
-÷-+--2010(5)
4
1
()1(1
2
π)0
2先化简,在求值(每题5分共10分)
(1)
2
2
2
2442b
ab a b a b
a b
a +++÷
+- 其中 a=2 b=1
(2)
)21(2
22
222
ab
b a ab
b a b
a ++
÷-- 其中 a=511- b=311-+
3解方程(每题5分共10分) (1)1
2212
2
2
-=
+-+
-x x
x x
x (2)
01352
2
=--
+x
x x
x
4(5分)若:10
3452
5
2
---=
++
-x x x x B x A 试求 A B 的值。
5(5分) 已知 abc=1 求 1
1
1
a b c ab a bc b ac c +
+
++++++ 的值。
6 (10分)课堂上,李老师给我们大家出了这样一道题 当x=3 , 522- , 723+
时 求代数式1
221
1222
+-÷
-+-x x x x x 的值 小明一看,太复杂了,怎样算呢!你能帮小明
解决这个问题吗?请你写出具体过程。
7 (10分)已知 实数x y 满足:|21|23240x y x y -++-+=
求代数式 2
2
2
2
4421y
xy x y
x y
x y x +--÷
---
的值
参考答案
㈠ 1 B 2 C 3 D 4 C 5 C 6 D 7 B 8 C 9 B 10 D ㈡ 填空题 1 -1 2
81 3 1 4 5
3 5 -
4 6
5 7 16
10
3375.1-⨯ 8 61≠≠x x 9
b
a a
b + 10
1
1
n n
n n n n ⨯
=-
++
㈢ 解答题
1 ⑴ 3 ⑵ 0
2 ⑴ 4 ⑵ 1
3 ⑴ 此方程无解 ⑵x=2
4 A=3 B=2
5 1 6
2
1 7
7
15。