电磁知识点

合集下载

高中物理电磁学知识点梳理

高中物理电磁学知识点梳理

高中物理电磁学知识点梳理高中物理的电磁学是电学和磁学的综合学科,主要研究电荷间的相互作用以及电磁场的产生和作用。

下面是电磁学的主要知识点梳理。

1.静电学静电学是电磁学的基础,主要研究静止的电荷及其之间的相互作用。

知识点包括:-电荷的性质:电量、电荷守恒定律、电荷的量子化-受力特性:库仑定律、电场强度、电场线、电势能、电场中静电能量的计算-电场的应用:电场与导体的静电平衡、电容器、电场中的运动粒子2.恒定磁场恒定磁场研究磁场中的电流及其受力情况。

知识点包括:-磁场的性质:磁场强度、磁感应强度、磁感线、磁场力-洛伦兹力:洛伦兹力定律、磁场对带电粒子的运动轨迹的影响-磁场的应用:电流的感应磁场、磁场中的运动粒子、电流在磁场中的感应力、直导线在磁场中的力、电动机、电磁铁等3.电磁感应电磁感应研究磁场对电流的产生和电流对磁场的影响。

知识点包括:-法拉第电磁感应定律:感生电动势的大小和方向、感生电动势的计算-楞次定律:电磁感应中的能量守恒、自感系数的计算-互感:互感系数、互感电动势的计算-变压器:构造、工作原理、换电压比4.交流电交流电研究电流的周期性变化和交变电场的特性。

知识点包括:-交变电流的特点:周期、频率、角频率、有效值-阻抗和电感:交流电路中的电阻、电感、电容、有功功率、无功功率和视在功率的计算-交流电路的分析:串、并联电路的电流、电压、功率的计算-高压输电:三相交流电输电线路的设计5.真空电子学与半导体器件真空电子学研究真空中的电子流动和真空管的原理。

知识点包括:-电子的发现和性质:阴极射线、电子的电量和质量-阴极射线管:电子的聚焦、加速和偏转、荧光屏和示波器等半导体器件研究半导体材料中的电流传导和电子器件的工作原理。

知识点包括:-半导体的性质:导电性、P-N结、半导体中的载流子、P-N结的正向和反向特性-二极管:P-N结的整流作用、二极管的工作原理、应用-晶体管:P-N-P和N-P-N型晶体管的工作原理、放大和开关应用以上是高中物理电磁学的主要知识点梳理,学好这些知识点,能够基本掌握电磁学的基本原理和应用。

初中物理电磁感应知识点总结

初中物理电磁感应知识点总结

初中物理电磁感应知识点总结一、电磁感应现象1、定义:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就会产生电流,这种现象叫做电磁感应,产生的电流叫做感应电流。

2、产生条件:(1)闭合电路;(2)一部分导体;(3)做切割磁感线运动。

需要注意的是,这三个条件缺一不可。

如果电路不闭合,只会产生感应电压,而不会有感应电流。

3、能的转化:在电磁感应现象中,机械能转化为电能。

例如,当我们手摇发电机时,通过转动把手,使导体在磁场中做切割磁感线运动,从而产生电能,此时就是将机械能转化为电能。

二、感应电流的方向1、影响因素:感应电流的方向与导体切割磁感线的运动方向和磁场方向有关。

2、右手定则:伸开右手,使大拇指与其余四指垂直,并且都跟手掌在同一个平面内,让磁感线垂直穿过手心,大拇指指向导体运动的方向,那么其余四指所指的方向就是感应电流的方向。

这个定则可以帮助我们快速判断感应电流的方向。

例如,当导体向右运动,磁场方向向上时,根据右手定则,我们可以判断出感应电流的方向是向前的。

三、发电机1、原理:发电机是根据电磁感应原理制成的。

2、构造:主要由定子(固定不动的部分)和转子(能够转动的部分)组成。

定子一般是磁极,转子一般是线圈。

当转子在磁场中转动时,就会产生感应电流。

3、能量转化:发电机工作时,将机械能转化为电能。

大型的发电机通常采用线圈不动、磁极旋转的方式来发电,这样可以产生更强、更稳定的电流。

四、电动机1、原理:电动机是利用通电导体在磁场中受到力的作用而运动的原理制成的。

2、构造:主要由定子、转子和换向器组成。

定子一般是磁极,转子一般是线圈。

换向器的作用是当线圈转过平衡位置时,自动改变线圈中的电流方向,使线圈能够持续转动。

3、能量转化:电动机工作时,将电能转化为机械能。

在日常生活中,我们使用的电风扇、洗衣机等电器,其内部都有电动机。

五、电磁感应的应用1、动圈式话筒:它是把声音的振动转化为电流的变化。

当声音使膜片振动时,与膜片相连的线圈在磁场中做切割磁感线运动,从而产生随声音变化的电流。

电磁感应、电磁场电磁波的知识点总结全

电磁感应、电磁场电磁波的知识点总结全

可编辑修改精选全文完整版高二物理电磁感应、电磁场电磁波的知识点总结2012.6一、产生感应电流的条件:1.磁通量发生变化(产生感应电动势的条件)2.闭合回路*引起磁通量变化的常见情况:(1)线圈中磁感应强度发生变化(2)线圈在磁场中面积发生变化(如:闭合回路中的部分导体做切割磁感线运动)(3)线圈在磁场中转动二、感应电流的方向判定:1.楞次定律:(适用磁通量发生变化)感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

关于“阻碍”的理解:(1)“阻碍”是“阻碍原磁通量的变化”,而不是阻碍原磁场;(2)“阻碍”不是“阻止”,尽管“阻碍原磁通量的变化”,但闭合回路中的磁通量仍然在变化;(3)“阻碍”是“阻碍变化”,当原磁通量增加时,感应电流的磁场方向与原磁场方向相反——阻碍原磁通量的增加;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同——阻碍原磁通量的减少。

2.右手定则:(适用导体切割磁感应线)伸开右手,让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指指的就是感应电流的方向。

其中四指指向还可以理解为:感应电动势高电势处。

*应用楞次定律判断感应电流方向的具体步骤①明确闭合回路中原磁场方向(穿过线圈中原磁场的磁感线的方向)。

②把握闭合回路中原磁通量的变化(φ原是增加还是减少)。

③依据楞次定律,确定回路中感应电流磁场的方向(B感取什么方向才能阻碍φ原的变化)。

④利用安培定则,确定感应电流的方向(B感和I感之间的关系)。

*楞次定律的拓展1.当闭合回路中磁通量变化而引起感应电流时,感应电流的效果总是阻碍原磁通量的变化。

(增反减同)2.当线圈和磁场发生相对运动而引起感应电流时,感应电流的效果总是阻碍二者之间的相对运动(来斥去吸)。

3.当线圈中自身电流发生变化而引起感应电流时,感应电流的效果总是阻碍原电流的变化(自感现象)。

三、感应电动势的大小:1. 法拉第电磁感应定律:在电磁感应现象中,电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

电磁信号知识点总结

电磁信号知识点总结

电磁信号知识点总结一、电磁波的特性1.波长和频率电磁波是由电场和磁场交替变化而形成的,它们的波长和频率之间存在反比关系。

波长是波在媒质中传播一个周期的长度,通常用λ表示,单位是米。

频率是波每秒钟振动的次数,通常用f表示,单位是赫兹(Hz)。

波长和频率之间的关系由下式给出:c = λf,其中c是光速,约为3×10^8米/秒。

2.极化状态电磁波可以沿着不同方向传播,它们的振动方向被称为极化状态。

有线性极化、圆极化和椭圆极化等不同类型。

3.传播特性电磁波在空间中传播存在传播直线和反射折射等现象。

它们的传播速度由媒质的介电常数和磁导率决定,媒质的不同会影响其传播速度。

4.频谱特性电磁波的频率范围很广,可分为射频波、微波、红外线、可见光、紫外线、X射线和γ射线等不同频段。

二、电磁信号的传播1.自由空间传播电磁信号在自由空间中,即没有任何障碍物的情况下,会以直线传播。

其传播过程受到传播距离、发射功率和天线增益等因素的影响。

2.地面传播在地面传播条件下,电磁信号会受到地形、建筑物和植被等障碍物的影响,会产生衰减和多径效应。

3.大气传播天线传播条件下,大气中的湿度、温度和气压等因素也会对电磁信号的传播产生影响。

4.散射传播电磁信号在传播过程中也会发生散射现象,散射会导致信号的衰减和时延,影响通信质量。

三、调制技术1.调幅调制(AM)调幅调制是一种将模拟信号与载波进行调制的技术,它的主要原理是通过改变载波的振幅来传输信号。

调幅调制技术简单,但抗干扰能力较差。

2.调频调制(FM)调频调制是一种将模拟信号与载波进行调制的技术,它的主要原理是通过改变载波的频率来传输信号。

调频调制技术具有较好的抗干扰能力。

3.调相调制(PM)调相调制是一种将模拟信号与载波进行调制的技术,它的主要原理是通过改变载波的相位来传输信号。

4.数字调制(ASK、FSK、PSK)数字调制是一种将数字信号与载波进行调制的技术,它的主要原理是通过改变载波的振幅、频率或相位来传输信号。

电磁感应定律及其应用知识点总结

电磁感应定律及其应用知识点总结

电磁感应定律及其应用知识点总结电磁感应现象是物理学中非常重要的一个概念,它不仅为我们理解自然界中的许多现象提供了理论基础,还在实际生活和科技领域有着广泛的应用。

下面我们就来详细总结一下电磁感应定律及其应用的相关知识点。

一、电磁感应定律1、法拉第电磁感应定律法拉第电磁感应定律指出:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

如果用 E 表示感应电动势,ΔΦ 表示磁通量的变化量,Δt 表示时间的变化量,那么法拉第电磁感应定律可以表示为:E =nΔΦ/Δt,其中 n 是线圈的匝数。

这个定律告诉我们,只要磁通量发生变化,就会产生感应电动势。

而磁通量的变化可以由多种方式引起,比如磁场的变化、线圈面积的变化、线圈与磁场的夹角变化等。

2、楞次定律楞次定律是用来确定感应电流方向的定律。

它指出:感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。

简单来说,如果磁通量增加,感应电流产生的磁场方向就与原磁场方向相反,以阻碍磁通量的增加;如果磁通量减少,感应电流产生的磁场方向就与原磁场方向相同,以阻碍磁通量的减少。

楞次定律的本质是能量守恒定律在电磁感应现象中的体现。

因为如果感应电流的方向不是这样,就会导致能量的无端产生或消失,这与能量守恒定律相违背。

二、电磁感应现象的产生条件要产生电磁感应现象,必须满足以下两个条件之一:1、穿过闭合电路的磁通量发生变化。

这可以是由于磁场的强弱变化、磁场方向的变化、闭合电路的面积变化或者闭合电路在磁场中的位置变化等原因引起的。

2、导体在磁场中做切割磁感线运动。

需要注意的是,如果导体整体都在匀强磁场中运动,而磁通量没有发生变化,是不会产生感应电流的。

三、电磁感应的应用1、发电机发电机是利用电磁感应原理将机械能转化为电能的装置。

在发电机中,通过转动线圈或者磁场,使线圈中的磁通量发生变化,从而产生感应电动势,向外输出电能。

常见的有交流发电机和直流发电机。

交流发电机产生的是交流电,其输出的电流方向和大小会周期性地变化;直流发电机则通过换向器等装置将交流电转化为直流电。

高中物理电磁学知识点总结

高中物理电磁学知识点总结

高中物理电磁学知识点总结一、电场1、库仑定律真空中两个静止点电荷之间的相互作用力,与它们电荷量的乘积成正比,与它们距离的二次方成反比,作用力的方向在它们的连线上。

公式为:$F = k\frac{q_1q_2}{r^2}$,其中$k$为静电力常量,$k = 90×10^9 N·m^2/C^2$ 。

2、电场强度用来描述电场强弱和方向的物理量。

定义式为$E =\frac{F}{q}$,单位是$N/C$。

点电荷形成的电场强度公式为$E =k\frac{Q}{r^2}$。

3、电场线为了形象地描述电场而引入的假想曲线。

电场线从正电荷出发,终止于负电荷或无穷远;电场线的疏密表示电场强度的大小,电场线上某点的切线方向表示该点的电场强度方向。

4、电势能电荷在电场中具有的势能。

电场力做正功,电势能减小;电场力做负功,电势能增加。

5、电势描述电场能的性质的物理量。

某点的电势等于单位正电荷在该点具有的电势能。

定义式为$\varphi =\frac{E_p}{q}$,单位是伏特(V)。

6、等势面电场中电势相等的点构成的面。

等势面与电场线垂直。

7、匀强电场电场强度大小和方向都相同的电场。

其电场线是平行且等间距的直线。

二、电路1、电流电荷的定向移动形成电流。

定义式为$I =\frac{Q}{t}$,单位是安培(A)。

2、电阻导体对电流的阻碍作用。

定义式为$R =\frac{U}{I}$,单位是欧姆(Ω)。

电阻定律为$R =\rho\frac{l}{S}$,其中$\rho$是电阻率,$l$是导体长度,$S$是导体横截面积。

3、欧姆定律导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比。

公式为$I =\frac{U}{R}$。

4、电功电流做功的过程就是电能转化为其他形式能的过程。

公式为$W =UIt$ 。

5、电功率单位时间内电流所做的功。

公式为$P = UI$ 。

6、焦耳定律电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻成正比,跟通电时间成正比。

高中物理电磁学知识点整理

高中物理电磁学知识点整理

高中物理电磁学知识点整理电磁学是物理学的一个重要分支,研究电荷在空间中的运动和相互作用。

在高中物理课程中,电磁学是一个重点内容,学生需要掌握许多基本的电磁学知识点。

下面将对高中物理电磁学知识点进行整理和归纳。

一、电荷和电场1. 电荷的性质:正电荷和负电荷、它们之间的相互作用。

2. 元电荷:电荷的最小单位,一个质子和一个电子的电荷量。

3. 超导体:电荷自由运动的材料,内部电场强度为零。

4. 电场概念:在空间中某点的场强与电荷之间的相互作用力。

二、电场中的电荷运动1. 静电平衡:电场中的电荷受力平衡的状态。

2. 静电场中的电荷分布:在电场中,电荷会向场强方向移动。

3. 电场力与电场强度:电场力的大小与电荷的大小和电场强度有关。

4. 电场线:用以表示电场强度方向的曲线。

5. 等势面:垂直于电场线的曲面,上面点的电势相同。

三、电场与电势1. 电势差与电势能:电荷在电场中移动时所具有的能量。

2. 电势差与电场强度之间的关系:沿电场线方向,电势降低的速率等于场强。

3. 等电势面上电场强度的性质:等电势面上电场强度与电场力垂直。

4. 电势差的计算:电势差等于电场力沿路径做功的量。

四、电流和电阻1. 电流的概念:单位时间内电荷通过导体横截面的数量。

2. 电流的方向:正电荷流动的方向。

3. 电阻的影响:电阻导致电流受阻,产生热量。

4. 电流的大小与方向:电流大小与导体中电荷的数量成正比,方向由正极到负极。

五、电路中的基本元件1. 电动势:电源供电的原动力。

2. 内阻和外阻:电源内部电阻和外部电路电阻的区别。

3. 电阻、电容和电感的特性:不同元件导致电路特性的差异。

4. 阻抗的计算:交流电路中的阻抗由电阻、电容和电感共同组成。

综上所述,高中物理电磁学知识点包括电荷和电场、电场中的电荷运动、电场与电势、电流和电阻以及电路中的基本元件等内容,通过理解这些知识点,学生能够更好地掌握电磁学的基本理论,为今后的学习和研究打下坚实的基础。

电磁关系知识点总结

电磁关系知识点总结

电磁关系知识点总结电磁关系是科学家们研究电力和磁力之间的相互作用的一门学科。

电磁关系是物理学的一个非常重要的分支,它涉及到许多相关的知识点和理论。

本文将对电磁关系的相关知识点进行总结和概述。

一、电磁关系的基本概念1. 电磁力:电磁力是指电荷之间相互作用产生的力。

根据库仑定律,两个点电荷之间的电磁力与它们之间的距离和电荷量的大小成正比。

电磁力不仅可以作用于静止的电荷,还可以作用于运动中的电荷。

2. 电场:电磁力的作用对象是电荷,而围绕电荷周围产生的一种场就是电场。

电场是一种使得在它内部存在电荷时产生相互作用的场。

电场是研究电磁现象的重要基础,通过电场可以了解到电荷的分布情况和电荷之间相互作用的规律。

3. 磁场:磁场是由电流和磁荷所产生的一种场。

磁场可以使得带有磁性的物体相互作用,受到磁力的作用。

磁场对物质的研究非常重要,它可以促进我们对电磁现象的理解,也是电磁关系的一个重要组成部分。

4. 电场强度和磁场强度:电场强度是一个矢量,它表示电场对单位正电荷的作用力。

磁场强度也是一个矢量,它表示磁场对单位磁偶极子的作用力。

电场强度和磁场强度是电磁关系的重要量,它们可以帮助我们研究电磁现象和解决相关的问题。

二、电磁感应1. 法拉第电磁感应定律:法拉第电磁感应定律是电磁关系的一个重要基础。

它指出,当导体中的磁通量发生变化时,导体中就会产生感应电动势。

法拉第电磁感应定律是研究电磁关系的基础,它揭示了电磁感应现象的规律特点。

2. 感应电动势和感应电流:感应电动势是指在导体中由于磁通量的变化而产生的电动势。

感应电流是指在导体中由于感应电动势的存在而产生的电流。

电磁感应是电磁关系中非常重要的一个现象,它在电磁现象的研究和应用中发挥着重要作用。

3. 自感和互感:自感是指一个线圈中的自身电流产生的磁通量对线圈产生的电动势的影响。

互感是指两个线圈之间由于相互感应产生电动势的现象。

自感和互感是电磁关系中的重要内容,它们可以帮助我们理解电磁现象,解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁知识点(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--电与磁知识点第一节:磁现象1、磁性:磁铁能吸引铁、钴、镍等物质,磁铁的这种性质叫做磁性。

2、磁体:具有磁性的物质叫做磁体。

3、磁极;磁体各部分的磁性强弱不同,磁体上磁性最强的部分叫做磁极,它的位置在磁体的两端。

(任一个磁体都有两个磁极且是不可分割的)可以自由转动的磁体,静止后恒指南北。

为了区别这两个磁极,我们就把指南的磁极叫南极,或称S极;另一个指北的磁极叫北极,或称N极。

4、磁极间的相互作用是:同名磁极互相排斥,异名磁极互相吸引。

5、磁体可分为天然磁体和人造磁体,通常我们看到和使用的磁体都是人造磁体,它们都能长期保持磁性,通称为永磁体。

6、磁化:使原来没有磁性的物体得到磁性的过程。

铁棒被磁化后,磁性容易消失,称为软磁体。

钢被磁化后,磁性能够长期保持,称为硬磁体或永磁体,钢是制造永磁体的好材料。

人造磁体就是永磁体。

7、磁场:概念:在磁体周围存在的一种物质,能使磁针偏转,这种物质看不见,摸不到,我们把它叫做磁场。

磁场的基本性质:它对放入其中的磁体产生磁力的作用,磁体间的相互作用是通过磁场而发生的。

磁场的方向:在磁场中某一点,小磁针静止时北极所指的方向就是该点的磁场方向。

注意:在磁场中的一个位置的磁场方向只有一个。

8、磁感线:概念:为了形象地描述磁体周围的磁场,英国物理学家法拉第引入了磁感线:依照铁屑排列情况,画出一些带箭头的曲线。

方向都跟放在该点的磁针北极所指的方向一致,这些曲线叫磁感应线、简称磁感线。

练习:画出下列各组磁感线方向9、磁感线的特点:(1)在磁体外部,磁感线由磁体的北极(N极)到磁体的南极(S极)。

(2)磁感线的方向就是该点小磁针北极受力的方向,也就是小磁针静止后北极所指的方向。

(3)磁感线密的地方表示该点磁场强,即磁感线的疏密表示磁场的强弱。

(4)在空间每一点只有一个磁场方向,所以磁感线不相交。

10、地磁场地磁场:地球周围存在着磁场叫做地磁场。

地磁北极在地理南极附近,地磁南极在地理北极附近。

地球南北极与地磁的南北极并不重合,它们之间存在的一个50夹角,叫磁偏角。

磁偏角首先由我国宋代的沈括发现。

小磁针的南极始终指向地理南极的原因就是:在地理南极附近,存在着地磁场的北极或 N极。

第二节.电生磁11、奥斯特实验现象:导线通电,周围小磁针发生偏转;通电电流方向改变,小磁针偏转方向相反.结论:通电导线周围存在磁场;磁场方向与电流方向有关.12、直线电流的磁场直线电流的磁场的分布规律:以导线上各点为圆心的一个个同心圆,离直线电流越近,磁性越强,反之越弱。

13、安培定则(一)用右手握住导线,让大拇指所指的方向跟电流方向一致,那么弯曲的四指所指的方向就是磁力线环绕方向。

14、通电螺线管的磁场通电螺线管周围能产生磁场,并与条形磁铁的磁很相似。

改变了电流方向,螺线管的磁极也发生了变化。

15、通电螺线管的极性和电流关系——安培定则(二)(右手螺旋定则)用右手握螺线管,让四指弯向螺线管电流的方向,则大拇指所指的那端就是螺线管的北极.实战应用:仔细观察下图,然后回答下列问题:①标出甲图中通电螺线管的N、S极。

②标出乙图中通电螺线管以及小磁针的N、S极。

③标出丙图中通电螺线管的电流方向或电源的正负极。

④画出丁图中通电螺线管的导线绕法。

16、通电螺线管的磁性强弱由什么因素决定电磁线圈的匝数越多,通过线圈的电流越大,线圈的磁性越强;插入铁芯,线圈的磁性大大增强。

第三节:电磁铁的应用17、电磁铁――带铁芯的通电螺线管。

电磁铁与普通磁铁相比,电磁铁容易控制,它的磁性有无可以由通断电控制,它的磁性强弱可以由电流的大小控制,它的磁极的方向可以由变换通电方向来控制.判断电磁铁磁性的强弱(转换法):根据电磁铁吸引大头针的数目的多少来判断电磁铁磁性的强弱。

3.影响电磁铁磁性强弱的因素(控制变量法):①电流大小;②有无铁芯;③线圈匝数的多少结论(1):在电磁铁线圈匝数相同时,电流越大,电磁铁的磁性越强。

结论(2):电磁铁的磁性强弱跟有无铁芯有关,有铁芯的磁性越强。

结论(3):当通过电磁铁的电流相同时,电磁铁的线圈匝数越多,磁性越强。

4.电磁铁的优点(1)电磁铁磁性有无,可由电流的有无来控制。

(2)电磁铁磁性强弱,可由电流大小和线圈匝数的多少来控制。

(3)电磁铁的磁性可由电流方向来改变。

电磁铁的应用电铃电磁起重机电磁继电器磁悬浮列车18、电磁继电器:由电磁铁控制的自动开关,分为控制电路和工作电路可用低电压和弱电流来控制高电压和强电流例题:福安学校的电梯一旦超载,它会自动报警。

现将原理图借你观察。

请你简单地解释它报警的原理:电梯超载,压电源接通;控制电路通路后,电磁铁立即产生性,衔铁被。

把电路接通,报警。

19、磁悬浮列车:同名磁极互相排斥。

第四节:电动机20、通电直导线在磁场中的受力实验。

1.通电导体在磁场中受到力(安培力)的作用.2.磁场对通电导体作用力的方向跟电流方向和磁场方向有关.3.当只改变电流方向或只改变磁场方向时,通电导体受到的磁场的力方向发生改变.4.同时改变电流方向和磁场方向时,通电导体受到的磁场的力的方向不变5、通电导体在磁场中会受到力的大小与磁场强弱、电流大小、导体长短有关。

6.磁场对通电导体的作用(1)通电导体在磁场里,会受到力的作用。

(2)通电导体在磁场里,受力方向与电流方向和磁感线方向有关。

2.电动机(1)基本结构:转子线圈)、定子(磁体)、电刷、换向器电刷的作用:与半环接触,使电源和线圈组成闭合电路。

换向器的作用:使线圈一转过平衡位置就改变线圈中的电流方向。

(2)原理:通电线圈在磁场中受力而转动的原理制成的。

通电线圈在磁场中的受力大小跟电流(电流越大,受力越大)有关。

通电线圈在磁场中的受力大小跟磁场的强弱(磁性越强,受力越大)有关。

通电线圈在磁场中的受力大小跟线圈的匝数(匝数越大,受力越大)有关。

(3)应用:直接电动机:(电动玩具、录音机、小型电器等)交流电动机:(电风扇、洗衣机、家用电器等)21、左手定则(了解)通电导体在磁场中受到力的方向,跟电流方向和磁感线方向有关,三者之间的关系,可用左手定则来判定.伸开左手,使大拇指跟其余四个手指垂直,并且都跟手掌在同一平面内,把左手放入磁场中,让磁感线垂直穿入手心,使四个手指所指的方向为电流的方向,那么大拇指所指的方向就是通电导体受力的方向.22、通电线圈在磁场中受到力的作用(1)通电线圈在磁场中会受到力的作用而转动,但不能持续。

(2)通电线圈在磁场中受到力的作用方向与电流方向和磁场方向有关。

(3)通电线圈所在的平面与磁场方向垂直时线圈受到一对平衡力的作用,线圈的这一位置叫平衡位置。

(4)通电导体在磁场中会受到力的作用,是电能转化为机械能的结果。

当磁场方向与电流方向一致或反向时,受到的作用力为零。

当磁场方向与电流方向垂直作用时,受到的作用力最大。

(5)通电线圈转到平衡位置时,不立即停下来,而是在位置附近摆地动几下才停下来23、直流电动机通过改变电流方向来改变通电线圈的受力方向,从而使之沿同一方向连续转动。

换向器的作用:当线圈刚转过平衡位置时,换向器能自动改变线圈中电流的方向,从而改变线圈受力方向,使线圈连续转动。

直流电动机工作原理:电能转化为机械能。

直流电动机制作原理;通电线圈在磁场中受力转动;当线圈转过平衡位置时,通过换向器改变电流方向,从而改变线圈的受力方向,以保证线圈沿同一方向持续转动。

直流电动机的构造;磁极、线圈、换向器、电刷。

(定子,转子)24、交流电动机也是依靠通电导体在磁场中所受的力来运转的。

第五节:磁生电25、磁生电--电磁感应1)电磁感应现象是英国的物理学家法拉第第一个发现的2、电磁感应--闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流,这种现象叫做电磁感应。

产生的电流叫感应电流。

也叫感生电流3、电路不闭合,当导体做切割磁感线运动时,没有感应电流,但是导体中却有感应电压。

(2)感应电流的产生条件:a.电路必须是闭合电路;b.只是电路的一部分导体在磁场中;c.这部分导体做切割磁感线运动。

4、产生感应电流的条件:电路闭合且一部分导体作切割磁感线运动。

5、感应电流的方向与磁场方向和导体运动方向有关;改变其中的一个,电流方改变;若同时改变这两个方向,电流方向不变。

6、在电磁感应中,机械能转变成了电能。

26、感应电流的方向与导体切割磁感线的方向、磁场的方向有关。

这三个方向可用右手定则来判定。

右手四指与大拇指垂直并在同一平面内,手心对着N极(让磁感线垂直穿过手心),大拇指指向导体切割磁感线的运动方向,则四指所指示的方向就是导体中感应电流的方向.27、影响感应电流大小的因素是导线切割的速度大小、永磁体的强度、切割导线的条数、切割导线的有效长度。

而与导线切割的速度方向无关。

28、交流发电机的工作原理:原理:发电机是根据电磁感应原理工作的,是机械能转化为电能的机器。

1、呈闭合回路的矩形线圈在磁场中不断地转动时,线圈中就有方向不断改变的感应电流产生。

2、交流发电机就是根据电磁感应现象制成的。

3矩形线圈、圆环、电刷、电流表组成了闭合电路。

当线圈在磁场中转动时,切割磁感线,线圈中产生感应电流。

4分析线圈运动到几个特殊位置时产生感应电流的情况:当线圈平面和磁感线垂直时,两边的运动方向和磁感线平行,不切割磁感线,线圈上无感应电流。

当线圈平面和磁感线平行时,两边的运动方向和磁感线垂直,切割磁感线,线圈上有感应电流。

(注意两次的切割方向,及电流方向的改变)5线圈在磁场转动一周,感应电流方向改变两次;线圈不断转动,则感应电流方向不断作周期性变化。

这种周期性改变方向的电流就是交流电。

交流电跟我们从电池得到的电流有所不同,从电池得到的电流的方向不变,通常叫做直流电。

我国交流电的周期是0、02秒,频率为50赫兹,即发电机线圈转一周用秒,即1秒内线圈转50周,每秒出现50个周期,方向改变100次。

发电机由转子和定子两部分组成。

一般采用线圈不动、磁极旋转的方法来发电。

还用电磁体代替永磁体。

29、发电机和电动机的结构本质上是一样的。

因此电动机也可以做发电机。

交流发电机发电时,线圈内是交流电,对外供应也是交流电;直流发电机发电时,线圈内是交流电,对外部供电是直流电。

3.直流电和交流电(1)直流电:方向不变的电流叫做直流电。

(2)交流电:周期性改变电流方向的电流叫交电流。

(3)产生感应电流大小跟磁场强度、切割磁感线速度、线圈匝数(导体的长度)有关。

(4)周期(T):(5)频率(f):我国交流电周期是,频率为50Hz(每秒内产生的周期性变化的次数是50次),每秒电流方向改变100次。

4.发电机和电动机的区别(1)结构:发电机无电源;电动机有电源。

相关文档
最新文档