年产60万吨煤制甲醇合成工艺设计说明书 (1)

合集下载

年产60万吨石油制甲醇初步工艺设计

年产60万吨石油制甲醇初步工艺设计

年产60万吨石油制甲醇初步工艺设计1. 引言本文档旨在提供一份关于年产60万吨石油制甲醇初步工艺设计的详细说明。

石油制甲醇工艺设计主要包括石油预处理、蒸馏与分离、合成气制备、甲醇合成以及甲醇精制等工艺步骤。

通过合理的工艺设计,可确保高效、稳定地生产出预期的年产60万吨甲醇。

2. 工艺流程以下是年产60万吨石油制甲醇的初步工艺设计流程:1. 石油预处理:首先,经过石油分离、脱硫、脱氮等预处理步骤,将原油中的杂质和有害物质去除,以提高后续工艺步骤的稳定性和效率。

石油预处理:首先,经过石油分离、脱硫、脱氮等预处理步骤,将原油中的杂质和有害物质去除,以提高后续工艺步骤的稳定性和效率。

2. 蒸馏与分离:经过真空蒸馏和分离步骤,将预处理后的石油分离为轻质石油和重质石油。

轻质石油用于合成气的制备,而重质石油则用于后续的甲醇合成工艺。

蒸馏与分离:经过真空蒸馏和分离步骤,将预处理后的石油分离为轻质石油和重质石油。

轻质石油用于合成气的制备,而重质石油则用于后续的甲醇合成工艺。

3. 合成气制备:轻质石油经过催化重整和变换等步骤,生成含有一定比例的一氧化碳和氢气的合成气。

合成气是甲醇合成过程的重要原料。

合成气制备:轻质石油经过催化重整和变换等步骤,生成含有一定比例的一氧化碳和氢气的合成气。

合成气是甲醇合成过程的重要原料。

4. 甲醇合成:在甲醇合成反应器中,采用适当的催化剂和反应条件,使合成气中的一氧化碳和氢气进行反应,生成甲醇。

通过控制反应参数,可以获得高纯度的甲醇产品。

甲醇合成:在甲醇合成反应器中,采用适当的催化剂和反应条件,使合成气中的一氧化碳和氢气进行反应,生成甲醇。

通过控制反应参数,可以获得高纯度的甲醇产品。

5. 甲醇精制:生产得到的初级甲醇通过蒸馏和洗涤等工艺步骤,去除其中的杂质和不纯物质,提高甲醇的纯度和质量。

甲醇精制:生产得到的初级甲醇通过蒸馏和洗涤等工艺步骤,去除其中的杂质和不纯物质,提高甲醇的纯度和质量。

60万ta煤制甲醇项目CO转换工艺段初步设计毕业设计

60万ta煤制甲醇项目CO转换工艺段初步设计毕业设计

60万ta煤制甲醇项目CO转换工艺段初
步设计毕业设计
1. Introduction
该文档旨在对60万吨/年煤制甲醇项目中的CO转换工艺段进行初步设计。

本文将概述该工艺段的设计目标、流程图和主要设备以及可能的环境影响。

2. 设计目标
CO转换工艺段的设计旨在将CO气体转化为甲醇,同时最大程度地提高产量和能源利用效率。

具体设计目标包括:
- 实现高效的CO转化率;
- 实现高甲醇产量;
- 最小化副产物的生成;
- 降低能源消耗;
- 符合环境保护要求。

3. 流程图
以下是CO转换工艺段的初步设计流程图:
4. 主要设备
该工艺段将包括以下主要设备:
- 加热炉:用于提供反应所需的热能;
- 反应器:用于催化CO转化为甲醇;
- 分离器:用于分离甲醇与副产物;
- 冷却器:用于冷却反应过程中产生的热量。

5. 环境影响
CO转换工艺段可能对环境产生以下影响:
- 二氧化碳排放:由于使用了化石燃料,该工艺段可能产生大量二氧化碳排放。

我们将采取措施来减少排放量并符合环境标准;
- 废水排放:工艺过程中可能产生废水,我们将采取处理措施确保废水排放符合环境要求;
- 噪音污染:设备运行时可能产生噪音,我们将选择静音设备和合理的布局以减少对周边环境的噪音影响。

6. 结论
本文简要介绍了60万吨/年煤制甲醇项目中CO转换工艺段的初步设计。

该设计目标是高效、环保地将CO转化为甲醇,并最大限度地提高产量和能源利用效率。

我们将继续完善设计并采取必要的措施来减少环境影响,确保项目的顺利进行。

年产65万吨煤制甲醇合成工段工艺设计

年产65万吨煤制甲醇合成工段工艺设计

分类号:TQ223.12年产65万吨甲醇合成工段工艺设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

年产50万吨煤制甲醇生产的工艺设计

年产50万吨煤制甲醇生产的工艺设计

年产50万吨煤制甲醇生产的工艺设计目录1 前言 .............................................................. 错误!未定义书签。

1.1 合成甲醇的发展历程.......................................... 错误!未定义书签。

1.2 合成甲醇的重要性............................................ 错误!未定义书签。

1.3 国内外甲醇的生产和供需概况错误!未定义书签。

1.3.1 国外甲醇的生产和供需概况.............................. 错误!未定义书签。

1.3.2 国内甲醇的生产和供需概况.............................. 错误!未定义书签。

1.4 甲醇的生产方法.............................................. 错误!未定义书签。

1.5 甲醇的生产规模.............................................. 错误!未定义书签。

1.6 粗甲醇的精制原理 (7)1.6.1 粗甲醇的组成 (7)1.6.2 粗甲醇中杂质的分类 (8)1.6.3 精甲醇的质量标准 (8)1.7 几种典型的甲醇精制工艺流程 (9)2 甲醇合成催化剂及合成工艺选择 (12)2.1 催化剂选择 (12)2.2 反应温度 (13)2.3 反应压力 (13)2.4 气体组成 (14)2.5 空速 (14)3 原料气的制取工艺153.1 煤的选用 (15)3.2 气化工艺 (16)3.3 原料气的变换 (17)3.4 脱硫脱碳工艺 (18)3.5 合成工艺流程 (20)3.6 精馏方案选择 (21)4 物料衡算 (22)4.1 合成过程的反应方程 (22)4.2 合成塔物料衡算 (22)4.3 合成反应中各气体消耗和生产量 (23)4.4 新鲜气和驰放气量的确定 (24)4.5 循环气气量的确定 (25)4.6 入塔气和出塔气组成 (26)4.7 甲醇分离器出口气体组成 (28)4.8 贮罐气组成 (29)5 热量衡算 (29)5.1 合成塔热量衡算相关计算式 (29)5.1.1 合成塔入塔热量计算 (30)5.1.2 合成塔的反应热 (31)5.1.3 合成塔出塔热量计算 (31)5.2 合成塔热量损失 (32)5.3 蒸汽吸收的热量 (32)5.4 合成气换热器的热量衡算 (32)5.4.1 合成气入换热器的热量 (32)5.4.2 合成气出换热器的热量 (33)5.5 换热器的热量衡算 (33)5.5.1 入换热器的出合成塔气热量 (33)5.5.2 出换热器的出合成塔气热量 (33)5.6 水冷器的热量衡算 (33)5.6.1 入水冷器的热量 (33)5.6.2 出水冷器的热量 (33)5.6.3 冷却水的用量 (34)5.7 甲醇分离器的热量衡算 (34)6 合成工段的设备选型 (35)6.1 催化剂的使用量 (35)6.2 合成塔的设计 (35)6.2.1 换热面积的确定 (35)6.2.2 换热管数的确定 (35)6.2.3 合成塔直径 (36)6.2.4 合成塔的壁厚设计 (36)6.2.5 壳体设计液压强度校核 (36)6.2.6 合成塔封头设计 (37)6.2.7 折流板和管板的选择及设计 (37)6.2.8 支座 (37)6.3 合成气进塔换热器的选型 (37)6.4 水冷器的选型 (41)6.5 汽包的选型 (41)6.6 加热器的选型 (42)6.7 分离器的设计 (43)6.8 合成气压缩机选型 (43)6.9 出塔气离心泵 (43)6.10 冷却水离心泵 (43)6.11 粗产品泵 (44)7 甲醇精馏工段的设计 (44)7.1 预精馏塔的设计 (44)7.1.1 进料组成 (45)7.1.2 加碱量的计算 (45)7.1.3 清晰分割法取出二甲醚 (45)7.1.4 预精馏塔塔釜温度计算 (46)7.1.5 理论板数的计算 (47)7.2 加压精馏塔设计 (48)7.2.1 清晰分割法分离物系 (48)7.2.2 塔顶、进料、塔釜温度计算 (48)7.2.3 回流比及理论板数计算 (50)7.3 加压精馏塔工艺尺寸设计 (51)7.3.1 平均摩尔质量、密度、表面X力计算 (51)7.3.2 精馏段塔径设计 (52)7.3.3 提馏段塔径设计 (53)7.3.4 塔板工艺尺寸计算 (54)7.3.5 热量衡算 (56)7.4 常压精馏塔设计 (58)7.4.1 清晰分割法分离物系 (58)7.4.2 塔顶、进料、塔釜温度计算 (59)7.4.3 回流比及理论板数计算 (60)7.5 常压精馏塔工艺尺寸设计 (61)7.5.1 平均摩尔质量、密度、表面X力计算 (61)7.5.2 精馏段塔径设计 (62)7.5.3 提馏段塔径设计 (63)7.5.4 精馏段塔板工艺尺寸计算 (64)7.5.5 精馏段塔板负荷性能图 (66)7.5.6 提馏段塔板工艺尺寸计算 (68)7.5.7 提馏段塔板负荷性能图 (70)7.6 热量衡算 (73)8 安全技术与环境保护................................................. 错误!未定义书签。

年产60万吨煤制甲醇项目合成气、氨气压缩机组施工方案

年产60万吨煤制甲醇项目合成气、氨气压缩机组施工方案

1综述1.1编制说明本方案以说明机组施工程序,各工序的施工方法和操作要领为主要内容进行编制,各工序的操作细则及详细的安装技术数据等通过现场技术交底、工程质量单及安装指导图等形式体现。

压缩机系统出厂前进行了机械运转试验和性能试验,故本机组在安装和以后的调试、试运阶段中,在没有发现异常问题的前提下,原则上不予以解体。

油系统的清洗、循环工作将列入试车方案中。

安装人员应熟悉施工设计方案、图纸、技术文件,了解其所承担的安装项目各技术要求的前提下,方可进行施工。

1.2编制依据制造厂商提供的技术文件与图纸;《电力建设施工及验收技术规范(汽轮机篇)》DJ5011—921.3工程概况内蒙蒙大项目压缩机厂房长58米,宽24米,高20米。

在厂房内布置两台压缩机组:合成气离心压缩机组,氨气离心压缩机组。

各机组的组成状况如下:合成气离心压缩机组由一缸两段九级组成(一段七级,二段二级),压缩机与原动机由膜盘联轴器联接,压缩机和汽轮机公用底座,整个机组采用润滑联合油站供油,压缩机的轴端密封采用约翰克兰鼎名密封(天津)有限公司的干气密封,原动机采用杭州中能汽轮动力有限公司的凝汽式汽轮机。

机组布置示意图如下:氨气离心压缩机组主要由MCL707+2MCL707离心压缩机、汽轮机、气体冷却器、气体分离器及润滑油站等组成。

MCL707+2MCL707型离心压缩机是一种多级压缩机,机壳为水平剖分式,压缩机主要由定子(机壳、隔板、密封、平衡盘密封)、转子(轴、叶轮、隔套、平衡盘、轴套、半联轴器等)及支撑轴承、推力轴承、轴端密封等组成。

压缩机由三段十四级组成;MCL707为一段压缩(共7级叶轮)时轮顺排布置,叶轮最大名义直径为700mm;2MCL707为二段压缩(共7级叶轮)叶轮背靠背布置,叶轮最大名义直径为700mm;轴端密封采用干气密封。

原动机为杭州中能汽轮动力有限公司提供(机型:NH32/01)。

压缩机与汽轮机之间、高压缸和低压缸之间均采用膜片联轴器联接。

年产60万吨甲醇项目可行性报告

年产60万吨甲醇项目可行性报告

一、项目概况
1、项目概述
60万吨甲醇项目是一个大型化学聚合物制造项目,旨在建立一个全
新的甲醇生产厂,生产60万吨每年的甲醇,并向周边市场提供货物。

2、产品和技术
60万吨每年的甲醇产品是一种化学单体,用于生产各种有机化学品,如聚酰胺、聚醚、聚氨酯等等,也可以作为合成用烃类化学原料。

采用的
技术可以是从空气中分离出氧气或采用有机物活化的水合甲醇法等。

3、市场前景
甲醇是一种重要的基础化学原料,广泛应用于日用品、医药制品、汽
车和交通工具等行业,其市场前景非常广阔。

考虑到当前国内经济形势,
经济发展正处于快速发展阶段,因此甲醇产品市场前景非常乐观,预期产
品将迎来较快的增长。

二、项目可行性分析
1、市场分析
综合市场分析表明,该项目所产出的甲醇产品具有较高的市场需求,
未来预计5年内销售量将持续增长,市场前景乐观。

2、技术分析
技术分析表明,该项目采用的技术已经在国内外广泛应用,稳定可靠,可以满足60万吨甲醇产品的生产要求,发展前景广阔。

3、资金分析。

年产60万吨煤炭制乙醇初步工艺设计

年产60万吨煤炭制乙醇初步工艺设计

年产60万吨煤炭制乙醇初步工艺设计
该文档旨在提供年产60万吨煤炭制乙醇的初步工艺设计。

以下将概述所需设备和工艺步骤。

设备
- 煤炭处理装置:用于煤炭的粉碎、干燥和预处理。

- 气化炉:将煤炭进行气化反应,产生合成气体。

- 合成气净化装置:用于去除合成气中的杂质,如硫化氢和硫化物。

- 合成气制乙醇反应器:将合成气转化为乙醇。

- 分离装置:用于从反应混合物中分离出乙醇。

工艺步骤
1. 煤炭处理:将原料煤炭进行粉碎和干燥,以提高气化效率。

通过预处理,去除煤炭中的杂质。

2. 气化反应:将预处理后的煤炭送入气化炉进行高温反应,产生合成气体,主要成分为一氧化碳和氢气。

3. 合成气净化:合成气中的硫化氢、硫化物等杂质通过净化装置去除。

4. 合成气制乙醇:将净化后的合成气送入反应器,进行催化反应,将一氧化碳和氢气转化为乙醇。

5. 分离乙醇:从反应混合物中分离出乙醇,可使用蒸馏等分离技术。

6. 精制和储存:对分离得到的乙醇进行精制和储存,以满足产品质量要求。

以上是年产60万吨煤炭制乙醇初步工艺设计的概要。

具体工艺参数和设备设计需要进一步深入研究和优化。

60万ta煤制甲醇项目co变换工段初步设计毕业设计

60万ta煤制甲醇项目co变换工段初步设计毕业设计

摘要本设计是年产60万吨煤制甲醇项目一氧化碳变换工段的初步设计。

它的主要任务是调整C/H比,以满足后续的合成需求。

本设计以非饱和塔型全低温耐硫不完全变换为基础,采用钴钼系催化剂对来自煤直接气化的粗煤气进行CO变换。

设计的原则是技术先进、工艺成熟、经济合理、安全环保,在充分论证国内外各种先进生产方法、工艺流程和设备配置基础上,选用煤气化来的粗煤气进行CO变换,设计的内容包括生产工艺设计论证、工艺计算、设备设计选型及流程图、平面布置图、设备图的绘制;此外,在设计中充分考虑环境保护和劳动安全等非工艺部分。

最后通过经济评估,本设计能够达到要求的经济效益。

关键词:煤制甲醇CO 变换碳氢比AbstractThis design is the annual output of 60 million tons of coal methanol carbon monoxide shift conversion section of the preliminary design. Its main task is to adjust the C / H ratio, the synthesis of the follow-up to meet demand. The design process for the work of all non-saturated low-temperature sulfur-tolerant tower is not completely transformed into discussion, the use of cobalt-molybdenum catalysts Gasification of coal directly from coal gas for CO conversion.Design principles are technologically advanced, mature technology, economical, safe environment, fully demonstrated at home and abroad in a variety of advanced production methods, process and device configuration based on the use of coal gasification to transform the crude gas to CO, the design includes production process design argument, process calculation, equipment selection and design of flow charts, floor plans, equipment, mapping; In addition, full consideration in the design of environmental protection and labor safety and other non-process part. Finally, economic evaluation, designed to meet the requirements of the economic benefits.Keywords: coal to methanol carbon monoxide transform ratio of carbon and hydrogen目录摘要 (I)Abstract .................................................................................................................................................... I I 第1章总论.. (1)1.1 概述 (1)1.1.1 煤制甲醇的可行性 (1)1.1.2设计的目的和意义 (1)1.1.3变换气的要求 (2)1.2 工艺比较 (3)1.2.1全低变工艺 (3)1.2.2 无饱和塔型变换工艺 (7)1.2.3 Shell粉煤气化制甲醇一氧化碳变换工艺 (9)1.2.4 变换兼COS水解工艺 (10)1.2.5 变换兼硫化物加氢工艺 (11)1.2.6小结 (12)1.3 设计范围、装置组成及建设规模 (12)1.3.1设计的范围 (12)1.3.2 生产装置组成 (13)1.3.3 建设规模 (13)第2章工艺详述 (14)2.1 一氧化碳变换系统流程 (14)2.2 一氧化碳变换系统影响因素 (15)2.2.1 压力 (15)2.2.2 温度 (16)2.2.3 水汽比 (16)2.2.4 空速 (17)2.2.5CO2的影响 (17)2.2.6副反应的影响 (17)2.2.7 入口温度 (18)2.2.8 催化剂活性 (18)2.2.9 煤气中CO的含量 (18)2.3 操作制度 (19)2.3.1 入口温度的控制 (19)2.3.2 床层温度的控制 (19)2.3.3 出口CO指标的控制 (19)2.3.4变换炉压差 (20)2.4一氧化碳变换系统中存在的问题 (20)第3章工艺计算 (21)3.1 原始数据 (21)3.2 变换炉工艺参数计算 (21)3.2.1 1#变换炉工艺参数计算 (21)3.2.2 2#变换炉工艺参数计算 (24)3.2.3 3#变换炉工艺参数计算 (26)3.3 物料衡算及热量衡算 (27)3.3.1 变换炉物料衡算及热量衡算 (27)3.3.2气体增湿器物料衡算及热量衡算 (30)3.3.3 废热锅炉物料衡算及热量衡算 (31)第4章主要设备的工艺计算和设备选型 (34)4.1 变换炉的工艺计算 (34)4.1.1 已知条件 (34)4.1.2 1#变换炉 (35)4.1.3 2#变换炉 (37)4.1.4 3#变换炉 (39)4.2废热锅炉的工艺计算 (42)4.2.1 筒体内径的计算 (42)4.2.2 传热系数的计算 (43)4.3 气体增湿器的确定 (47)4.4 开工加热器的确定 (47)4.5 原料气预热器的确定 (47)4.6 预变换炉的确定 (47)4.7 蒸汽预热器的确定 (47)4.8 甲烷化入口加热器 (48)4.9 CO变换工段设备一览表 (48)第5章车间布置说明 (50)5.1车间布置原则 (50)5.2 哈尔滨地区的自然条件 (50)5.2.1 气象条件 (51)5.2.2地震烈度 (51)5.3车间布置的方案 (52)5.3.1 厂房的平立面布置 (52)5.3.2车间辅助室和生活室的布置 (52)5.3.3 设备的布置方案 (52)第6章非工艺部分要求 (54)6.1公用工程 (54)6.1.1 土建 (54)6.1.2给排水及热力 (54)6.1.3 电力、电信系统 (55)6.1.4 自控仪表 (55)6.2 环境保护及安全卫生 (55)6.2.1三废处理 (55)6.2.2 安全生产 (56)6.3 节能 (57)结束语 (58)致谢 (59)参考文献 (60)第1章 总 论1.1 概述1.1.1 煤制甲醇的可行性甲醇的原料来源早期是木材。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《过程装备成套技术》课程设计煤制甲醇合成工段工艺流程及典型题目设备的设计组别第四组姓名学号院(系) 化学与化工学院专业过程装备与控制工程指导教师高勇日期2016年6月27日至2016年7月3日目录1甲醇的合成 (1)1.1甲醇合成的基本原理 (1)1.1.1甲醇合成反应步骤 (1)1.1.2合成甲醇的化学反应 (1)1.2甲醇合成催化剂的选用 (2)1.3铜基催化剂的中毒和寿命 (2)1.4甲醇合成的工艺条件 (2)1.4.1反应温度 (2)1.4.2压力 (2)1.4.3空速 (3)1.4.4气体组成 (3)1.5甲醇合成的工艺流程 (3)1.5.1甲醇合成的方法 (3)1.5.2本设计的合成工艺 (4)1.5.3甲醇合成塔的选择 (4)1.5.4甲醇合成工艺流程 (5)2列管式换热器设计及相关计算 (6)2.1设计任务及操作条件 (6)2.2方案简介 (6)2.3设计方案 (6)2.3.1.确定设计方案 (6)2.3.2确定物性数据 (7)2.3.3计算总传热系数 (7)2.3.4计算传热面积 (8)2.3.5工艺结构尺寸 (9)2.3.6换热器核算 (11)3参考文献 (17)1甲醇的合成1.1甲醇合成的基本原理1.1.1甲醇合成反应步骤对甲醇合成而言,无论是锌铬催化剂还是铜基催化剂,其多相(非匀相)催化过程按下列过程进行:a)扩散——气体自气相扩散到催化剂的界面;b)吸附——各种气体在催化剂的活性表面进行化学吸附,其中CO在Cu2+上吸附,H2在Zn2+上吸附并异裂;c)表面反应——化学吸附的反应物在活性表面上进行反应,生成产物;d)解析——反应产物脱附;e)扩散——反应产物气体自催化剂界面扩散到气相中去;以上五个过程中a、e(扩散)进行得最快,b(吸附)、d(解析)进行的速度较快,而过程c(表面反应)分子在催化剂活性界面的反应速度最慢,因此,整个反应过程取决于表面反应的进行速率[1]。

提高压力、升高温度均可使甲醇合成反应速率加快,但从热力学角度分析,由于CO、CO2和H2合成甲醇的反应是强放热的体积缩小反应,提高压力、降低温度有利于化学平衡向生成甲醇的方向移动,同时也有利于抑制副反应的进行。

1.1.2合成甲醇的化学反应甲醇是甲醇合成反应是多项铜基催化剂上进行的复杂的、可逆的化学反应[2]。

(1)主要的化学反应CO+ 2H2=CH3OH (1-1)CO2+ 3H2=CH3OH+ H2O(1-2)(2)甲醇合成的副反应2CO+ 4H2=CH3OH CH3+ H2O (1-3)CO+ 3H2=CH4+ H2O (1-4)4CO+ 8H2=C4 H9OH+ 3H2O (1-5)CO2+ H2=CO+ H2O (1-6)1.2甲醇合成催化剂的选用铜基催化剂(CuO/ ZnO/ Cr2O3或CuO/ ZnO /Al2O3 )铜基催化剂的主要化学成分是CuO/ ZnO/ Cr2O3或CuO/ ZnO /Al2O3,其活性组分是Cu 和ZnO,同时还要添加一些助催化剂,促进催化剂活性。

Cr2O3的添加可以提高铜在催化剂的分散度,同时又能阻止分散的铜晶粒在受热时被烧结、长大,延长催化剂的使用寿命。

添加Al2O3助催化剂使催化剂活性更高,而且Al2O3价廉、无毒,用Al2O3代替Cr2O3的铜基催化剂更好[3]。

1.3铜基催化剂的中毒和寿命铜基催化剂对硫的中毒十分敏感,一般认为其原因是H2S和Cu形成CuS,也可能生成Cu2S,反应如下:Cu+ H2S =CuS+ H2 (1-7)2Cu+ H2S =Cu2S+ H2 (1-8) 因此原料气中硫含量应小于0.1ppm,与此类似的是氢卤酸对催化剂的毒性。

催化剂使用的寿命与合成甲醇的操作条件有关,铜基催化剂比锌铬催化剂的耐热性差得多,因此防止超温是延长寿命的重要措施。

1.4甲醇合成的工艺条件1.4.1反应温度在甲醇合成反应过程中,温度对于反应混合物的平衡和速率都有很大影响。

温度过低达不到催化剂的活性温度,则反应不能进行。

温度太高不仅增加了副反应,消耗了原料气,而且反应过快,温度难以控制,容易使催化剂衰老失活。

一般工业生产中反应温度取决于催化剂的活性温度,不同催化剂其反应温度不同。

另外为了延长催化剂寿命,反应初期宜采用较低温度,使用一段时间后再升温至适宜温度。

1.4.2压力甲醇合成反应为分子数减少的反应,因此增加压力有利于反应向甲醇生成方向移动,使反应速度提高,增加装置生产能力,对甲醇合成反应有利。

但压力的提高对设备的材质、加工制造的要求也会提高,原料气压缩功耗也要增加以及由于副产物的增加还会引起产品质量的变差,操作压力的选用与催化剂的活性有关。

所以工厂对压力的选择要在技术、经济等方面综合考虑。

1.4.3空速一般来说,催化剂活性愈高,对同样的生产负荷所需的接触时间就愈短,空速愈大。

甲醇合成所选用的空速的大小,既涉及合成反应的醇净值、合成塔的生产强度、循环气量的大小和系统压力降的大小,又涉及到反应热的综合利用。

1.4.4气体组成原料气组成对催化剂活性的影响是比较复杂的问题,现就以下几种原料气成分对催化剂活性的影响作一下讨论。

(1)惰性气体(CH4、N2、Ar)的影响合成系统中惰性气体含量的高低,影响到合成气中有效气体成分的高低。

惰性气体的存在引起CO、CO2、H2分压的下降。

必须确定适当的惰气含量,从而选择合适的排放量。

(2)CO和H2比例的影响从化学反应方程式来看,合成甲醇时CO与H2的分子比为1:2,CO2和H2的分子比是1:3,这时可以得到甲醇最大的平衡浓度。

(3)CO2的影响CO2对催化剂活性、时空产率的影响比较复杂而且存在极值。

完全没有CO2的合成气,催化剂活性处于不稳定区,催化剂运转几十小时后很快失活。

所以CO2是活性中心的保护剂,不能缺少。

在CO2浓度4%以前,CO2对时空产率的影响成正效应,促进CO 合成甲醇,自身也会合成甲醇;但如果CO2含量过高,就会因其强吸附性而占据催化剂的活性中心,因此阻碍反应的进行,会使时空产率下降,同时也降低了CO和H2的浓度,从而降低反应速度,影响反应平衡,而且由于存在大量的CO2,使粗甲醇中的水含量增加,在精馏过程中增加能耗。

一般认为CO2在3~5%左右为宜[4]。

1.5甲醇合成的工艺流程1.5.1甲醇合成的方法当今甲醇生产技术主要采用中压法和低压法两种工艺,并且以低压法为主,这两种方法生产的甲醇约占世界甲醇产量的80%以上。

高压法:(19.6-29.4MPa)是最初生产甲醇的方法,采用锌铬催化剂,反应温度360-400℃,压力19.6-29.4MPa。

高压法由于原料和动力消耗大,反应温度高,生成粗甲醇中有机杂质含量高,而且投资大,其发展长期以来处于停顿状态。

低压法:(5.0-8.0 MPa)是20世纪60年代后期发展起来的甲醇合成技术,低压法基于高活性的铜基催化剂,其活性明显高于锌铬催化剂,反应温度低(240-270℃)。

在较低压力下可获得较高的甲醇收率,且选择性好,减少了副反应,改善了甲醇质量,降低了原料消耗。

此外,由于压力低,动力消耗降低很多,工艺设备制造容易。

中压法:(9.8-12.0 MPa)随着甲醇工业的大型化,如采用低压法势必导致工艺管道和设备较大,因此在低压法的基础上适当提高合成压力,即发展成为中压法。

中压法仍采用高活性的铜基催化剂,反应温度与低压法相同,但由于提高了压力,相应的动力消耗略有增加,本设计采取低压法。

1.5.2本设计的合成工艺以投资成本,生产成本,产品收率为依据,选择中压法为生产甲醇的工艺,用CO 和H2在加热压力下,在催化剂作用下合成甲醇,其主要反应式为:CO+ H2→CH3OH (1-9) 经过净化的原料气,经预热加压,于5.6MPa、64 ℃,从上到下进入反应器,在铜基催化剂的作用下发生反应,出口温度为50 ℃左右,甲醇7%左右,因此,原料气必须循环,则合成工序配置原则。

甲醇的合成是可逆放热反应,为使反应达到较高的转化率,应迅速移走反应热,本设计采用管壳式反应器,管程走反应气体,壳程走6.5MPa的沸腾水1.5.3甲醇合成塔的选择甲醇合成反应器实际是甲醇合成系统中最重要的设备。

从操作结构,材料及维修等方面考虑,甲醇合成反应器应具有以下要求:(1)催化剂床层温度易于控制,调节灵活,能有效移走反应热,并能以较高位能回收反应热;(2)反应器内部结构合理,能保证气体均匀通过催化剂床层,阻力小,气体处理量大,合成转化率高,催化剂生产强度大;(3)结构紧凑,尽可能多填装催化剂,提高高压空间利用率;高压容器及内件间无渗漏;催化剂装御方便;制造安装及维修容易。

根据以上要求,选择R2002—甲醇合成反应器。

1.5.4甲醇合成工艺流程来自净化工段的合成原料气,经离心式压缩机加压至压强3.5Mpa,温度313.15K (40℃)后,与来至合成塔的循环气进行混合,经离心压缩机内再次加压到5.2 MPa,混合气在进反应器前先与合成塔出来的气体进行换热,升温到225 ℃,然后从上到下经过管程进入反应器的铜基催化剂,在催化剂的作用下发生发生如下反应:CO + 2H2 = CH3OH + Q (1-10)CO2 + 3H2 = CH3OH + H2O + Q (1-11) 反应器为列管式反应器,管程走反应气。

合成塔出口气体温度528.15K(255℃),壳程走0.1MPa,373.15K(100℃)的水蒸气作为冷却介质,作用是及时带走合成反应放出的热量,维持体系得到温度,使反应快速进行,同时也起到保护催化剂的作用,出口温度为473.15K(200℃)。

合成塔出塔气温度约为255 ℃,含甲醇5.84%,经过水冷却器换热冷却到40 ℃,冷凝的粗甲醇经分离器分离。

由分离器分离粗甲醇后的气体进行适当放空,大部分气体进入压缩机加压返回合成塔,粗甲醇进入精馏工段进行精制[5]。

2列管式换热器设计及相关计算2.1设计任务及操作条件处理能力:69444.4 kg/h甲醇。

设备形式:列管式换热器操作条件:(1)甲醇:入口温度64℃,出口温度50℃,压力为5.6MPa。

(2)冷却介质:循环水,入口温度30℃,出口温度40℃,压力为6.5MPa。

(3)允许压降:不大于105 Pa。

(4)每年按360天计,每天24小时连续运作。

2.2方案简介本设计任务是利用循环水给甲醇合成工段降温。

利用热传递过程中对流传热原则,制成换热器,以供生产需要。

选择换热器时,要遵循经济、传热效果优、方便清洗、符合实际需要等原则。

列管式换热器在生产中被广泛利用。

它的结构简单、坚固、制造较容易、处理能力大、适应性大、操作弹性较大,尤其在高压、高温和大型装置中使用更为普遍。

选择换热器时,要遵循经济、传热效果优、方便清洗、符合实际需要等原则。

相关文档
最新文档