常用的参数曲面
曲面的第一基本形式

第三章 曲面的第一基本形式本章将接触到曲面论的最基本概念.类比于曲线;但内容更加丰富,特别要注意两者的差异.首先要明确曲面的局部表示和相关的基本概念;其次要明确度量几何的基本要素——弧长元素.在学习的过程中,应该注意对概念的深入理解.§1 参数化曲面一.E 3 中参数化曲面的定义r : U →E 3(u , v )→ r (u , v ) = (x (u , v ), y (u , v ), z (u , v )) .C k 阶参数化曲面,简称参数曲面;参数,或称曲线坐标或曲纹坐标,简称坐标.点. u 坐标曲线,简称u 线; v 坐标曲线,简称 v 线;坐标曲线.坐标曲线网或参数网.自然切向分别表示为∂r ∂u = r u ,∂r ∂v= r v . 连续曲面,光滑曲面.参数化通常在曲面局部有意义,在整体不一定能做到.以后不声明时在局部总考虑 C 3 类参数曲面,并简称之为曲面.二.正则曲面定义1 奇(异)点;正则点.正则曲面,正则参数. 正则点的几何意义是当参数在该点处作微小变动时动点的轨迹构成二维实体;正则点附近总存在小邻域,使得参数值与其位置向量之间保持一一对应.例5 按定义直接计算可知例1和例2中的参数曲面都是正则的.对于例3中的参数曲面,有r u = (- v sin u , v cos u , 0) ,图3-1r v = (cos u , sin u , 1) ,r u ⨯r v = (v cos u , v sin u , - v ) = v (cos u , sin u , -1) ;r u ⨯r v 当且仅当参数 v = 0 时为零向量,故参数值 (u , 0) 对应于全部非正则点——锥顶.对于例4中的旋转面,当 f (v ) = 0 时,对应点不是正则的.例6 单位圆柱面具有存在奇点的下列参数化:r (t , z ) = (cos t 2 , sin t 2 , z ) . 一般地,存在奇点的参数曲面在奇点附近的性质需要单独加以讨论,并且往往比较复杂;而对于连续可微参数曲面,正则点附近总存在较小邻域使正则性得到满足.因此将曲面论的局部基本理论建立在正则曲面之上,是具有一般性的.三.正则曲面的切平面和法线已知正则曲面 S : r = r (u , v ) .考虑过点 r (u 0, v 0) , r (u 0+∆u , v 0) 和 r (u 0,v 0+∆v ) 的平面 ∏ 当 (∆u , ∆v )→(0, 0) 时的极限位置,亦即切平面的位置.正则性保证了平面 ∏ 的极限位置平面 ∏0的法向向量确定为r u (u 0, v 0)⨯r v (u 0, v 0) .曲面上的曲线在该点处的切向量总落在平面 ∏0 上面;任给坐标曲线自然切向量的线性组合,曲面上总存在曲线以之为点 r (u 0, v 0) 处的切向.定义2 切平面;法线,法向;单位法向特指为单位向量(1.2) n (u 0, v 0) = r u (u 0, v 0)⨯r v (u 0, v 0) |r u (u 0, v 0)⨯r v (u 0, v 0)|; 正定向,简称正向;负定向,简称负向.正则曲面是有正定向的曲面.在切点 P : r (u 0, v 0) 处的切平面通常记为 T P ,它按坐标曲线自然切向量的线性组合可以理解为二维向量空间(1.3) T P = {a r u (u 0, v 0) + b r v (u 0, v 0) | (a , b )∈R 2 } ≅ E 2 ,其中的向量称为曲面的切向量,两个切向量 a 和 b 的内积 (a , b ) 规定为 E 3 的诱导内积,即(1.4) (a , b ) = a ∙b , ∀ a , b ∈T P .图3-5此时,切平面同时具有向量空间结构和度量结构.切平面的基向量组{r u, r v} 通常称为自然基,而标架场{r;r u, r v, n} 通常称为自然标架场.用经典微积分的观点来看,切平面上的微元(1.5)d r(u, v) =r u(u, v)d u+r v(u, v)d v是位置向量增量 [r(u + d u , v + d v) -r(u, v)] 的线性主部,称为切向微元;按(1.3) 式所表示的同构,其按自然基分解的系数(d u, d v) 亦可视为切平面中的微元,其方向由比例d u:d v确定.例8已知半径为a > 0 的圆柱面的经纬参数方程为r(t, z) = (a cos t , a sin t , a z) .试求其过点 (a, 0, a) 的任意切向以及分别由比例 1:2 和 1:0 确定的切向.例9已知正则曲面由隐式方程F(x, y, z) = 0 确定,其中梯度向量∇F = (F x, F y, F z) ≠0.证明该曲面上点 (x, y, z) 处的法向确定为∇F(x, y, z) .四.参数变换定义3给定正则曲面S: r= r(u, v) ,若参数变换{u=u(u*, v*)v=v(u*, v*)满足①是连续可微的一一对应;②Jacobi行列式∂(u, v)∂(u*, v*)=∂u∂u*∂v∂u*∂u∂v*∂v∂v*处处非零,u*图3-6则称之为容许参数变换;当 ∂(u , v ) ∂(u *, v *) > 0 时称之为保向的,当 ∂(u , v ) ∂(u *, v *)< 0 时称之为反向的.注记 容许参数变换只有保向或反向两种.在容许参数变换 {u = u (u *, v *)v = v (u *, v *)下,有 (1.6) ⎝⎛⎭⎫ r u * r v * = ⎝ ⎛⎭⎪⎫∂u ∂u * ∂v ∂u *∂u ∂v * ∂v ∂v * ⎝⎛⎭⎫ r ur v, (1.7) r u *⨯r v * = ∂(u , v ) ∂(u *, v *)r u ⨯r v . 由此可知,在容许参数变换下,正则性和可微性保持不变,切平面不变;单位法向在保向容许参数变换下不变,在反向容许参数变换下变号.五.参数曲面的等价类似曲线的论断:① 一个曲面点集实体允许存在多种参数化方式,有参数变换.② 曲面实体的几何属性不依赖于其参数化的方式,也不依赖于空间直角坐标系的选取.③ 两个合同的曲面实体相当于同一曲面实体的不同位置表现形式. ④ 若两张正则曲面之间仅仅相差一个容许的参数变换,则它们表示同一个几何实体,称这两张正则曲面是相同的.相同的正则曲面实际上是指正则曲面的一种等价类,其在同一实点上的切平面、法线等等几何实体分别是重合的.⑤ 定向相同的;定向相反的.⑥ 定向相同的曲面的单位法向以及有向切平面,对于每个对应点都是唯一确定的.⑦ 曲面的整体概念和整体性质是复杂的,将留待于第八章中进行较为深入的讨论.约定:在以后讨论曲面局部性质的各章中,不声明时总考虑正则曲面和容许参数变换,并分别简称为曲面和参数变换.§2 直纹面与可展曲面直纹面可以由一族直线“织成”,即:过曲面上每一点都存在过该点的直线落在该曲面上.一.直纹面及其上的参数变换直纹面的直纹或(直)母线;准线.直纹的位置和直纹上的点的相对位置,给出直纹面 S 的下列自然参数化(2.1) S : r = r (u , v ) = a (u ) + v l (u ) ,其中准线为连续可微参数曲线(2.2) C : r * = a (u ) ,过准线上点 a (u ) 处的直纹方向确定为向量l (u ) ,且 l (u ) 连续可微.此时,(2.5) r u ⨯r v = [a '(u ) + v l '(u )]⨯l (u ) = a '(u )⨯l (u ) + v l '(u )⨯l (u ) .由此可确定正则条件.例1 直纹面可按 (2.1) 式准线与直纹方向的关系归为不同的子类. ① 柱面:各直纹平行.正则性条件即为准线不与直纹相切,单位法向沿着直纹是常向量,切平面沿着直纹重合.② 锥面:各直纹相交于锥顶点.准线可以“收缩”为锥顶.不妨设已经规范为a (u ) ≡ a 0 ,则正则性条件化为(2.7) r u ⨯r v = v l '(u )⨯l (u ) ≠ 0 .故锥顶是奇点;并且,当直纹单位方向向量在单位球面上为正则曲线时,也只有锥顶是奇点.其切平面沿着直纹也重合.③ 切线面:直母线族是某条准线的切线族,即直母线族有包络线可作为准线.不妨设已经规范为a '(u ) = l (u ) ≠ 0 ,且此时不妨设准线以 u 为弧长参数,则正则性条件化为(2.8) r u ⨯r v = v T '(u )⨯T (u ) ≠ 0 .图3-7① ② ③图3-8此时的准线称为切线面的脊线,其上点点为奇点.当脊线无逗留点时,切线面上除脊线外的各点都是正则点.其切平面沿着直纹也重合.④ 主法线面:直母线族是某条准线的主法线族.⑤ 从法线面:直母线族是某条准线的从法线族.例2 正螺旋面或正螺面;其准线可取为旋转轴.正螺面相应单位法向垂直于z 轴;旋转轴上各点处的切平面公交于旋转轴.例3 Möbius 带实体无所谓“正”的定向.直纹面按照准线和直母线族的自然参数化,具有明显的几何直观.准线的转换以及直纹方向向量长度的转换,在自然参数化下,就等价于适当的参数变换;这是一种具有几何意义的参数变换.设直纹面 S 的自然参数化由 (2.1)-(2.2) 式给出.作直母线方向向量的“伸缩”变换和准线变换分别为(2.9) l *(u ) = λ(u ) l (u ) , λ(u ) ≠ 0 ,(2.10) a *(u ) = a (u ) + μ(u ) l (u ) ,其中变换系数函数 λ(u ) 和 μ(u ) 都是连续可微的.令(2.12) {u * = uv * = [v - μ(u ) ] λ(u ) , 则得到容许参数变换,与原有方程的对应关系为(2.14) r = r (u , v ) = a (u ) + v l (u ) = r *(u *, v *) = a *(u *) + v * l *(u *) . 由此可以进一步考察准线和直母线是否允许有特殊关系.引理1 已知直纹面的自然参数化由 (2.1)-(2.2) 式给出,则存在新的参数化,使其准线与直母线处处正交,并且直纹方向向量为单位向量.二.可展曲面及其局部形状分类柱面、锥面、切线面的切平面分别沿着直纹重合;而从正螺面的图形观察到,沿着所给定的直纹移动时,切平面将发生扭转.图3-9 图3-11定义1若直纹面的切平面沿着每一条直纹都分别重合,则称该直纹面为可展曲面,或称该直纹面可展.例4柱面、锥面、切线面都可展.单叶双曲面和双曲抛物面都不可展——这从图形上可以观察到;也可以在任何直纹上展开计算,而由定义得到验证.定理1(直纹面可展的解析条件)设直纹面 S: r=r(u, v) =a(u) +v l(u) 正则.S可展的充要条件为a' , l , l'共面,即(2.15) (a' , l , l' ) ≡ 0 .对指定直纹族的直纹面而言,该解析条件不依赖于准线以及直纹方向向量长度的选取.要考虑可展曲面的其它特征;除了本节将继续讨论的以外,可展曲面的“内在特征”将在后续章节中出现.注记直纹面的直纹族并不一定是唯一的,比如单叶双曲面、双曲抛物面都有两族直纹,而平面的直纹族更加随意指定.以后可以证明,两族坐标曲线都是直线的正则曲面若可展,则只能是平面(或其局部).在“较好”的准线a(u) 和直纹方向向量l(u) 之下,解析条件可以进一步化简.特别当直纹方向向量规范为单位向量场时,即|l(u)|2≡ 1 时,有l'(u)∙l(u) ≡ 0 ;进而分两种情形:①当l'(u)⨯l(u) =0时,自然总有等价条件(a'(u) , l(u) , l'(u) ) = 0 ⇔l'(u) =0;②当l'(u)⨯l(u) ≠0时,l'(u) ≠0,便有等价条件(a'(u) , l(u) , l'(u) ) = 0 ⇔∃λ(u), μ(u) 使a'=λl'+μl;从此出发,利用准线变换,对可展曲面的局部形状可构造性地进行分类.参数变换的目标是确定如例1所给出的规范参数方程.在下面定理的证明中,可注意体会几何直观对证法的启发,以及如何明确地加以表述.定理2(可展曲面局部形状分类)可展曲面必是柱面、锥面和切线面之一或由它们沿直母线所适当拼接而成.证明由引理1和定理1,设可展曲面 S: r=r(u, v) =a(u) +v l(u) 满足|l(u)|2≡ 1 ;则由简化的解析条件,可完全分类为以下三种情形:①l'≡0,则l(u) = const. ≠0;此时S为柱面.②l'≠0,∃λ, μ使a'=λl'+μl;此时要证S为锥面或切线面.(注意:锥面存在新准线C*: a*(u) 使a* = const. ,而切线面存在新准线C*:a*(u) 使关于弧长的导数d a*d s C*=l,它们的共同特征是a*'(u)∥l.)作待定的新准线C*: a*(u) =a(u) +b(u) l(u) 使a*'(u)⨯l(u) ≡0,其中待定函数b(u)连续可微,则a*'=a'+b'l+b l'= (λ+b) l'+ (μ+b') l;故取b=-λ即可满足要求.此时,a*'= (μ-λ') l.由此,当a*'≡0即λ'≡μ时,a* = const. ,则S为锥面;当a*'≠0即λ'≠μ时,l=a*'μ-λ'=d a*d s C*,则S为切线面.③其他;由以上两种情形的讨论过程可知,l'以及 (μ-λ') 的例外零点对应于曲面上相应的直母线.综合各种情形,得证.三.单参数曲面族的包络观察例5管状面.定义2单参数曲面族Sλ的包络面S*,简称包络.例6可展曲面是其本身切平面族的包络,切平面族的单参数就取为某条正则准线的参数.在求解包络时的先验假定,反验.定理3给定连续可微单参数λ正则曲面族Sλ: r(u, v; λ) .如果判别式(2.21) (r u , r v , rλ ) = 0能够决定连续可微的两个函数u(λ, t) 和v(λ, t),那么,该曲面族的包络若存在则只能确定为判别曲面r(u(λ, t), v(λ, t); λ);而若判别式无解函数u(λ, t) 和v(λ, t) ,则该单参数曲面族没有包络.注记:①判别式所确定的函数同时明确了对应点的位置.②判别式如果是平凡的,则判别曲面r(u(λ, t), v(λ, t); λ) 有可能蜕化为非正则的;此时需要反验是否符合包络条件.③如果判别曲面r(u(λ, t), v(λ, t); λ) 是正则的,则其为包络面;此时在某些具体条件下,两个函数u(λ, t) 和v(λ, t) 允许存在反函数,此即为包络面上的特殊参数变换.④对包络面r(u(λ, t), v(λ, t); λ) ,当选定参数λ=λ0时,其上曲线r(u(λ0, t), v(λ0, t); λ0) 是与族中曲面S的公切点构成的曲线,称之为包络面λ0的特征线.例7已知具有包络S* 的连续可微单参数λ曲面族Sλ: r(u, v; λ) = (x(u, v; λ),y(u, v;λ) ,z(u, v;λ))是由隐式方程F(x, y,z; λ) =0 给出的,其中梯度向量∇F=(F x ,F y, F z) ≠0.试证S* 的隐式方程为(2.22) {F(x, y, z; λ) = 0 ,Fλ(x, y, z; λ) = 0 .单参数曲面族由隐式方程给出时,其包络的判别曲面由特征线族方程(2.22) 式给出.有时,隐式方程对于表示曲面整体非常有效,比如球面、双叶双曲面等等;此时,由 (2.22) 式讨论包络是较为方便的.例8求单参数λ球面族x2+y2+ (z-λ)2= 1 的包络.定理4给定连续可微单参数t平面族T t: n(t)∙r-p(t) = 0 ,|n|≡ 1 ,n'(t) ≠0.如果 {T t} 的包络面S存在,则S可展.§3曲面的第一基本形式在指定的曲面上,测量曲线的长度并确定弧长元素、面积元素等等几何量,是曲面几何学基本的问题之一.勾股定理确定了三维 Euclid 空间的基本度量规则,作为该空间的几何子体,曲线和曲面上的度量规则由空间的度量规则而“诱导”确定;子体和原有 Euclid 空间的几何属性将在这种方式之下自然地联系在一起,构成空间几何属性的整体.本节将讨论曲面在这种方式之下的基本结果;而关于其他方式之下的讨论,将在第六章中和第八章中逐步引出和深入进行.本节总记正则曲面S的参数方程为r=r(u, v) , (u, v)∈U⊂R2.一.曲面上的弧长元素首先考虑曲面S上的曲线段的长度和弧长元素.设 C : r = r (u (t ), v (t )) , t ∈[a , b ]是 S 的正则曲线上的一个弧段.通常也用平面区域 U 上的参数方程 {u = u (t )v = v (t ), t ∈[a , b ] 表示曲线 C ;但要注意区分该表示式的双重含义:既表示平面区域 U上的一条参数曲线 C -1 ,同时也表示在曲面 S 上的对应曲线 C .为了区别不同的所在场合,当表示曲线 C时往往强调“在曲面 S 上”.记曲面上的量(3.1) E = E (u , v ) = r u ∙r u = |r u |2 , F = F (u , v ) = r u ∙r v , G = G (u , v ) = r v ∙r v = |r v |2 ,则对曲线 C 有d s 2 = d r ∙d r = [E (u , v ) d u 2 + 2F (u , v ) d u d v + G (u , v ) d v 2 ]| u =u (t ), v =v (t ) = [E ⎝⎛⎭⎫ d u d t 2 + 2F ⎝⎛⎭⎫ d u d t d v d t + G ⎝⎛⎭⎫ d v d t 2 ]d t 2 , d s = | d r d t| d t = E ⎝⎛⎭⎫ d u d t 2 + 2F ⎝⎛⎭⎫ d u d t d v d t + G ⎝⎛⎭⎫ d v d t 2 | u =u (t ), v =v (t ) d t , 则有s (b ) - s (a ) = ⎰b ad s d t d t = ⎰b a | d r d t | d t = ⎰b a E ⎝⎛⎭⎫ d u d t 2 + 2F ⎝⎛⎭⎫ d u d t d v d t + G ⎝⎛⎭⎫ d v d t 2| u =u (t ), v =v (t ) d t . 可见,使用平面区域 U 上的参数方程以及曲面的相应量,就可以得到曲面上的曲线的弧长元素和弧段长度;至于曲面及其上的曲线的位置向量如何,在上述算式中并不直接影响结果.曲面上的量对其上曲线的影响程度,将在进行进一步抽象之后,得到更明确的了解.对此应注意体会.二.第一基本形式定义1 对正则曲面 S : r = r (u , v ) , (u , v )∈U ⊂R 2 ,称二次微分式(3.2) Ⅰ = d s 2 = E (u , v ) d u 2 + 2F (u , v ) d u d v + G (u , v ) d v 2为曲面 S 的第一基本形式,或称线素,其中系数由 (3.1) 式给出.图3-13注记: 第一基本形式系数也称为第一基本量.第一基本形式是由 E 3 的欧氏度量在曲面上所诱导出来的一种Riemann 度量.曲面第一基本形式d s 2 = d r ∙d r 的几何意义可用逼近的观点解释为:切向微元 d r 是位置差向量 [r (u +d u , v +d v ) - r (u , v )] 的线性主部,而弧长元素 d s = |d r | 是相应两点之间的距离微元的主部.第一基本形式在容许参数变换下不变,且在刚体运动下不变.第一基本形式的计算较为简单;但这是关于曲面的最基本和最重要的计算.下例展示了基本运算途径;同时,所得到的结论也是基本的.例1 已知平面 ∏: r (u , v ) = r 0 + u a + v b ,其中三个常向量 r 0, a , b 满足规范条件 |a | = |b | = 1 , a ∙b = 0 .观察其第一基本形式的三种系数行为.① 平面 ∏ 的第一基本形式为d s 2 = d r ∙d r = (a d u + b d v )∙(a d u + b d v ) = d u 2 + d v 2 .② 若在平面 ∏ 上采用极坐标系 (ρ, θ) ,即 {u = ρ cos θ v = ρ sin θ,则 r ρ = a cos θ + b sin θ ,r θ = (- a ρsin θ + b ρcos θ ) ;E (ρ, θ) = r ρ∙r ρ = (a cos θ + b sin θ)∙(a cos θ + b sin θ) = 1 ,F (ρ, θ) = r ρ∙r θ = (a cos θ + b sin θ)∙(- a ρsin θ + b ρcos θ) = 0 ,G (ρ, θ) = r θ∙r θ = (- a ρsin θ + b ρcos θ)∙(- a ρsin θ + b ρcos θ) = ρ2 ;此时,平面 ∏ 的第一基本形式(在极点无意义)为d s 2 = E (ρ, θ) d ρ2 + 2F (ρ, θ) d ρd θ + G (ρ, θ) d θ 2 = d ρ2 + ρ2 d θ 2 .③ 在平面 ∏ 上取任意一条无逗留点弧长 w 参数化曲线 C : ξ(w ) ,则其切线面r (w , t ) = ξ(w ) + t T (w ) 可表示一部分平面区域,其中 T 为 C 的单位切向.局部可得r w = T + t κ N ,r t = T ;E (w , t ) = r w ∙r w = (T + t κ N )∙(T + t κ N ) = 1 + t 2κ 2 ,F (w , t ) = r w ∙r t = (T + t κ N )∙ T = 1 ,G (w , t ) = r t ∙r t = T ∙ T = 1 ;此时,在平面 ∏ 上相应区域内,第一基本形式为d s 2 = E (w , t ) d w 2 + 2F (w , t ) d w d t + G (w , t ) d t 2= [1 + t 2κ 2(w )]d w 2 + 2d w d t + d t 2 .第一基本形式系数在容许参数变换下必须满足一定的变换规律.改写(3.3) Ⅰ = d s 2 = (d u , d v ) ⎝⎛⎭⎫E F F G ⎝⎛⎭⎫d u d v ;(3.4) d r = (d u , d v )⎝⎛⎭⎫r u r v ,(3.5) d r ∙d r = (d u , d v )⎝⎛⎭⎫r u r v ⎝⎛⎭⎫r u r v T ⎝⎛⎭⎫d u d v ,(3.6) ⎝⎛⎭⎫E F F G = ⎝⎛⎭⎫r u r v ⎝⎛⎭⎫r u r v T = ⎝⎛⎭⎫r u r v ∙ (r u , r v ) ,其中各式之中的位置向量视为行向量,分块矩阵之间用“∙”表示数量积.定义2 对正则曲面 S : r = r (u , v ) ,称二次型 (3.2) 或 (3.3) 的系数矩阵,即 (3.6) 式左端,为曲面 S 的第一基本形式系数矩阵;其行列式(3.7) E F F G= EG - F 2 = |r u |2|r v |2 - (r u ∙r v )2 = |r u ⨯r v |2 > 0 , 称为曲面 S 的第一基本形式系数行列式.性质 ① 正则曲面 S 的第一基本形式 (3.2) 是正定的二次型,即:d s 2 ≥ 0 ,且等号当且仅当 d u = d v = 0 时成立;② 正则曲面 S 的第一基本形式系数矩阵是正定的.在容许参数变换 {u = u (u *, v *)v = v (u *, v *)下记Jacobi 矩阵和Jacobi 行列式分别为 (3.8) J = ⎝ ⎛⎭⎪⎫∂u ∂u * ∂v ∂u *∂u ∂v * ∂v ∂v * ,∂(u , v ) ∂(u *, v *) = |J | ; 记参数 (u *, v *) 下曲面 S 的第一基本形式为d s 2 = E *(u *, v *) d u *2 + 2F *(u *, v *) d u *d v * + G *(u *, v *) d v *2.则由 (1.6) 式和 (1.7) 式分别代入 (3.6) 式和 (3.7) 式可得(3.9) ⎝⎛⎭⎫E * F *F * G * = ⎝⎛⎭⎫ r u * r v * ⎝⎛⎭⎫ r u * r v *T = J ⎝⎛⎭⎫ r u r v ⎝⎛⎭⎫ r u r v T J T = J ⎝⎛⎭⎫E F F G J T , (3.10) E *G * - F *2 = |J |2(EG - F 2) .这是两个具有理论意义的等式.第一个等式说明,第一基本形式系数矩阵服从所谓“张量”的变换规律,从而成为张量概念的直观背景之一.第二个等式将在下一段用来支持面积元素的概念,等价地写为(3.11) E *G * - F *2 = ||J || EG - F 2 . 例2 以平面弧长参数曲线为准线作柱面 S ,考察其第一基本形式;并证明其第一基本形式在某正则参数 (u , v ) 下可以表示为 d s 2 = d u 2 + d v 2 .三.交角与面积元素确定交角和面积等几何量.交角,有向交角.在自然标架下,有关曲面以及其上曲线的交角问题和面积问题,都可以利用自然基向量的数量积或向量积进行计算,从而转化为如何用第一基本形式表述或求解的问题.一般化的算法,体现在下面的较为具体的抽象计算过程中;而计算结果的意义,需要特别注意体会.1.曲面上的曲线的交角假设曲面 S 的第一基本形式以 (3.2) 式确定;设点 (u , v ) 处的两个切向微元在自然基 {r u , r v } 下分别为 d u :d v 和 δu :δv ,确定其间夹角余弦(3.12)式——曲面上的曲线的交角,由曲面的第一基本形式以及曲线在交点处的切方向完全确定;而曲线的切方向只由参数区域上的原像即可确定.参数区域上的曲线原像之间的交角取决于区域本身,而与曲面上的交角没有必然的联系.可参考图3-13观察这个事实.定理1 对正则曲面而言,两族坐标曲线处处正交的充要条件为其第一基本形式系数矩阵处处是对角阵.定义2 正交参数,正交参数网或正交网.定理1确定了曲面正交参数网的第一基本形式特征.例3 对正则曲面 S : r = r (u , v ) ,求两族坐标曲线的二等分角轨线 C 的微分方程.2.曲面的面积元素和区域面积曲面的面积元素可以表示为(3.13) d σ = |r u ⨯r v | d u d v= EG - F 2 d u d v .任一有界区域 r (U 0) 的面积 A (U 0)可以表示为(3.14) A (U 0) = ⎰⎰ U 0 d σ = ⎰⎰ U 0 |r u ⨯r v | d u d v = ⎰⎰ U 0EG - F 2 d u d v . 在参数变换下面积元素对应相同,面积也对应相同.v )图3-14定理2正则曲面的面积元素和区域面积由第一基本形式可完全确定.§4局部等距对应曲面间的正则对应.“贴广告”的体验:保持弧长以及由弧长所完全确定的几何量都不变.一.局部等距对应定义1局部等距对应;局部等距.等距对应;等距.等距与局部等距的区别.目前通常只考虑曲面间的局部等距对应,并简称为等距对应.定理1(局部等距对应充要条件)两张曲面局部等距的充要条件是按对应关系具有相同的第一基本形式.等距的曲面之间能够作为容许参数变换的对应关系,并不一定具有明显的解析表达式;同时,第一基本形式按对应关系相同,并不意味着它们的参数已经对应相同,即它们的第一基本形式系数并不总是相等,而只是在对应关系下以变换规律 (3.9) 式相联系.一般而言,寻求等距曲面之间的等距对应关系可以归结为求解由 (3.9) 式所给定的偏微分方程组,但其求解过程往往是困难重重和具有技巧的.从定理1看,通过计算第一基本形式即可验证对应关系是否为等距对应.而对于较为直观和简单的等距对应,通过分析几何直观及其所提供的启示,也可以找到相应的对应关系.例1悬链面与正螺面之间的局部等距对应悬链面与正螺面.悬链面去掉一条母线而“剪开”后,与正螺面的“一个螺纹”之间的等距对应.定理2可展曲面总存在与平面的局部等距对应.分析这个定理的结论和证明过程,可见可展曲面局部存在到平面之间的连续变形,使得变形过程中的每一张中间曲面都是可展的,并且在对应关系下直纹总变到直纹,同时每一张也都是互相等距对应的.这就是平整的“纸张”能够“不撕破”“不褶皱”地“贴合”在可展曲面上的原因.这个定理的逆定理也是成立的,其证明在后续两章给出.形象地说,可展曲面名副其实地“可展”成平面.一般而言,讨论曲面在保持等距意义下的连续形变,是较为复杂的.二.曲面的内蕴几何学概念定义2内蕴量,内蕴性质(内在性质);内蕴几何体.内蕴几何学.内蕴几何学的核心是讨论第一基本形式的不变量以及相关的几何属性.例如,球面与平面之间不存在局部等距对应,从而具有不同的内蕴几何学;而这个事实的证明,将在第五章利用所谓的Gauss绝妙定理给出.从内蕴几何角度来看,可展曲面的代表就是平面;有理由认为它的“内在弯曲”状况是“平坦”的,尽管有许多可展曲面的“外在弯曲”状况是“弯曲”的.而球面既是“外在弯曲”的,也是“内在弯曲”的.内蕴量和内蕴性质,还可以提示和帮助确定等距对应关系.§5局部正交参数网与等温参数适当坐标系的选取是非常重要的.简化计算.另一种作用是,根据场合选取具有特定几何意义的坐标系,有时会成为揭示和解决问题的关键.本节将给出一个基础性结论,它经常用于建立所需要的局部坐标系,包括确定一些具有特定几何意义的参数曲线网的局部存在性.一.一般结论与正交网定理1设二阶连续可微正则曲面S: r=r(u, v) , (u, v)∈D上已给出两个处处线性无关的连续可微切向量场a(u, v) , b(u, v) ,则对任何点 (u0, v0)∈D满足r u*∥a , r v*存在其邻域D0⊂D,使在D0内存在参数变换{u* =u*(u, v)v* =v*(u, v)∥b,即切向量场a(u, v) , b(u, v) 的积分曲线族分别为u*, v* 曲线族.定理2在二阶连续可微正则曲面上的任一点邻近总可取到正交网.证明对曲面S: r=r(u, v) , (u, v)∈D,取a(u, v) =r u(u, v) ,b(u, v) =r v(u, v) -FEr u(u, v) ,则a, b是两个处处线性无关的连续可微切向量场,并且处处正交.由定理1,可分别取切向量场a, b的积分曲线族为局部的两族坐标曲线,则此两族坐标曲线构成正交网.□注记①曲面正交网的存在性是局部性质;至于大范围内是否存在正交网,往往受到曲面整体性质的约束.②曲面上的处处正交的单位切向量场总是存在的;但是,定理并没有保证它们可以成为自然切向量场,而只是保证它们可以处处平行于某个自然切向量场.二.等温参数定义1曲面的等温参数.在等温参数下,内蕴量的计算较为简单.同时,从(3.12) 式可见,曲面上的曲线的交角,总等于其在等温参数区域中的原像(当视为欧氏平面上的曲线时)的交角.曲面与欧氏平面在等温参数下的这种对应关系,是一类共形对应,或称为保角对应或等角对应.例1Mercator地图.等温参数的存在性是较难证明的.定理3在二阶连续可微正则曲面上的任一点邻近,总可取到等温参数网.推论二阶连续可微正则曲面局部共形对应于平面;二阶连续可微正则曲面之间总可局部共形对应.。
高程异常拟合参数 曲面

高程异常拟合参数曲面高程异常拟合参数是指将采集到的地面高程数据与理论或预测的地形曲面进行比较,并通过拟合参数的方法来描述地面的高程异常情况。
高程异常拟合参数对于地质、地理、工程等领域的研究都具有很重要的意义。
在地理信息系统(GIS)中,常用的高程模型有数字高程模型(DEM)和数字地面模型(DSM)。
DEM是描述地面地形的数学模型,而DSM包含了地面和地面上的物体,如建筑物、树木等。
在进行高程异常拟合参数的研究中,通常使用DEM 作为基础数据进行分析。
高程异常拟合参数可以用来研究地壳运动、地形演化、构造和地质变形等。
常用的拟合参数有坡度、曲率、凹凸性等。
1. 坡度:坡度是指地面高程变化的一种度量,可以用来研究地形的陡峭程度。
常见的坡度计算方法有斜度法和两点法。
斜度法是根据相邻格点之间的高程差来计算坡度,两点法是通过将地块分割成多个小三角形来计算坡度。
2. 曲率:曲率是描述地面变化率的一个参数,可以用来研究地形的平滑程度。
曲率可以分为主曲率和副曲率两种,主曲率描述地面的最大和最小曲率变化,副曲率描述地表曲率变化的方向。
3. 凹凸性:凹凸性是描述地面形态突出和凹陷的程度。
凹凸性可以通过计算地表高程值的方差、标准差等统计指标来衡量。
凹凸性参数可以用来研究地质构造的形态特征,如断裂带、褶皱等。
除了上述常用的拟合参数外,还有一些其他的高程异常拟合参数可供参考,如最小二乘法、曲面拟合法、自适应拟合法等。
这些方法主要是通过数学模型或统计分析来拟合地面的高程异常,以求得与实际观测数据最接近的结果。
在研究中,可以先对采集到的DEM数据进行预处理,如降采样、滤波等,以减少数据的噪声和误差,然后利用相应的拟合参数进行分析。
分析结果可以通过绘制等高线图、三维地形图等方式展示出来,以便分析变化规律和特征。
总而言之,高程异常拟合参数是地理学、地质学等相关领域研究中的一种重要方法,通过与理论模型的拟合来描述地面的高程异常情况。
§1 参数化曲面

图 3-1
的点是指向径 r(u0, v0) = OP(u0, v0) 的终点
P(u0, v0) = (x(u0, v0), y(u0, v0), z(u0, v0)) ∈ E3 ,
通常表示为向量值 r(u0, v0) 或参数值 (u0, v0) .曲线r(u, v0) 称为参数曲面 S
上过点 P(u0, v0) 的 u 坐标曲线,简称 u 线;而曲线r(u0, v) 称为参数曲面 S
正则曲面的意义还在于能够方便
地确定曲面的所谓切向量和切平面,
以及法向量.
已知正则曲面 S: r = r(u, v) .考虑
过 点 r(u0, v0) , r(u0+Δu, v0) 和 r(u0, v0+Δv) 的平面 Π 当 (Δu, Δv)→(0, 0) 时 的极限位置,亦即切平面的位置.由
图 3-5
r = r(u, v) = (cos u , sin u , v) ,(u, v)∈R2 ;
-2-
作者:王幼宁
其中参数值与位置向量的对应不是一一对应,但适当缩小定义域则可保证 一一对应.其整体也能定义成参数曲面,例如
r = r(w, t) = (
w w2 + t2 ,
t w2 + t2 , ln
w2 + t2 ) ,(w, t)∈R2−{(0, 0)} .
曲线,类似于球面上的称呼,通常分别称为纬线和经线;此参数化方式,
通常称为旋转面的经纬参数化.球面、圆柱面、正圆锥面都是旋转面.
二.正则曲面 参数曲面比参数曲线更复杂,同样需要引进正则性.
定义 1 给定参数曲面 S: r = r(u, v) , (u, v)∈U .若自然切向在点 (u0, v0) 满足 ru(u0, v0)×rv(u0, v0) = 0 ,则称 (u0, v0) 或其对应点 r(u0, v0) 为 S 的一个奇 (异)点;若 ru(u0, v0)×rv(u0, v0) ≠ 0 ,则称 (u0, v0) 或其对应点 r(u0, v0) 为 S 的一个正则点.若 S 之上点点正则,则称 S 为正则曲面,并称参数 (u, v) 为正则参数.
《计算机图形学》练习试题及参考答案(二)

《计算机图形学》练习试题及参考答案二、选择题(每题2分)B 1、计算机图形学与计算几何之间的关系是( )。
A)学术上的同义词B)计算机图形学以计算几何为理论基础C)计算几何是计算机图形学的前身D).两门毫不相干的学科B 2、计算机图形学与计算机图象学的关系是( )。
A)计算机图形学是基础,计算机图象学是其发展B)不同的学科,研究对象和数学基础都不同,但它们之间也有可转换部分C)同一学科在不同场合的不同称呼而已D)完全不同的学科,两者毫不相干C 3、触摸屏是( )设备。
A)输入B)输出C)输入输出D)既不是输入也不是输出B 4.计算机绘图设备一般使用什么颜色模型?( )A)RGB;B)CMY;C)HSV ;D)HLS A 5. 计算机图形显示器一般使用什么颜色模型?( )A)RGB;B)CMY;C)HSV ;D)HLS C 6.分辨率为1024×1024的显示器各需要多少字节位平面数为24的帧缓存?( )A)512KB;B)1MB;C)2MB ;D)3MBD 7.哪一个不是国际标准化组织(ISO)批准的图形标准?( )A)GKS;B)PHIGS;C)CGM ;D)DXF C8.下述绕坐标原点逆时针方向旋转a角的坐标变换矩阵中哪一项是错误的? ( )| A B || C D |A) cos a;B) sin a;C) sin a;D) cos aA 9、在多边形的逐边裁剪法中,对于某条多边形的边(方向为从端点S 到端点P)与某条裁剪线(窗口的某一边)的比较结果共有以下四种情况,分别需输出一些顶点.请问哪种情况下输出的顶点是错误的? ( )A)S和P均在可见的一侧,则输出S和P.B)S和P均在不可见的一侧,则输出0个顶点.C)S在可见一侧,P在不可见一侧,则输出线段SP与裁剪线的交点.D)S在不可见的一侧,P在可见的一侧,则输出线段SP与裁剪线的交点和P.C 10、在物体的定义中对边的哪条限制不存在? ( )A) 边的长度可度量且是有限的B) 一条边有且只有两个相邻的面C) 一条边有且只有两个端点D) 如果一条边是曲线,那么在两个端点之间不允许曲线自相交D11.下述哪一条边不是非均匀有理B样条(NURBS)的优点? ( )A) NURBS比均匀B样条能表示更多的曲面B) 对于间距不等的数据点,用NURBS拟合的曲线比用均匀B 样条拟合的曲线更光滑C) NURBS提供的权控制方法比用控制点更能有效的控制曲线的形状D) 使用NURBS可以提高对曲面的显示效率C 12.下列关于图的存储表示的叙述中,哪一个是不正确的?A) 无向图的相邻矩阵是对称矩阵B) 对于带权的图,其相邻矩阵中值为1的元素,其值可以用边的权来权替C) 用邻接表法存储包括n个结点的图需要保存一个顺序存储的结点表和n个链接存储的边表D) 用邻接表法存储包括n条边的图需要保存一个顺序存储的结点表和n个链接存储的边表C13*.在面片的数量非常大的情况下哪一个消隐算法速度最快? ( )A) 深度缓存算法(Z-Buffer)B) 扫描线消隐算法C) 深度排序算法(画家算法)D) 不知道B14*.下面关于深度缓存消隐算法(Z-Buffer)的论断哪一条不正确? ( )A) 深度缓存算法并不需要开辟一个与图像大小相等的深度缓存数组B) 深度缓存算法不能用于处理对透明物体的消隐C) 深度缓存算法能并行实现D) 深度缓存算法中没有对多边形进行排序D15.在用射线法进行点与多边形之间的包含性检测时,下述哪一个操作不正确? ( )A) 当射线与多边形交于某顶点时且该点的两个邻边在射线的一侧时,计数0次B) 当射线与多边形交于某顶点时且该点的两个邻边在射线的一侧时,计数2次C) 当射线与多边形交于某顶点时且该点的两个邻边在射线的两侧时,计数1次D) 当射线与多边形的某边重合时,计数1次D 16*、扫描消隐算法在何处利用了连贯性(相关性Coherence)?(1)计算扫描线与边的交点;(2)计算多边形在其边界上的深度;(3)计算多边形视窗任意点处的深度值;(4)检测点与多边形之间的包含性。
计算几何——曲面表示论及其应用

计算几何——曲面表示论及其应用
几何曲面表示论是几何学中的一个分支,它研究的是如何用数学模型来描述和表示曲面的形状和性质。
这种表示方法可以应用于多个领域,包括计算机图形学、计算机辅助设计、医学图像处理等。
在几何曲面表示论中,常用的方法包括参数化曲面表示、隐式曲面表示和面片片面表示。
参数化曲面表示是指通过参数方程来描述曲面的形状。
例如,可以用二维参数u、v表示三维空间中的曲面,其中每个点的
坐标可以通过参数u和v的函数来计算。
隐式曲面表示是指通过方程来表示曲面,其中方程的解即为曲面上的点。
例如,一条直线可以用方程ax + by + cz + d = 0来
表示,其中a、b、c和d是常数,表示直线的法向量和一个点。
面片片面表示是指将曲面划分为一个个小面片,并通过描述每个小面片的顶点坐标来表示整个曲面。
这种表示方法常常用于离散化处理和计算机图形学中的三角化。
几何曲面表示论的应用十分广泛。
在计算机图形学中,它可以用于建模和渲染三维物体,为计算机生成的图像赋予具体的形状和纹理。
在计算机辅助设计中,它可以用于建立实体模型和进行CAD设计。
在医学图像处理中,它可以用于对医学图像
进行分析和重建。
总的来说,几何曲面表示论是一个重要的数学工具,它使我们能够更好地理解和处理曲面的形状和性质,并在实际应用中发挥重要作用。
常见空间曲面的参数方程

常见空间曲面的参数方程
空间曲面是三维空间中的曲线的推广,它可以用参数方程来描述。
常见的空间曲面包括球面、圆柱面、抛物面等,它们可以通过参数方程来表示。
首先,让我们来看看球面的参数方程。
对于半径为R的球面,其参数方程可以表示为:
x = Rcos(u)sin(v)。
y = Rsin(u)sin(v)。
z = Rcos(v)。
其中,u和v分别是球面上的参数,u的范围一般是0到2π,v的范围一般是0到π。
这个参数方程可以描述整个球面上的点。
接下来是圆柱面的参数方程。
对于以z轴为轴的圆柱面,其参数方程可以表示为:
x = Rcos(u)。
y = Rsin(u)。
z = v.
其中,u的范围一般是0到2π,v的范围可以根据具体情况来确定。
这个参数方程描述了圆柱面上的点。
最后是抛物面的参数方程。
对于抛物面,其参数方程可以表示为:
x = u.
y = v.
z = u^2 + v^2。
其中,u和v的范围可以根据具体情况确定。
这个参数方程描述了抛物面上的点。
除了这些常见的空间曲面,还有许多其他曲面,它们都可以通
过参数方程来描述。
参数方程的使用可以让我们更直观地理解曲面的性质和特点,从而更好地研究和分析空间中的曲面。
希望这些信息能够帮助到你理解常见空间曲面的参数方程。
微分几何中的曲线与曲面

微分几何中的曲线与曲面微分几何是现代数学的重要分支之一,研究的对象是曲线和曲面。
曲线与曲面是微分几何的基础概念,本文将通过介绍曲线和曲面的定义、性质和应用等方面,探讨微分几何中的曲线与曲面。
一、曲线的定义与性质在微分几何中,曲线是指一条连续的路径,可以用数学模型来描述。
常用的曲线方程有参数方程、隐式方程和显式方程等形式。
1. 参数方程曲线的参数方程形式为:x = f(t)y = g(t)z = h(t)其中t是参数,f(t)、g(t)和h(t)是关于t的函数,描述了曲线在坐标系中的运动轨迹。
参数方程形式的优点是能够较清晰地表示曲线的几何特性。
2. 隐式方程曲线的隐式方程形式为:F(x, y, z) = 0其中F是关于x、y、z的函数。
隐式方程描述了曲线上的点满足的方程,通过求解该方程可以确定曲线的位置。
隐式方程形式的优点是能够在一定程度上简化计算。
3. 显式方程曲线的显式方程形式为:z = f(x, y)其中f是关于x、y的二元函数。
显式方程描述了曲线在平面上的投影,可直观地展示曲线的形状和特征。
曲线的性质包括长度、弧长、切线、曲率等。
长度是曲线上两点之间的距离,弧长是曲线上一部分的长度。
切线是曲线某一点处与曲线相切的直线,切线的方向与曲线在该点的切向量方向一致。
曲率是描述曲线的弯曲程度的量,曲率越大,曲线越弯曲。
二、曲面的定义与性质曲面是三维空间中的二维对象,可以用数学模型来描述。
常用的曲面方程有参数方程和隐式方程等形式。
1. 参数方程曲面的参数方程形式为:x = f(u, v)y = g(u, v)z = h(u, v)其中u和v是参数,描述了曲面在坐标系中的位置。
参数方程形式的优点是能够较清晰地表示曲面的几何特性。
2. 隐式方程曲面的隐式方程形式为:F(x, y, z) = 0其中F是关于x、y、z的函数。
隐式方程描述了曲面上的点满足的方程,通过求解该方程可以确定曲面的位置。
隐式方程形式的优点是能够在一定程度上简化计算。
c4d细分曲面的参数

Cinema 4D(C4D)是一款流行的3D建模、动画和渲染软件,其强大的细分曲面工具在3D 创作者中广受欢迎。
细分曲面是一种用于创建复杂形状和结构的曲面建模技术,通过细分参数的设置,可以控制曲面的细节和光滑度。
下面是对C4D细分曲面的参数的一些基本介绍:1. 细分曲面等级(Subdivision Level):这是细分曲面的基本参数之一。
等级越高,表示细分的级别越多,曲面的细节和光滑度就越高。
但是,等级过高可能会导致性能下降,因此需要根据计算机的性能和渲染时间进行适当的调整。
2. 细分曲面迭代(Subdivision Iteration):这个参数决定了细分曲面算法在创建新细节时的迭代次数。
迭代次数越多,创建的新细节就越多,但同时也会增加渲染时间。
3. 噪点(Noise):噪点是影响细分曲面光滑度的参数之一。
通过调整噪点值,可以在一定程度上增加曲面的细节,但同时也会降低光滑度。
4. 优化(Optimization):优化参数用于控制细分曲面的平滑度和速度之间的平衡。
优化等级越高,曲面的平滑度越高,但渲染时间也会增加。
5. 细节平滑(Detail Smoothing):这个参数可以控制曲面的细节在放大时是否变得模糊。
如果设置为高或极高,那么在放大观察模型时,细分曲面的细节将更加平滑。
6. 三角面(Tri Count):这个参数用于控制细分曲面的三角面数量。
三角面是构成3D模型的基本单元,三角面数量越多,模型的细节和真实性就越高,但同时也会增加渲染时间。
7. 细分曲面类型(Subdivision Surface Type):细分曲面类型决定了细分曲面的表现形式。
常见的类型包括平滑、周期性和噪波等,可以根据需要选择合适的类型。
在使用C4D细分曲面时,可以根据具体需求和计算机性能来调整上述参数。
一般来说,可以先尝试较低的等级和优化等级,逐步提高这些参数的值,以获得最佳的建模效果和性能表现。
同时,需要注意观察渲染时间和模型的质量之间的平衡,以确定最终的设置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六、Bezier曲面基于Bezier曲线的讨论,我们可以方便地可以给出Bezier曲面的定义和性质,Bezier 曲线的一些算法也可以很容易扩展到Bezier曲面的情况。
1.定义设为个空间点列,则次张量积形式的Bezier曲面定义为:其中,是Bernstein基函数。
依次用线段连接点列中相邻两点所形成的空间网格,称之为特征网格。
Bezier曲面的矩阵表示式是:在一般实际应用中,不大于4。
2.性质除变差减小性质外,Bezier曲线的其它性质可推广到Bezier曲面:(1)Bezier曲面特征网格的四个角点正好是Bezier曲面的四个角点,即,,,。
(2)Bezier曲面特征网格最外一圈顶点定义Bezier曲面的四条边界;Bezier曲面边界的跨界切矢只与定义该边界的顶点及相邻一排顶点有关,且P00P10P01、、和(图打上斜线的三角形);其跨界二阶导矢只与定义该边界的顶点及相邻两排顶点有关。
(3)几何不变性。
(4)对称性。
(5)凸包性。
3.Bezier曲面片的拼接如图所示,设两张m×n次Bezier曲面片分别由控制顶点和定义。
如果要求两曲面片达到连续,则它们有公共的边界,即:于是有。
如果又要求沿该公共边界达到连续,则两曲面片在该边界上有公共的切平面,因此曲面的法向应当是跨界连续的,即:下面来研究满足这个方程的两种方法。
(1)鉴于式,最简单的取解是:这相当于要求合成曲面上v 为常数的所有曲线,在跨界时有切向的连续性。
为了保证等式两边关于v 的多项式次数相同,必须取(一个正常数)。
于是有:即。
(2)方法一使得两张曲面片在边界达到连续时,只涉及曲面和的两列控制顶点,比较容易控制。
用这种方法匹配合成的曲面的边界,u 向和v 向是光滑连续的。
但实际上它的限制是苛刻的。
为了构造合成曲面时有更大的灵活性,Bezier 在1972年应用了更具普遍性的连续条件:这仅仅要求位于和所在的同一个平面内,也就是曲面片边界上相应点处的切平面,这样就有了大得多的余地,但跨界切矢在跨越曲面片的边界时就不再连续了。
同样,为了保证等式两边关于v 的多项式次数相同,须为任意正常数,是v 的任意线性函数。
4.Bezier 曲面的de Casteljau 生成算法Bezier 曲线的递推(de Casteljau)算法,可以推广到Bezier 曲面的情形。
若给定Bezier 曲面特征网格的控制顶点和一对参数值(u0,v0),则递推公式为:⎪⎩⎪⎨⎧==+-==+-===-+--+-),,2,1,()1()0;,,2,1()1()0(1,1,01,,00,1,10,1,,n l m k vP P v l m k uP P u l k P P l m j l m j k ji k ij ij lk ji或上面给出了确定Bezier 曲面上一点的两种方案。
当按第一种方案执行时,先以u 参数值对控制网格u 向的n+1个多边形执行曲线de Casteljau 算法,m 级递推后,得到沿v 向由n+1个顶点 构成的中间多边形。
再以v 参数值对它执行曲线的de Casteljau 算法,n 级递推以后,得到一个 ,即所求曲面上的点 。
也可以按第二式方案执行,先以v 参数值对控制网格沿v 向的m+1个多边形执行n 级递推,得沿u 向由m+1个顶点构成的中间多边形。
再以u 参数值对它执行n 级递推,得所求点 。
七、 B 样条曲面 1.定义基于B 样条曲线的定义和性质,可以得到B 样条曲面的定义。
给定)()(11+⨯+n m 个空间点列n ,,,j m;,,,i ,, 1010==j i P ,则)()(),(0,,0,∑∑===mi lj k i nj ji w Nu N w u PS 定义了l k ⨯次B 样条曲面, )(,u N k i 和)(,w N lj 是k 次和l 次的B 样条基函数,u 和w 为B样条基函数)(,u N k i 和)(,w Nlj 的节点参数,由j i ,P 组成的空间网格称为B 样条曲面的特征网格。
上式也可以写成如下的矩阵形式:[][]k n s k m r w u TlTl kl k k s r -+∈-+∈=2,1,2,1),(,W M P M U S上式中r ,s 分别表示在u ,w 参数方向上曲面片的个数。
[][][][]21 21 112121-+-∈-+-∈===----l s s j k r r i w wwu uuj i kl l l l k k k ,,,][,,...,,,,,...,,,P P W Ukl P 是某一个B 样条曲面片的控制点编号。
⎪⎩⎪⎨⎧==+-==+-===-+--+-);,,2,1()1(),,2,1;0()1()0(,10,1,101,01,1,0,n l m k uP P u n l k vP P v l k P P n k i n k i l j i l ij ij l k ij ),,1,0(00n j P m j=),(v u P mnP 00),,1,0(00m i P ni =mn P002.均匀双二次B 样条曲面已知曲面的控制点),,,(,210=j i j i P ,参数w u ,,且[]10,,∈w u ,2==l k ,构造步骤是:a 、沿w 向构造均匀二次B 样条曲线,即有:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=02010002010020 011022-121 1P P P WM P P P P www )( 经转置后:[]TTB w W M P P P P 0201000=)(同上可得:[]TTB w WM P P P P 1211101=)(,[]TTB w WM P P P P 2221202=)(。
b 、再沿u 向构造均匀二次B 样条曲线,即可得到均匀二次B 样条曲面: TT B B B w w w w u W M P P P P P P P P P UMP P P UM S ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=222120121110020100210)()()(),(简记为:TTB B w u WPM UM S =),(。
3.均匀双三次B 样条曲面已知曲面的控制点),,,,(,3210=j i j i P ,参数w u ,,且[]10,,∈w u ,3==l k ,构造双三次B 样条曲面的步骤同上述。
a 、沿w 向构造均匀三次B 样条曲线,有:[]TTB w WM P P P P P 030201000=)(,[]TTB w WM P P P P P 131211101=)(,[]TTB w WM P P P P P 232221202=)(,[]TTB w WM P P P P P 333231303=)(b 、再沿u 向构造均匀三次B 样条曲线,此时可认为顶点沿滑动,每组顶点对应相同的,当值由0到1连续变化,即形成均匀双三次B 样条曲面。
此时表达式为:TT B BB w w w w w u WPM UM P P P P UM S =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)()()()(),(3210,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=33323130232221201312111003020100P P P P P P P P P P P P P P P P P , ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=014103030363133161BM八、 NURBS 曲面由双参数变量分段有理多项式定义的NURBS 曲面是:∑∑∑∑====ωω=m i n j ji mi nj j i ji d p 000)()()()()(v N u N v N u N v u,l j,k i,,l j,k i,,,这里控制顶点n ,,,j m;,,,i ,, 1010==j i d 呈拓扑矩形阵列,形成一个控制网格。
ji ,ω是与顶点j i d ,联系的权因子,规定四角顶点处用正权因子即0,,,,,00,0,0>n m n m ωωωω,其余0≥j i ,ω;m ,,,,u N k i, 10)(和n ,,,,v Nlj, 10)(分别为u 向k 次和v 向l 次的规范B 样条基。
它们分别由u 向与v 向的节点矢量[][]11++++==l n k m V U v ,,v ,v u ,,u ,u 1010 与决定。