数学直觉思维及培养论文

合集下载

高中数学解题直觉思维的培养途径研究

高中数学解题直觉思维的培养途径研究

高中数学解题直觉思维的培养途径研究【摘要】本文研究了高中数学解题直觉思维的培养途径。

在介绍了研究背景、研究意义和研究目的。

在重点讨论了直觉思维在高中数学解题中的重要性、培养直觉思维的方法、实践案例分析、直觉思维与数学解题能力之间的关系,以及案例分析。

结论部分总结了直觉思维对高中数学解题的促进作用,并展望了未来研究方向。

通过本文的研究,有助于指导高中生合理培养直觉思维,提升数学解题能力,为数学教育提供新的思路和方法。

【关键词】高中数学,直觉思维,解题,培养途径,研究背景,研究意义,研究目的,重要性,方法,实践案例分析,关系,促进作用,总结,展望。

1. 引言1.1 研究背景高中数学解题直觉思维的培养途径研究是当前数学教育领域的一个热点问题。

随着社会的进步和科技的发展,高中数学已经成为普及教育的重点科目,学生对数学的学习和应用需求也日益增加。

传统的数学教学模式往往注重概念和定理的灌输,忽视了学生对数学问题的直觉思维能力的培养。

这种情况导致了很多学生在解题过程中缺乏灵活性和创造性,无法灵活运用所学知识解决实际问题。

研究如何培养高中学生的直觉思维能力,提高他们在数学解题中的应变能力对于促进学生全面发展和提高数学教学质量具有重要意义。

通过深入探讨直觉思维在高中数学解题中的作用,探讨有效的培养直觉思维能力的方法,以及通过实践案例分析和探讨直觉思维与数学解题能力之间的关系来促进高中数学教育的改革和发展。

这也是本研究的背景和动机所在。

部分为200字。

1.2 研究意义高中数学解题直觉思维的培养是一项具有重要意义的研究。

直觉思维在数学解题中起着至关重要的作用,它能够帮助学生快速准确地抓住问题的本质,找到解题的关键点,从而提高解题的效率和准确性。

培养高中学生的直觉思维能力有助于他们在面对复杂问题时能够快速做出正确的决策和判断,提高解题的能力和水平。

通过研究直觉思维在高中数学解题中的应用,可以为教育教学改革提供借鉴和参考,推动数学教育的发展和提高学生的数学学习兴趣和能力。

在高中数学教学中培养学生直觉思维能力论文

在高中数学教学中培养学生直觉思维能力论文

在高中数学教学中培养学生的直觉思维能力创新素质的核心是创新思维的培养,而直觉思维是创新思维的一种重要表现形式。

培养直觉思维能力规律是社会发展的需要,是适应新时期社会对人才的需求。

1、数学直觉思维数学直觉思维是一种直接反映数学对象结构关系的心智活动形式,它往往构成思维与对象之间的直接联系,并以直接推断(如:洞察、预见或合理猜想等形式)来把握对新关系的本质。

数学直觉思维基于对数学领域的知识及其结构的了解,才能以新的飞跃、迅速越级和放过个别细节的方式进行。

高度的直觉来源于丰富的学识和经验。

数学直觉思维与分析思维最大的区别是潜逻辑性和无意识性。

它往往产生于经验、观察、归纳、类比和联想的基础之上,有时以心理学上的“顿悟”形式出现,实际上是认识过程的一种飞跃形式。

2、数学学习中高中生的直觉思维能力现状数学直觉思维是基于对该领域的基础知识及其结构的了解,并以此为台阶超越基础知识和放过细节知识的方式进行直觉思维。

高度的直觉来源于丰富的知识和经验,它并不是个别天才所特有的,而是一种基本的思维方式。

同时,学生的数学思维、判断能力的高低主要取决于直觉思维能力的高低。

正如徐利治教授所说,数学直觉是可以后天培养的,实际上每个人的数学直觉也是不断提高的。

数学直觉是可以通过训练提高的。

因此,要鼓励学生用直觉思维去猜想,去寻找解决问题的思路。

抓学生的双基落实,强化学生的知识性知识,使学生形成高度熟练、适应性和综合性强的能力体系,是培养学生直觉思维能力的必要准备。

影响数学直觉思维的主要因素:课程改革引起了教学观念的更新、教学方式的变革,注重学生的创新意识和探究精神的培养更是“情感目标”的一种升华,直觉思维对培养学生的创新意识和探究精神具有重要的意义。

影响直觉思维形成与发展的因素主要是认知结构、经验与教训;数学的直觉思维是在已有的知识素材基础上产生的,知识基础的稳固性,影响着数学直觉思维认识的可靠性;知识基础的“宽度”,影响数学直觉思维的思想跨度。

数学思维论文(5篇)

数学思维论文(5篇)

数学思维论文(5篇)数学思维论文(5篇)数学思维论文范文第1篇一、数学直觉概念的界定简洁的说,数学直觉是具有意识的人脑对数学对象(结构及其关系)的某种直接的领悟和洞察。

对于直觉作以下说明:(1)直觉与直观、直感的区分直观与直感都是以真实的事物为对象,通过各种感觉器官直接获得的感觉或感知。

例如等腰三角形的两个底角相等,两个角相等的三角形是等腰三角形等概念、性质的界定并没有一个严格的证明,只是一种直观形象的感知。

而直觉的讨论对象则是抽象的数学结构及其关系。

庞加莱说:"直觉不必建立在感觉明白之上.感觉不久便会变的无能为力。

例如,我们仍无法想象千角形,但我们能够通过直觉一般地思索多角形,多角形把千角形作为一个特例包括进来。

"由此可见直觉是一种深层次的心理活动,没有详细的直观形象和可操作的规律挨次作思索的背景。

正如迪瓦多内所说:"这些富有制造性的科学家与众不同的地方,在于他们对讨论的对象有一个活全生的构想和深刻的了解,这些构想和了解结合起来,就是所谓''''直觉''''……,由于它适用的对象,一般说来,在我们的感官世界中是看不见的。

"(2)直觉与规律的关系从思维方式上来看,思维可以分为规律思维和直觉思维。

长期以来人们刻意的把两者分别开来,其实这是一种误会,规律思维与直觉思维从来就不是割离的。

有一种观点认为规律重于演绎,而直观重于分析,从侧重角度来看,此话不无道理,但侧重并不等于完全,数学规律中是否会有直觉成分?数学直觉是否具有规律性?比如在日常生活中有很多说不清道不明的东西,人们对各种大事作出推断与猜想离不开直觉,甚至可以说直觉无时无刻不在起作用。

数学也是对客观世界的反映,它是人们对生活现象与世界运行的秩序直觉的体现,再以数学的形式将思索的理性过程格式化。

数学最初的概念都是基于直觉,数学在肯定程度上就是在问题解决中得到进展的,问题解决也离不开直觉,下面我们就以数学问题的证明为例,来考察直觉在证明过程中所起的作用。

论数学教学中学生直觉思维培养论文

论数学教学中学生直觉思维培养论文

论数学教学中学生直觉思维的培养【摘要】本文主要阐述了本人对数学直觉思维的认识,以及培养数学直觉思维的重要性、必要性及局限性,进一步阐述了如何培养的问题。

【关键词】直觉思维逻辑思维创新猜想数型结合在新课程标准下,明确提出发展学生的数感、符号感,反映人们在教育的实现了认识上的转变,在注重逻辑思维能力培养的同时,还应该注重观察力、直觉力、想象力的培养,特别是直觉思维能力的培养。

由于长期得不到重视,学生在学习的过程中对数学的本质容易造成误解,认为数学是枯燥乏味的,同时对数学的学习也缺乏取得成功的必要信心,从而丧失数学学习的兴趣,过多的注重逻辑培养直觉思维能力是社会发展的需要,是适应新时期社会对人才的需求。

一、对数学直觉思维的认识直觉,作为人类普遍的心理现象,存在于科学技术、文化艺术、社会政治等各个领域,包括思维、情感、意志等多方面的活动。

我国著名科学家钱学森认为:“直觉是一种人们没有意识到的对信息的加工活动,是在潜意识中酝酿问题然后与显意识突然沟通,于是一下子得到了问题的答案。

”美国教育家布鲁纳说:“直觉是指没有明显地依靠个人技巧的分析器官掌握问题或情境的意义、重要性或结构的行为。

”英国著名病理学家贝费里奇认为:“直觉是指对情况的一种突如其来的顿悟或理解。

”爱因斯坦认为直觉是科学家真正可贵的因素,庞加莱指出:“逻辑是证明的工具,直觉是发明的工具.”直觉思维是一种客观存在的思维形式,它具体表现为思维主体在解决问题时,运用已有的经验和知识,对问题从总体上直接加以认识把握,以一种高度省略、简化、浓缩的方式洞察问题的实质,并迅速解决问题或对问题作出某种猜测。

大量的科学史实证明,在科学认识活动中,科学家常常依靠直觉进行辨别、选择,找到解决问题的正确道路或最佳方案;也常常凭借直觉启迪思路,发现新的概念、新的方法和新的思想,建立新的科学理论体系。

二、直觉思维的培养教师尤其是数学教师在教学中常见到这样的情况,在课堂上题目刚刚写完,老师还来不及解释题意,有的学生立刻报出了答案,这样的学生有的数学基础甚差,有时却能直觉判断出结果,若要问他为什么?他则回答说:“我想就是这样的。

浅谈初中数学直觉思维培养

浅谈初中数学直觉思维培养

浅谈初中数学直觉思维培养数学是一门抽象的学科,对于很多初中生来说,经常会觉得数学难以理解,难以掌握。

在学习数学的过程中,拥有良好的直觉思维能力是非常重要的。

直觉思维能够帮助学生更好地理解问题,找到解题方法,提高数学解题的效率。

那么,如何培养初中生的数学直觉思维?本文将对此进行探讨。

一、培养数学直觉思维的必要性数学直觉思维是指在解决数学问题时,依靠直觉和经验,迅速准确地做出判断和推理的思维能力。

具备良好的数学直觉思维可以帮助学生在解题时更加得心应手,轻松驾驭各种数学题目。

而且,数学直觉思维也有助于培养学生的逻辑思维和创造性思维,对于学生的综合素质提升也具有非常积极的意义。

在现实生活中,许多看似复杂的数学问题其实都可以依靠数学直觉思维轻松解决。

在购物时计算打折后的价格、在做菜时计算食材的份量等等,都会用到数学直觉思维。

培养数学直觉思维不仅在学习中有用,在日常生活中也能派上大用场。

培养初中生的数学直觉思维是非常必要的。

1. 注重基础要想培养学生的数学直觉思维,首先要注重数学基础的打好。

数学基础是培养数学直觉思维的基石,只有掌握了数学的基本概念和基本原理,才能在解题时迅速做出判断和推理。

教师要在教学中注重数学基础的巩固和学生对基础知识的理解。

只有打好了数学基础,学生才能更加自信地运用数学知识,培养出良好的数学直觉思维。

2. 注重实践数学直觉思维的培养离不开实践。

教师可以通过设计生动有趣的数学问题,引导学生运用直觉思维去解决问题。

通过实际操作和实践练习,学生可以更好地理解抽象的数学知识,从而培养出数学直觉思维。

3. 注重启发启发式教学是培养学生数学直觉思维的有效方法。

教师在教学中可以采用启发式的教学方法,引导学生自主探索,启发学生的思维。

通过让学生自主思考、自主发现,激发学生的求知欲和学习兴趣,培养学生的数学直觉思维。

启发式教学能够让学生更好地理解数学知识,培养学生的逻辑思维和创造性思维。

通过启发式教学,学生可以更加自主地解决问题,提高解决问题的能力,培养出良好的数学直觉思维。

新课程初中数学直觉思维培养实践论文

新课程初中数学直觉思维培养实践论文

新课程初中数学直觉思维培养的研究与实践摘要数学课堂教学中对学生直觉思维的培养,需要教师以新课程教学理论为指导,充分协调教学中的各种因素,创设民主氛围,采取教学技法,激活思维能力,弘扬学生个性。

本文针对初中学生的思维水平,对如何培养学生直觉思维的策略进行研究探讨,进一步提高教师的教学效率,提高学生的学习效果。

关键词初中数学思维直觉思维直观培养在初中数学课堂中,教师总喜欢用“跟着感觉走”这句话,事实上这句话在教学理论上就是学生的“直觉思维”,只是教师在教学中还未将其上升为教学理论观点。

初中数学的教学,教师应将学生的直觉思维“摆放”在课堂上,并制定具体的培养直觉思维的方法策略,重视培养学生的直觉思维。

一、直觉思维的含义直觉思维指的是人们对事物的整体及本质直接领悟的思维活动,主要表现为对事物及事物之间关系的敏锐、迅速的识别和整体上的把握,是一种非逻辑的思维形式。

比如说足球员一瞬间把握全球场的情况,将球踢进球门,这就是直觉思维的表现。

在数学教学中,有时会出现这种情况:教师刚刚将题目写在黑板上还没有进行任何讲解,就有学生马上说出答案,这个学生的成绩并不一定优秀,但是凭着自己的直觉就可以知道正确答案,老师接着问你怎么知道答案的,他可能会回答是“我想就是这个结果吧”,有学生会笑他是蒙对的,但这就是学生直觉思维的表现。

灵感现象就是直觉思维的结果。

二、初中生直觉思维的发展特点数学是一个逻辑严密性强的学科,然而直觉思维却属于非逻辑思维一种形式,看似矛盾,它们之间却有着某种联系。

(一)偶然性数学中的直觉思维是一种潜意识的思维活动,不是自觉、有意识的思维活动,灵感就是直觉思维的一种表现,使学生在偶然的情况下得到的启发,比如说牛顿如何发现地球引力这一个小故事,当获得一个信息的启发就会很快意识到解决问题的方法。

(二)简约性数学的直觉思维过程是对整体的把握,舍弃部分、细节,通过想象和猜测,有时直接从已知条件到达解决问题结果上,中间的细节是模糊的,对整体的确定和对细节的不确定性是直觉思维的一个特点。

直觉思维在数学教学应用论文

直觉思维在数学教学应用论文

直觉思维在数学教学中的应用数学思维按照思维过程中是否遵循一定的逻辑规则可划分为分析思维和直觉思维。

分析思维,就是逻辑思维,它主要是以逻辑规则对事物按部就班地认识,对其过程主体有清晰的意识。

在中学数学中,由于数学知识的严谨性,抽象性和系统性,常常掩盖了直觉思维的存在和作用,因而在目前教学中往往偏重于演绎推理的训练,过分强调形式论证的严密逻辑性,而忽视了直觉思维的突发性理解与顿悟作用。

在新课程标准深入课堂的今天,加强学生直觉思维能力的培养是非常有必要的。

本文拟从以下三个方面谈谈个人的看法。

一、数学直觉思维的涵义及其特性数学直觉思维是人脑对教学对象,结构以及关系的敏锐的想象和迅速的判断。

所谓判断就是人脑对于数学对象及其规律性关系的迅速认识、直接的理解、综合的判断,也就是数学的洞察力,有时也称为数学直觉判断。

根据数学直觉思维的涵义,它具有下列特性:(1)直接性。

数学直觉思维是直接反映数学对象、结构以及关系的思维活动,这种思维活动表现为对认识对象的直接领悟或洞察,这是数学直觉思维的本质属性。

(2)或然性。

由于数学直觉思维是一种跳跃的思维,是在逻辑依据不充分的前提下做出判断,因而直觉思维的结果可能正确,也可能不正确,这一特性称为数学直觉思维的或然性。

(3)不可解释性。

由于直觉思维是在一刹那时间内完成的,许多中间环节被略去了,思维者对其过程没有清晰的意识,所以要对它的过程进行分析研究和追忆,往往是十分困难的,只有当得出结果并转换成逻辑语言时才能为别人所理解。

逻辑思维在数学中虽然据着主导的地位,但直觉思维是思维中最活跃,最积极,最具有创造性的成分。

逻辑思维与直觉思维形成了辨证的互补关系。

直觉思维为逻辑思维提供了动力并指引方向,而逻辑思维则对直觉思维做出检验与反馈,是直觉思维的深入和精化。

二、数学直觉思维的重要地位和作用(一)数学直觉思维是学习数学与创造数学必不可少的思维形式彭加勒认为:“逻辑是证明的工具,直觉是发现的工具”,“没有直觉,数学家只能按语法书写而毫无思想”。

学生数学直觉思维的培养的论文

学生数学直觉思维的培养的论文

学生数学直觉思维的培养的论文学生数学直觉思维的培养的论文思维能力是培养学生的三大能力之一,它要求我们在教学中不仅要注重学生逻辑思维能力的培养,还应该注重观察力、直觉力、想象力的培养。

特别是直觉思维能力的培养由于长期得不到重视,学生在学习的过程中对数学的本质容易造成误解,认为数学是枯燥乏味的;同时对数学的学习也缺乏取得成功的必要信心,从而丧失对数学学习的兴趣。

过多的注重逻辑思维能力的培养,不利于思维能力的整发发展。

培养直觉思维能力是社会发展的需要,是适应新时期社会对人才的需求。

一、数学直觉概念的界定简单的说,数学直觉是具有意识的人脑对数学对象(结构及其关系)的某种直接的领悟和洞察。

一个数学证明可以分解为许多基本运算或许多“演绎推理元素”,一个成功的数学证明是这些基本运算或“演绎推理元素”的一个成功组合,仿佛是一条从出发点到目的地的通道,一个个基本运算和“演绎推理元素”就是这条通道的一个个路段。

当一个成功的证明摆在我们面前,逻辑可以帮助我们确信沿着这条路必定能顺利地到达目的地,但是逻辑却不能告诉我们,为什么这些路径的选取与这样的组合可以构成一条通道。

事实上,出发不久就会遇上分叉路口,也就是遇上了正确选择构成通道的路段的问题。

庞加莱认为,即使能复写出一个成功的数学证明,但不知道是什么东西造成了证明的一致性,这些元素安置的顺序比元素本身更加重要。

二、直觉思维的主要特点1.简约性直觉思维是对思维对象从整体上考查,调动自己的全部知识经验,通过丰富的想象做出敏锐而迅速的假设、猜想或判断。

它简省了分析推理的步骤,采取了“跳跃式”的形式。

它是一瞬间的思维火花,是思维长期积累的一种升华,是思维者的灵感和顿悟,是思维过程的高度简化,但它却能清晰地触及事物的“本质”。

2.创造性现代社会需要大批创造性人才,直觉思维是基于研究对象整体上的把握,不专注于细节上的推敲,是思维的大手笔。

正是由于思维的无意识性,它的想象才是丰富的、发散的,它使人的认识能力向外无限扩展,因而具有反常规的独创性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探析数学直觉思维及培养
摘要:一个人的数学思维,判断能力的高低主要取决于直觉思维能力的高低,数学直觉是可以后天培养的,实际上每个人的数学直觉也是不断提高的,数学直觉是可以通过训练提高的。

关键词:直觉直观直感
中学数学教学在注重逻辑思维能力培养的同时,还应该注重观察力、直觉力、想象力的培养。

特别是直觉思维能力的培养由于长期得不到重视,学生在学习的过程中对数学的本质容易造成误解,认为数学是枯燥乏味的;同时对数学的学习也缺乏取得成功的必要的信心,从而丧失数学学习的兴趣。

过多的注重逻辑思维能力的培养,不利于思维能力的整体发展。

培养直觉思维能力是社会发展的需要,是适应新时期社会对人才的需求。

一、数学直觉概念的界定
简单的说,数学直觉是具有意识的人脑对数学对象(结构及其关系)的某种直接的领悟和洞察。

对于直觉作以下说明:
(1)直觉与直观、直感的区别
直观与直感都是以真实的事物为对象,通过各种感觉器官直接获得的感觉或感知。

例如等腰三角形的两个底角相等,两个角相等的三角形是等腰三角形等概念、性质的界定并没有一个严格的证明,只是一种直观形象的感知。

而直觉的研究对象则是抽象的数学结构及其关系。

庞加莱说:“直觉不必建立在感觉明白之上,感觉
不久便会变的无能为力”。

(2)直觉与逻辑的关系
从思维方式上来看,思维可以分为逻辑思维和直觉思维。

长期以来人们刻意的把两者分离开来,其实这是一种误解,逻辑思维与直觉思维从来就不是隔离的。

有一种观点认为逻辑重于演绎,而直观重于分析,从侧重角度来看,此话不无道理,但侧重并不等于完全,数学逻辑中是否会有直觉成分?数学直觉是否具有逻辑性?比如在日常生活中有许多说不清道不明的东西,人们对各种事件作出判断与猜想离不开直觉,甚至可以说直觉无时无刻不在起作用。

数学也是对客观世界的反映,它是人们对生活现象与世界运行的秩序直觉的体现,再以数学的形式将思考的理性过程格式化。

数学最初的概念都是基于直觉,数学在一定程度上就是在问题解决中得到发展的,问题解决也离不开直觉。

二、直觉思维的主要特点
直觉思维具有自由性、灵活性、自发性、偶然性、不可靠性等特点。

从培养直觉思维的必要性来看,笔者以为直觉思维有以下三个主要特点:
(1)简约性
直觉思维是对思维对象从整体上考察,调动自己的全部知识经验,通过丰富的想象作出的敏锐而迅速的假设,猜想或判断,它省去了一步一步分析推理的中间环节,而采取了“跳跃式”的形式。

它是一瞬间的思维火花,是长期积累上的一种升华,是思维者的灵
感和顿悟,是思维过程的高度简化,但是它却清晰的触及到事物的“本质”。

(2)创造性
现代社会需要创造性的人才,我国的教材由于长期以来借鉴国外的经验,过多的注重培养逻辑思维,培养的人才大多数习惯于按部就班、墨守成规,缺乏创造能力和开拓精神。

直觉思维是基于研究对象整体上的把握,不专意于细节的推敲,是思维的大手笔。

正是由于思维的无意识性,它的想象才是丰富的,发散的,使人的认知结构向外无限扩展,因而具有反常规律的独创性。

(3)自信力
学生对数学产生兴趣的原因有两种,一种是教师的人格魅力,其二是来自数学本身的魅力。

不可否认情感的重要作用,但兴趣更多来自数学本身。

成功可以培养一个人的自信,直觉发现伴随着很强的“自信心”。

相比其它的物资奖励和情感激励,这种自信更稳定、更持久。

当一个问题不用通过逻辑证明的形式而是通过自己的直觉获得,那么成功带给他的震撼是巨大的,内心将会产生一种强大的学习钻研动力,从而更加相信自己的能力。

三、直觉思维的培养
一个人的数学思维,判断能力的高低主要取决于直觉思维能力的高低,数学直觉是可以后天培养的,实际上每个人的数学直觉也是不断提高的,数学直觉是可以通过训练提高的。

(1)扎实的基础是产生直觉的源泉
直觉不是靠“机遇”,直觉的获得虽然具有偶然性,但决不是无缘无故的凭空臆想,而是以扎实的知识为基础。

若没有深厚的功底,是不会迸发出思维的火花的。

(2)渗透数学的哲学观点及审美观念
直觉的产生是基于对研究对象整体的把握,而哲学观点有利于高屋建邻的把握事物的本质。

这些哲学观点包括数学中普遍存在的对立统一、运动变化、相互转化、对称性等。

(3)重视解题教学
教学中选择适当的题目类型,有利于培养,考察学生的直觉思维。

例如选择题,由于只要求从四个选择支中挑选出来,省略解题过程,容许合理的猜想,有利于直觉思维的发展。

实施开放性问题教学,也是培养直觉思维的有效方法。

(4)设置直觉思维的意境和动机诱导
这就要求教师转变教学观念,把主动权还给学生。

对于学生的大胆设想给予充分肯定,对其合理成分及时给予鼓励,爱护、扶植学生的自发性直觉思维,以免挫伤学生直觉思维的积极性和学生直觉思维的悟性。

教师应及时因势利导,解除学生心中的疑惑,使学生对自己的直觉产生成功的喜悦感。

“跟着感觉走”是教师经常讲的一句话,其实这句话里已蕴涵着直觉思维的萌芽,只不过没有把它上升为一种思维观念。

教师应该把直觉思维冠冕堂皇的在课堂教学中明确的提出,制定相应的活
动策略,从整体上分析问题的特征;重视数学思维方法的教学,诸如:换元、数形结合、归纳猜想、反证法等,对渗透直觉观念与思维能力的发展大有裨益。

直觉思维与逻辑思维同等重要,偏离任何一方都会制约一个人思维能力的发展,伊思,斯图尔特曾经说过这样一句话,“数学的全部力量就在于直觉和严格性巧妙的结合在一起,受控制的精神和富有灵感的逻辑。

”受控制的精神和富有美感的逻辑正是数学的魅力所在,也是数学教育者努力的方向。

相关文档
最新文档