高中数学的化归思想
高中数学 转化与化归思想

第四讲转化与化归思想知识整合一、转化与化归思想的含义转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法,一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.二、转化与化归的常见方法1.直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.2.换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.3.数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.4.等价转化法:把原问题转化为一个易于解决的等价问题,以达到化归的目的.5.特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题的结论适合原问题.6.构造法:构造一个合适的数学模型,把问题变为易于解决的问题.7.坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径.8.类比法:运用类比推理,猜测问题的结论,易于探求.9.参数法:引进参数,使原问题转化为熟悉的问题进行解决.10.补集法:如果正面解决原问题有困难,可把原问题的结果看作集合A,而把包含该问题的整体问题的结果类比为全集U,通过解决全集U及补集∁U A使原问题获得解决,体现了正难则反的原则.1.特殊与一般的转化典题例析例1(1)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等差数列,则cos A+cos C1+cos A cos C=45.[思路探究]看到a,b,c成等差数列,可联想到等边三角形举特例求解.[解析]显然△ABC为等边三角形时符合题设条件,所以cos A+cos C1+cos A cos C=cos60°+cos60°1+cos60°cos60°=11+14=45.(2)已知f (x )=33x +3,则f (-2 019)+f (-2 018)+…+f (0)+f (1)+…+f (2 020)=__2_020__.[思路探究] 看到求f (-2 019)+f (-2 018)+…+f (0)+f (1)+…+f (2 020)的值,想到求f (x )+f (1-x )的值.[解析] f (x )+f (1-x )=33x +3+331-x +3=33x +3+3x3+3x =3x +33x +3=1,所以f (0)+f (1)=1,f (-2 019)+f (2 020)=1,所以f (-2 019)+f (-2 018)+…+f (0)+f (1)+…+f (2 020)=2 020. 规律总结化一般为特殊的应用(1)常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等. (2)对于选择题,当题设在普通条件下都成立时,用特殊值进行探求,可快捷地得到答案.(3)对于填空题,当填空题的结论唯一或题设条件提供的信息暗示答案是一个定值时,可以把题中变化的量用特殊值代替,即可得到答案.1.AB 是过抛物线x 2=4y 的焦点的动弦,直线l 1,l 2是抛物线两条分别切于A ,B 的切线,则l 1,l 2的交点的坐标为__(0,-1)__.[解析] 找特殊情况,当AB ⊥y 轴时,AB 的方程为y =1,则A (-2,1),B (2,1),过点A 的切线方程为y -1=-(x +2),即x +y +1=0.同理,过点B 的切线方程为x -y -1=0,则l 1,l 2的交点为(0,-1).2.在平行四边形ABCD 中,|AB →|=12,|AD →|=8.若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →=( C )A .20B .15C .36D .6[解析] 方法一:由BM →=3MC →,DN →=2NC →知,点M 是BC 的一个四等分点,且BM =34BC ,点N 是DC 的一个三等分点,且DN =23DC ,所以AM →=AB →+34AD →,AN →=AD →+DN →=AD→+23AB →,所以NM →=AM →-AN →=AB →+34AD →-(AD →+23AB →)=13AB →-14AD →,所以AM →·NM →=(AB →+34AD →)·(13AB →-14AD →)=13(AB →+34AD →)·(AB →-34AD →)=13(AB →2-916AD →2)=13(144-916×64)=36,故选C.方法二:不妨设∠DAB 为直角,以AB 所在直线为x 轴,AD 所在直线为y 轴建立如图所示的平面直角坐标系.则M (12,6),N (8,8),所以AM →=(12,6),NM →=(4,-2),所以AM →·NM →=12×4+6×(-2)=36,故选C.2.函数、方程、不等式之间的转化 典题例析例2 (1)已知e 为自然对数的底数,若对任意的x ∈[1e ,1],总存在唯一的y ∈[-1,1],使得ln x -x +1+a =y 2e y 成立,则实数a 的取值范围是( B )A .[1e ,e]B .(2e ,e]C .(2e,+∞)D .(2e ,e +1e)[解析] 设f (x )=ln x -x +1+a ,当x ∈[1e ,1]时,f ′(x )=1-x x ≥0,f (x )是增函数,所以x ∈[1e ,1]时,f (x )∈[a -1e ,a ].设g (y )=y 2e y ,则g ′(y )=e y y (y +2),则g (y )在[-1,0)单调递减,在[0,1]单调递增,且g (-1)=1e <g (1)=e.因为对任意的x ∈[1e ,1],存在唯一的y ∈[-1,1],使得f (x )=g (y )成立,所以[a -1e ,a ]⊆[1e ,e],∴2e<a ≤e ,故选B.(2)(文)(2019·沈阳模拟)已知函数f (x )=x +4x ,g (x )=2x +a ,若对∀x 1∈[12,3],∃x 2∈[2,3]使得f (x 1)≥g (x 2),则实数a 的取值范围是( C )A .(-∞,1]B .[1,+∞)C .(-∞,0]D .[0,+∞)[解析] 当x ∈[12,3]时,f (x )≥2x ·4x=4,当且仅当x =2时等号成立,此时f (x )min =4.当x ∈[2,3]时,g (x )min =22+a =4+a .依题意f (x )min ≥g (x )min ,∴a ≤0.选C.(理)(2019·济南调研)已知m ,n ∈(2,e),且1n 2-1m 2<ln mn ,则( A )A .m >nB .m <nC .m >2+1nD .m ,n 的大小关系不确定[解析] 由不等式可得1n 2-1m 2<ln m -ln n ,即1n 2+ln n <1m 2+ln m .设f (x )=1x 2+ln x (x ∈(2,e)),则f ′(x )=-2x 3+1x =x 2-2x3.因为x ∈(2,e),所以f ′(x )>0,故函数f (x )在(2,e)上单调递增.因为f (n )<f (m ),所以n <m .故选A . 规律总结函数、方程与不等式相互转化的应用1.函数与方程、不等式联系密切,解决方程、不等式的问题需要函数帮助. 2.解决函数的问题需要方程、不等式的帮助,因此借助于函数与方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等式关系转化为最值(值域)问题,从而求出参变量的范围.1.已知函数f (x )=ax 2-2x +2,若对一切x ∈[12,2],f (x )>0都成立,则实数a 的取值范围为( B )A .[12,+∞)B .(12,+∞)C .[-4,+∞)D .(-4,+∞)[解析] 由题意得,对一切x ∈[12,2],f (x )>0都成立,即a >2x -2x 2=-2x 2+2x =-2(1x -12)2+12在x ∈[12,2]上恒成立,而-2(1x -12)2+12≤12,则实数a 的取值范围为(12,+∞). 2.已知a =13ln 94,b =45ln 54,c =14ln4,则( B )A .a <b <cB .b <a <cC .c <a <bD .b <c <a[解析] a =13ln 94=13ln(32)2=23ln 32=ln 3232,b =45ln 54=ln 5454,c =14ln4=14×2ln2=ln22.故构造函数f (x )=ln x x ,则a =f (32),b =f (54),c =f (2).因为f ′(x )=1-1·ln x x 2=1-ln xx2,由f ′(x )=0,解得x =e.故当x ∈(0,e)时,f ′(x )>0,函数f (x )在(0,e]上单调递增;当x ∈(e ,+∞)时,f ′(x )<0, 函数f (x )在[e ,+∞)上单调递减.因为54<32<2<e ,所以f (54)<f (32)<f (2),即b <a <c ,故选B.3.正难则反的转化 典题例析例3 (1)若对于任意t ∈[1,2],函数g (x )=x 3+(m2+2)x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是( B )A .(-5,-103)B .(-373,-5)C .(-5,-2)D .(-5,+∞)[解析] g ′(x )=3x 2+(m +4)x -2, 若g (x )在区间(t,3)上总为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x 在x ∈(t,3)上恒成立,所以m +4≥2t -3t 恒成立,又t ∈[1,2],则m +4≥21-3×1=-1,即m ≥-5;②得m +4≤2x -3x 在x ∈(t,3)上恒成立,则m +4≤23-9,即m ≤-373.所以函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5.(2)已知函数f (x )=ax 2-x +ln x 在区间(1,2)上不单调,则实数a 的取值范围为 (0,18) .[解析] f ′(x )=2ax -1+1x.(ⅰ)若函数f (x )在区间(1,2)上单调递增,则f ′(x )≥0在(1,2)上恒成立,所以2ax -1+1x ≥0,得a ≥12(1x -1x2).①令t =1x ,因为x ∈(1,2),所以t =1x ∈(12,1).设h (t )=12(t -t 2)=-12(t -12)2+18,t ∈(12,1),显然函数y =h (t )在区间(12,1)上单调递减,所以h (1)<h (t )<h (12),即0<h (t )<18.由①可知,a ≥18.(ⅱ)若函数f (x )在区间(1,2)上单调递减,则f ′(x )≤0在(1,2)上恒成立,所以2ax -1+1x ≤0,得a ≤12(1x -1x2).②结合(ⅰ)可知,a ≤0.综上,若函数f (x )在区间(1,2)上单调,则实数a 的取值范围为(-∞,0]∪[18,+∞).所以若函数f (x )在区间(1,2)上不单调,则实数a 的取值范围为(0,18).规律总结转化化归思想遵循的原则1.熟悉化原则:将陌生的问题转化为我们熟悉的问题. 2.简单化原则:将复杂的问题通过变换转化为简单的问题.3.直观化原则:将较抽象的问题转化为比较直观的问题(如数形结合思想,立体几何向平面几何问题转化).4.正难则反原则:若问题直接求解困难时,可考虑运用反证法或补集法或用逆否命题间接地解决问题.1.若抛物线y =x 2上的所有弦都不能被直线y =k (x -3)垂直平分,则k 的取值范围是( D )A .(-∞,12]B .(-∞,12)C .(-12,+∞)D .[-12,+∞)[解析] 设抛物线y =x 2上两点A (x 1,x 21),B (x 2,x 22)关于直线y =k (x -3)对称,AB 的中点为P (x 0,y 0),则x 0=x 1+x 22,y 0=x 21+x 222.由题设知x 21-x 22x 1-x 2=-1k ,所以x 1+x 22=-12k .又AB 的中点P (x 0,y 0)在直线y =k (x -3)上,所以x 21+x 222=k (x 21+x 222)=k (x 1+x 22-3)=-6k +12,所以中点P (-12k ,-6k +12).由于点P 在y >x 2的区域内,则-6k +12>(-12k )2,整理得(2k +1)(6k 2-2k +1)<0,解得k <-12.因此当k <-12时,抛物线y =x 2上存在两点关于直线y =k (x -3)对称,于是当k ≥-12时,抛物线y =x 2上存在两点关于直线y =k (x =3)对称.所以实数k 的取值范围是[-12,+∞).故选D.2.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个值c ,使得f (c )>0,则实数p 的取值范围是 (-3,32) .[解析] 若在区间[-1,1]内不存在c 满足f (c )>0, 因为Δ=36p 2≥0恒成立,则⎩⎪⎨⎪⎧f (-1)≤0,f (1)≤0解得⎩⎨⎧p ≤-12或p ≥1,p ≤-3或p ≥32.所以p ≤-3或p ≥32,取补集得-3<p <32,即满足题意的实数p 的取值范围是(-3,32).4.形体位置关系的转化 典题例析例4 (1)如图所示,已知多面体ABCDEFG 中,AB ,AC ,AD 两两互相垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1,则该多面体的体积为__4__.[解析] 方法一:(分割法)因为几何体有两对相对面互相平行,如图所示,过点C 作CH ⊥DG 于H ,连接EH ,即把多面体分割成一个直三棱柱DEH -ABC 和一个斜三棱柱BEF -CHG .由题意,知V 三棱柱DEH -ABC =S △DEH ·AD =(12×2×1)×2=2,V 三棱柱EBF -CHG =S △BEF ·DE =(12×2×1)×2=2.故所求几何体的体积为V 多面体ABCDEFG =2+2=4.方法二:(补形法)因为几何体有两对相对面互相平行,如图所示,将多面体补成棱长为2的正方体,显然所求多面体的体积即该正方体体积的一半.又正方体的体积V 正方体ABHI -DEKG =23=8, 故所求几何体的体积为V 多面体ABCDEGH =12×8=4.(2)如图1所示,正△ABC 的边长为2a ,CD 是AB 边上的高,E ,F 分别是AC ,BC 的中点.现将△ABC 沿CD 翻折,使翻折后平面ACD ⊥平面BCD (如图2),求三棱锥C -DEF 的体积.[解析] 方法一:如图,取CD 的中点M ,连接EM ,则EM ∥AD ,且EM =12AD =a2,又AD ⊥平面BDC ,故EM 为三棱锥E -DFC 的高.求三棱锥C -DEF 的体积,即求三棱锥E -DFC 的体积. 由题意,知CD ⊥BD ,AD ⊥CD ,F 为BC 的中点, 所以S △CDF =12S △BCD =12×12CD ·BD =14(2a )2-a 2·a =34a 2.所以V 三棱锥E -CDF =13S △CDF ·EM =13×34a 2×12a =324a 3.即V 三棱锥C -DEF =324a 2.方法二:如图所示,知三棱锥C -DEF 与三棱锥E -DFC 的体积相等,且三棱锥E -DFC 是三棱锥A -BDC 的一部分.因为平面ACD ⊥平面BCD ,点E ,F 分别是AC ,BC 的中点,故三棱锥E -DFC 的底面积和高分别是三棱锥A -BDC 的底面积和高的一半.由题意,知CD ⊥BD ,AD ⊥CD ,AD ⊥BD ,AD =BD =a ,DC =3a ,所以S △BCD =12×3a ·a =32a 2. 故V 三棱锥A -BDC =13S △BCD ·AD =13×32a 2×a =36a 3,则V 三棱锥C -DEF =14V 三棱锥A -BCD =14×36a 3=324a 3. 规律总结形体位置关系的转化是通过切割、补形、等体积转化等方式转化为便于观察、计算的常用几何体,由于新的几何体是转化而来的,一般需要对新几何体的位置关系、数据情况进行必要分析,准确理解新几何体的特征.1.(2019·吉林模拟)已知如图,四边形ABCD 和四边形BCEG 均为直角梯形,AD ∥BC ,CE ∥BG ,∠BCD =∠BCE =π2,平面ABCD ⊥平面BCEG ,BC =CD =CE =2AD =2BG =2,则五面体EGBADC的体积为 73.[解析] 如图所示,连接DG ,BD .由平面ABCD ⊥平面BCEG , ∠BCD =∠BCE =π2,可知EC ⊥平面ABCD , 又CE ∥GB , 所以GB ⊥平面ABCD .又BC =CD =CE =2,AD =BG =1,所以V 五面体EGBADC =V 四棱锥D -BCEG +V 三棱锥G -ABD=13S 梯形BCEG ·DC +13S △ABD ·BG =13×2+12×2×2+13×12×1×2×1=73.故填73. 2.如图,在四棱锥P -ABCD 中,侧面P AD 是边长为2的正三角形,且与底面垂直,底面ABCD 是∠ABC =60°的菱形,M 为PC 的中点.(1)求证:PC ⊥AD ;(2)求点D 到平面P AM 的距离.[解析] (1)证明:如图,取AD 的中点O ,连接OP ,OC ,AC ,由题意可知△P AD ,△ACD 均为正三角形,所以OC ⊥AD ,OP ⊥AD .又OC ∩OP =O ,所以AD ⊥平面POC , 又PC ⊂平面POC ,所以PC ⊥AD .(2)点D 到平面P AM 的距离即点D 到平面P AC 的距离,由(1)可知,PO ⊥AD ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD ,所以PO ⊥平面ABCD ,即PO 为三棱锥P -ACD 的高.在Rt △POC 中,PO =OC =3,PC =6,在△P AC 中, 因为P A =AC =2,PC =6,所以边PC 上的高 AM =P A 2-PM 2=22-(62)2=102, 所以△P AC 的面积S △P AC =12PC ·AM =12×6×102=152.设点D 到平面P AC 的距离为h ,由V D -P AC =V P -ACD ,得13S △P AC ·h =13S △ACD ·PO ,又S △ACD =12×2×3=3,所以13×152×h =13×3×3,解得h =2155.故点D 到平面P AM 的距离为2155.。
高中数学解题中化归思想的运用

高中数学解题中化归思想的运用化归思想是高中数学解题过程中的一种重要思维方法。
它通过转化问题的表达方式,简化问题的结构,从而找到更容易理解和解决的方法。
化归思想的运用,可以大大提高解题的效率和准确性。
下面我将以2000字的篇幅,详细介绍化归思想在高中数学解题中的运用。
一、化归思想的基本概念和原理化归思想是指将一个复杂的问题转化为一个简单的问题,从而易于理解和解决。
化归有两种常见的表现形式:一是通过等价变换,将问题转化为同类问题或更简单的问题;二是通过数值代换,将问题转化为已知的问题。
化归思想的基本原理是将复杂问题拆解成简单问题,并找到各个简单问题之间的联系和规律,从而解决复杂问题。
化归思想在高中数学解题中的应用非常广泛,以下列举几个典型的例子来说明。
1. 方程求解化归思想在方程求解中经常被使用。
对于一元二次方程ax^2+bx+c=0,如果我们能将其化为一个平方差的形式,例如(x+m)^2+n=0,那么就可以轻松求解出x的值。
同样,对于其他类型的方程,也可以使用化归思想,将其转化为已知的方程类型,从而求得解的值。
2. 几何图形的性质证明在几何学中,化归思想可以用于证明几何图形的性质。
对于一个三角形ABC,要证明三边的中线交于一点,可以将三边的中线延长至交于一点D,然后使用向量运算或者相似三角形的性质,证明BD=DC,从而得出结论。
3. 数列求和在数列求和中,化归思想也经常被使用。
当要求解一个等差数列的前n项和时,可以通过化归将其转化为求解一个等差数列的平方和的问题,从而得到更简单的解法。
同样,在等比数列的求和中也可以使用化归思想,将其转化为求解一个等比数列的前n项和的问题。
4. 不等式的证明在不等式证明中,化归思想也可以起到很好的作用。
要证明一个不等式的真假性,可以将其化为一个等价的不等式,然后根据该不等式的性质,通过化归运算得到结论。
同样,在不等式的证明中,也可以使用化归思想将复杂的不等式化为简单的不等式,从而更容易进行证明。
高中数学总结归纳 概率问题中的数学思想

概率问题中的数学思想一、化归思想1.运用公式()()1P A P A +=进行化归例1 一枚硬币连掷3次,求至少出现一次正面的概率.解:设A 表示事件“掷3次硬币,3次均出现反面”,根据题意,易知1()8P A =,而()()1P A P A +=,故7()1()8P A P A =-=. 点评:点评:含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,可考虑其反面,即对立事件,然后应用对立事件的性质()1()P A P A =-进一步求解.2.将一些复杂事件的概率化归为基本事件的概率例2 一个口袋中装有大小相同的2个白球和3个黑球,从中摸出一个球,放回后再摸出一个球,求两球恰好颜色不同的概率.解:记“摸出一球,放回后再摸出一个球,两球恰好颜色不同”为事件A,而摸出一个球得白球的概率是20.45=,摸出一球得黑球的概率是30.65=,故“有放回地摸两次,颜色不同”是指“先白再黑”或“先黑再白”.()0.40.60.60.40.48P A =⨯+⨯=∴.二、分类讨论思想例3 袋中装有白球和黑球各3个,从中任取2个,取到黑球的概率是多少?分析:取到黑球包括两种情况:“一个黑球、一个白球”、“两个黑球”,因此,需分情况讨论.解:设“取到一个黑球、一个白球”为事件A ,“取到两个黑球”为事件B ,“取到黑球”为事件C ,则()()P C P A B =U .由题意易知,从袋中任取2个球,共有65215⨯÷=种可能结果,“取到一个黑球、一个白球”有339⨯=种可能结果,“取到两个黑球”有3223⨯÷=种可能结果. 故93()155P A ==,31()155P B ==. 又事件A 与事件B 互斥,故4()()()5P C P A P B =+=. 评注:分类讨论时,需注意做到不重不漏.三、方程思想例4 为了调查某野生动物保护区内某种野生动物的数量,调查人员某天逮住这种动物1200只,作标记后放回,经过一星期后,又逮到这种动物1000只,其中有作过标记的100只,按概率的方法估算,保护区内有多少只这种动物?解:设保护区内共有这种动物x 只,每只动物被逮到的可能性是相同的.那么第一次逮到的1200只占所有动物的比例为1200x;第二次逮到的1000只中,有100只是第一次逮到的,说明第一次逮到的占所有这种动物的比例为1001100010=。
浅析高中数学教学中运用化归思想的案例

浅析高中数学教学中运用化归思想的案例高中数学教学中,化归思想是一个非常重要的概念。
化归思想指的是将一个复杂的问题转化为一个更简单的问题,从而使问题的解决变得更加容易。
在数学教学中,化归思想可以帮助学生更好地理解和解决问题,提高他们的数学思维能力和解题技巧。
下面我们来通过一个具体的案例来浅析高中数学教学中运用化归思想的方法。
案例:求解一元二次方程ax^2+bx+c=0的根一元二次方程是高中数学中一个非常重要的概念,而求解一元二次方程的根也是数学教学中的一个难点。
在现实生活中,求解一元二次方程的根可以帮助我们解决很多实际问题,比如抛物线的焦点和顶点坐标、工程中的建筑设计等。
在高中数学教学中,通常会通过配方法、公式法、图像法等多种方法来求解一元二次方程的根。
而在这些方法中,我们可以通过化归思想来帮助学生更好地理解和掌握求解一元二次方程的技巧。
化归思想在求解一元二次方程中的应用:对于一元二次方程ax^2+bx+c=0,我们可以首先利用化归思想来求解一个更简单的问题,即求解x^2+px+q=0的根。
其中p和q的值可以通过配方法来确定,然后再通过变换x 的值来求解ax^2+bx+c=0的根。
这样一来,通过化归思想,原本复杂的一元二次方程的求解问题就被转化为了求解简单的一元二次方程的根的问题,从而帮助学生更好地理解和掌握求解一元二次方程的方法。
具体的教学操作步骤可以为:步骤1:首先给学生讲解一元二次方程的基本概念和配方法的求解步骤,让学生掌握配方法的基本原理和求解技巧。
步骤2:然后给学生一个实际的一元二次方程的求解问题,并引导学生通过配方法来求解一元二次方程的根。
通过这样的教学方法,学生不仅能够更好地掌握一元二次方程的求解方法,还能够提高他们的数学思维能力和解题技巧,从而更好地应对数学学习中的挑战。
化归思想在高中数学函数学习中的运用

化归思想在高中数学函数学习中的运用
化归思想是高中数学函数学习中的重要内容之一,通过运用化归思想,可以将复杂的问题化简为简单的形式,从而更容易解决问题。
在高中数学的函数学习中,化归思想主要运用在以下几个方面。
在函数的定义和性质的学习中,化归思想可以用来证明和推导函数的一些重要性质。
可以通过化归思想证明函数的奇偶性、周期性等性质,从而更深入地了解函数的特点和性质。
化归思想还可以用来求解复合函数的值域和定义域等问题,通过化归的方法,将复杂的函数化简为简单的形式,从而更易解决问题。
化归思想在函数的图像的研究中也起到了关键作用。
通过将函数进行化归,可以将其图像与标准函数进行比较,从而更加清晰地了解函数的性质和变化规律。
通过将函数进行平移、伸缩和翻转等变换,可以研究函数的平移、伸缩和翻转对其图像的影响,从而进一步深入地理解函数的性质。
在函数的应用问题中,化归思想也发挥着重要的作用。
通过将复杂的实际问题进行化归,可以将其化简为简单的数学模型,从而更轻松地求解实际问题。
在最优化问题中,可以通过将目标函数进行化归,将约束条件进行化简,从而更容易求解最优解。
化归思想在高中数学中的应用分析

化归思想在高中数学中的应用分析化归思想是数学中的一种重要思维方式和方法,它在高中数学教学中具有重要的应用价值。
通过化归思想,可以帮助学生更好地理解和掌握数学知识,提高解题能力,培养逻辑思维能力和数学思维能力。
本文将从概念理解、教学应用和案例分析三个方面对化归思想在高中数学中的应用进行深入分析。
一、概念理解化归思想是指将一个较为复杂的问题化简为一个更简单的问题,然后再逐步解决这个简单问题的过程。
在数学中,化归思想常常用于解决复杂的问题,或者化解难以理解的概念。
通过化归思想,可以使一些抽象的概念更加具体,一些复杂的问题更加简单,从而帮助学生更好地理解和掌握数学知识。
在高中数学中,化归思想常常用于解决复杂的代数问题、几何问题以及概率问题等。
当遇到一个复杂的代数方程组时,可以通过逐步化简,将其化为一元方程,然后再逐步解决,从而得到解。
又如,在解决一个复杂的几何证明问题时,可以通过化归思想将问题化简为一个简单的几何问题,然后再逐步推导,最终得到证明。
化归思想在高中数学中的应用,为学生提供了一种重要的解题思路和方法,有助于培养学生的逻辑思维能力和数学解题能力。
二、教学应用在高中数学教学中,化归思想常常被运用到课堂教学和解题训练中。
教师可以通过丰富多样的教学方法和案例分析,引导学生运用化归思想解决实际问题,提高学生的数学思维和解题能力。
1. 课堂教学在日常的数学教学中,教师可以通过讲解和实例分析,引导学生理解化归思想的基本概念和方法。
通过引入一些生动有趣的例子,让学生在轻松愉快的氛围中掌握化归思想的应用技巧。
在解决一个复杂的代数方程时,教师可以通过引入一个贴近学生生活的例子,让学生从实际问题出发,逐步体会化归思想的应用。
通过课堂讲解和学生互动,帮助学生掌握化归思想,并能够熟练运用到实际问题的解决中。
2. 解题训练三、案例分析下面通过几个案例进行详细分析,以进一步说明化归思想在高中数学中的应用。
1. 代数方程组的解法已知方程组\[\begin{cases}x+y=8 \\x-y=2\end{cases}\]通过使用化归思想解题,可以将方程组的求解过程化简为以下几个步骤:从而得到方程组的解为 x=5,y=3。
高中数学解题中化归思想的运用

高中数学解题中化归思想的运用1. 引言1.1 引言化归思想在高中数学解题中扮演着重要的角色,它是一种重要的问题解决方法和思维方式。
化归思想源于古代数学思想,是通过将一个复杂问题化简为一个更为简单的问题进行求解的方法。
在现代高中数学教学中,化归思想被广泛运用于各种数学题目的解决中,不仅能够提高学生的问题解决能力,还能够培养学生的逻辑思维和创新意识。
在数学解题中,化归思想可以帮助学生快速找到解题的思路和方法,将复杂的问题简化为易解的小问题。
通过将问题进行化简,学生能够更深入地理解问题本质,找到问题的关键点,从而更快地找到解题的方法。
化归思想的运用不仅可以提高解题的效率,还可以帮助学生更好地理解数学知识,培养他们的问题解决能力和逻辑思维能力。
本文将就化归思想在高中数学解题中的运用进行详细介绍,以帮助学生更好地理解和掌握这一重要的问题解决方法。
通过学习本文,希望能够帮助学生在数学学习中更好地运用化归思想,提高解题能力,取得更好的学习成绩。
2. 正文2.1 化归思想的概念化归思想是数学解题过程中一种重要的思维方法,也是高中数学中常见的解题技巧。
其核心思想是将复杂的问题转化为简单的问题,从而更容易解决。
化归思想能够帮助我们理清问题的逻辑关系,找到问题的本质,从而更加高效地解决数学问题。
在数学中,化归思想通常可以分为两种情况:一种是将复杂的问题化归为已知的问题,通过逐步分解、转化为已知条件来解决;另一种是将问题简化,通过一系列变化和等价性的变换使得问题更容易被理解和解决。
化归思想的关键在于找到问题中的共性或者规律,将问题进行归纳或者简化,从而减少问题的复杂性。
通过化归,我们可以更好地理解问题的本质,找到解题的途径,提高解题效率。
2.2 化归思想在代数方程中的运用化归思想在代数方程中的运用非常重要,它能够帮助我们简化复杂的方程,找到解题的突破口。
在解代数方程的过程中,我们经常会遇到一些复杂的方程,例如高次方程或者多项式方程。
高中数学解题中化归思想的运用

高中数学解题中化归思想的运用化归是高中数学中常用的一种解题思想,通常能够将乍一看十分复杂的数学问题化简为简单的形式,并有助于提高解题效率。
以下就是在高中数学解题中常用的化归思想。
1. 化简式子在高中数学中,经常会遇到一些复杂的式子需要进行化简。
这时,可以利用代数恒等式、特殊值、分子分母约分、公因式等方法进行化简,使得式子更加简单明了。
例如,对于下面的式子:$$\frac{3x^2+6x}{3}$$可以通过将分子分母都除以3来化简:2. 找出规律在高中数学中,很多数列题需要找出其中的规律以求得下一项或任意一项。
通常可以通过对前几项进行观察来找出规律,并据此求出剩余的项。
例如,对于下面的题目:已知数列$\{a_n\}$的前3项$a_1=1,a_2=3,a_3=7$,且$a_n-a_{n-1}-a_{n-2}=0$,求$a_{10}$。
3. 取特例在高中数学中,有时候我们需要回归到一些基本的数学概念,通过取特例来探究问题的本质。
例如,对于下面的问题:已知$a,b>0$,且$a+b=2$,求$ab$的最大值。
由于$a+b=2$,可以取$b=2-a$,则$ab=a(2-a)=-a^2+2a$。
此时,问题就变成了求$-a^2+2a$的最大值。
该函数在$a=1$处取得最大值1,从而得到$ab$的最大值为1。
4. 对称化在高中数学中,一些问题可以通过对称化的方法得到简洁的解决方式。
例如,对于下面的问题:已知正整数$x,y,z$满足$x+y+z=1$,求$x^2+y^2+z^2$的最小值。
由于$x+y+z=1$,可以令$a=\frac{x+y}{2},b=\frac{y+z}{2},c=\frac{z+x}{2}$,则$x=a+c-b,y=b+a-c,z=c+b-a$。
此时,$x^2+y^2+z^2$可以化成$a^2+b^2+c^2$的形式。
由于$x+y+z=1$,可以得到:$$2(a+b+c)=x+y+z+3(a+b+c)-3=2$$从而可得$a+b+c=1$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学的化归思想
摘要:化归的思想方法是中学数学中的重要思想方法之一,也是高考数学中重点考查的思想方法。
关键词:高中数学化归思想
化归的思想方法是中学数学中的重要思想方法之一,也是高考数学中重点考查的思想方法。
化归思想就是将复杂或陌生、新颖的数学问题、数学信息和数学情景转化为简单或已知的数学知识和成熟的经验方法,从而解决问题的策略。
笔者结合自己多年的教学经验浅谈以下几点看法,供大家参考:
一、对化归思想的认识
化归思想是数学中常用的一种重要数学思想,其本质就是转化,曾被笛卡儿誉为“万能方法”。
他在《指导思维的法则》一书中指出:第一,将任何种类的问题转化为数学问题;其次,将任何种类的数学问题转化为代数问题;第三,将任何代数问题转化为方程式的求解。
那么,到底什么是化归思想呢?它怎么有如此大的“本事”呢?
所谓化归思想,一般是指人们将待解决或难以解决的问题通过某种转化过程,归结到一类已经解决或比较容易解决的问题中去,最终求得原问题的解答的一种手段和方法。
应用化归思想时要遵循三个基本原则:熟悉化原则,即将陌生的问题转化为熟悉的问题;简单化原则,即将复杂的问题转化为简单的问题;直观化原则,即将抽象问题转化为具体问题。
数学的化归思想包涵化归的对象、目标和方法三要素。
其中化归方法是实现化归的关键。
化归思想方法的实质是转化矛盾的思想方法,其遵循“运动——转化——解决”的基本思想。
这种思想方法可分为①多维化归方法,如:换元法、恒等变换法、反证法、构造法、待定系数法、数学归纳法;②二维化归法,如解析法、三角代换法、向量法;③单维化归法,如:复数法、代入法、加减法、判别式法、曲线系数法、坐标变换法。
化归思想的实质是通过事物内部的联系将将待处理问题规范化、模式化,从而得到解决。
转化有等价转化与非等价转化。
等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。
非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能给人带来思维的闪光点,找到解决问题的突破口。
化归思想在中学数学解题中的应用十分广泛,几乎遍及每一道数学题。
而问题是数学的心脏,学数学必须学会解题。
可见学生了解化归思想并能加以应用对于他们学好数学起着非常重要的作用。
二、化归的基本方法
“化归”方法很多,有分割法,映射法,恒等变形法,换元变形法,参数法,数形结合法等等,但有一个原则是和原来的问题相比,“化归”后所得出的问题,应是已经解决或是较为容易解决的问题。
因此“化归”的方向应是由未知到已知,由难到易,由繁到简,由一般到特殊。
而“化归”的思想实质就在于不应以静止的眼光,而
应以运动、变化、发展以及事物间的相互联系和制约的观点去看待问题。
即应当善于对所要解决的问题进行变形和转化,这实际上也是在数学教学中辨证唯物主义观点的生动体现。
现举例如下:
1、分割法。
什么是分割法?法国著名数学家笛卡尔说:“把你所考虑的每一个问题按照可能的需要分成若干部分,使它们更易于求解。
”这种把要解决的问题分成若干个小问题,然后逐一求解的方法,叫做分割法
2、映射法。
映射法是用以实现化归的一种重要方法,所谓映射,是指在两类数学对象或两个数学集合的元素之间建立某种“对应关系”。
利用映射法解决问题的过程为:首先通过映射将原来的问题转化为问题*,然后,在求得问题*的解答*以后,再通过逆映射求得原问题的解。
映射法是实现化归的一种重要方法,如由于建立了直角坐标系,使平面上的点与有序实数对,曲线与方程建立了对应关系,使几何问题转化为代数问题。
此外复数与复平面上的点、向量也建立起一一对应关系,把向量引进了代数,使复数的代表运算可用向量的几何运算来进行。
3、恒等变形法。
在数学解题中,恒等变形占有十分重要的位置,特别是在求解方程或证明一些整除性问题时,利用恒等变形以实现由未知向已知的化归,使我们比较容易地求得问题的解。
4、换元变形法。
换元变形法用处很多,化简代数式如使用换元法可以简化计算过程,分解因式时使用换元法可以减少项数,便于
发现关系,解方程时有些分式方程,指数方程和对数方程通过换元可以变成整式方程。
有些高次方程通过换元可以达到降次的目的,有些无理方程通过换元可以去掉或减少根号。
证明条件等式时,使用换元容易发现已知条件和待证等式之间的联系。
总之换元变形法用处十分广泛,学生应该熟练掌握在解题实践中灵活地、创造性地去运用
当然以上几法远不能概括出化归方法的全貌。
化归思想方法是数学中最基本的思想方法。
数学中一切问题的解决都离不开转化与化归,数形结合思想方法体现了数与形的相互转化;函数与方程思想体现了函数方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化等等。
化归是数学思想方法的灵魂。
目标简单化、和谐统一性、目标具体化、标准形式化和低层次化都是化归的原则;各映射法、分割法和变形法都是化归的策略;一般化与特殊化的转化、正与反的转化、实际问题数学化、常量与变量的转化等都是化归的基本策略。
正如前面所给出的,实现化归的方法是多种多样的。
因此,与前面所举的具体方法相比,更重要的就是应掌握化归的中心思想。
从所举例子可以看出,化归的中心思想是善于对所要解决的问题进行变形,而所说的变形并不是一种无目的的活动。
因此,我们应始终“盯住目标”。
即应始终考虑怎样才能达到解决原来问题的目的。