高考文科数学圆锥曲线专题复习试题

高考文科数学圆锥曲线专题复习试题
高考文科数学圆锥曲线专题复习试题

高三文科数学专题复习之圆锥曲线知识归纳:

名称 椭圆

双曲线

图象

x

O

y

x

O

y

定义

平面内到两定点21,F F 的距离的和为常数(大于21F F )的动

点的轨迹叫椭圆即

a MF MF 221=+ 当2a ﹥2c 时,轨迹是椭圆, 当2a =2c 时,轨迹是一条线

段21F F

当2a ﹤2c 时,轨迹不存在

平面内到两定点21,F F 的距离的差的绝对值为常数(小于21F F )

的动点的轨迹叫双曲线即122MF MF a -=

当2a ﹤2c 时,轨迹是双曲线 当2a =2c 时,轨迹是两条射

线

当2a ﹥2c 时,轨迹不存在

标准方程

焦点在x 轴上时:122

22=+b

y a x

焦点在y 轴上时:122

22=+b

x a y

注:根据分母的大小来判断焦

点在哪一坐标轴上

焦点在x 轴上时:122

22=-b y a x

焦点在y 轴上时:122

22=-b

x a y

常数

c

b a ,,的关系

222b c a +=,0>>b a ,

a 最大,

b

c b c b c ><=,, 222b a c +=,0>>a c

c 最大,可以b a b a b a ><=,,

渐近线

焦点在x轴上时:0

x y

a b

±=

焦点在y轴上时:0

y x

a b

±=

抛物线:

形x

y

O F

l

x

y

O

F

l

)0

(

2

2>

=p

px

y)0

(

2

2>

-

=p

px

y)0

(

2

2>

=p

py

x)0

(

2

2>

-

=p

py

x

)0,

2

(

p

)0,

2

(

p

-)

2

,0(

p

)

2

,0(

p

-

线2

p

x-

=

2

p

x=

2

p

y-

=

2

p

y=

(一)椭圆

1.椭圆的性质:由椭圆方程)0

(1

2

2

2

2

>

>

=

+b

a

b

y

a

x

(1)范围:a

x

b

-

a,

x

a≤

-,椭圆落在b

=

±

=a,

x组成的矩形中。

(2)对称性:图象关于y 轴对称。图象关于x 轴对称。图象关于原点对称。原点叫椭圆的对称中心,简称中心。x 轴、y 轴叫椭圆的对称轴。从椭圆的方程中直接可以

看出它的范围,对称的截距。

(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点

椭圆共有四个顶点:)0,(),0,(2a A a A -,),0(),,0(2b B b B -。加两焦点)0,(),0,(21c F c F -共有六个特殊点。21A A 叫椭圆的长轴,21B B 叫椭圆的短轴。长分别为b a 2,2。b a ,分别为椭圆

的长半轴长和短半轴长。椭圆的顶点即为椭圆与对称轴的交点。 (4)离心率:椭圆焦距与长轴长之比。a c

e =

?2)(1a

b e -=。10<

c e ,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在0=e 时的特例。,,1a c e →→椭圆变扁,直至成为极限位置线段21F F ,此时

也可认为是椭圆在1=e 时的特例。

2.椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个)1,0(内常数e ,那么这个点的轨迹叫做椭圆。其中定点叫做焦点,定直线叫做准线,常数e 就

是离心率。

椭圆的第二定义与第一定义是等价的,它是椭圆两种不同的定义方式

3.椭圆的准线方程

对于12222=+b y a x ,左准线c a x l 21:-=;右准线c a x l 2

2:=

对于12222=+b x a y ,下准线c a y l 21:-=;上准线c a y l 2

2:=

焦点到准线的距离c

b c c a c c a p 2

222=-=-=(焦参数)

(二)双曲线的几何性质:

1.(1)范围、对称性

由标准方程122

22=-b

y a x ,从横的方向来看,直线x =-a,x =a 之间没有图象,从纵的

方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线。双曲线不封闭,但仍称其对称中心为双曲线的中心。

(2)顶点

顶点:()0,),0,(21a A a A -,特殊点:()b B b B -,0),,0(21

实轴:21A A 长为2a,a 叫做实半轴长。虚轴:21B B 长为2b ,b 叫做虚半轴长。

双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异。

(3)渐近线

过双曲线12222=-b y a x 的渐近线x a b y ±=(0=±b

y

a x )

(4)离心率

双曲线的焦距与实轴长的比a

c

a c e ==

22,叫做双曲线的离心率范围:e>1 双曲线形状与e 的关系:112

2

222-=-=-==e a

c a a c a b k ,e 越大,即渐近线的斜率的绝对值就越大,这时双曲线的形状就从扁狭逐渐变得开阔。由此可知,双曲线的

离心率越大,它的开口就越阔。

2.等轴双曲线

定义:实轴和虚轴等长的双曲线叫做等轴双曲线。

等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率

2=e 。

3.共渐近线的双曲线系

如果已知一双曲线的渐近线方程为x a

b

y ±=)0(>±=k x ka

kb ,那么此双曲线方程就一定

是:)0(1)()(2

2

22>±=-k kb y ka x 或写成λ=-22

22

b

y a x 。 4.共轭双曲线

以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线。区别:三量a,b,c 中a,b 不同(互换)c 相同。共用一对渐近线。双曲线和它的共轭双曲线的焦点在同一圆上。确定双曲线的共轭双曲线的方法:将1变为-1。 5.双曲线的第二定义:到定点F 的距离与到定直线l 的距离之比为常数)0(>>=a c a

c e 的

点的轨迹是双曲线。其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线。常

数e 是双曲线的离心率。 6.双曲线的准线方程:

对于12222=-b

y a x 来说,相对于左焦点)0,(1c F -对应着左准线c a x l 2

1:-=,相对于右焦点

)0,(2c F 对应着右准线c a x l 2

2:=;

焦点到准线的距离c

b p 2

=(也叫焦参数)。

对于12222=-b

x a y 来说,相对于下焦点),0(1c F -对应着下准线c a y l 2

1:-=;相对于上焦点

),0(2c F 对应着上准线c

a y l 2

2:=。

(三)抛物线的几何性质

(1)范围

因为p >0,由方程()022>=p px y 可知,这条抛物线上的点M 的坐标(x ,y )满足不等式x ≥0,所以这条抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛

物线向右上方和右下方无限延伸。

(2)对称性

以-y 代y ,方程()022

>=p px y 不变,所以这条抛物线关于

x 轴对称,我们把抛物线的

对称轴叫做抛物线的轴。

(3)顶点

抛物线和它的轴的交点叫做抛物线的顶点.在方程()022

>=p px y 中,当

y =0时,x =0,

因此抛物线()022

>=p px y 的顶点就是坐标原点。

(4)离心率

抛物线上的点M 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e

表示。由抛物线的定义可知,e =1。

【典型例题】

例1.根据下列条件,写出椭圆方程

(1)中心在原点、以对称轴为坐标轴、离心率为1/2、长轴长为8; (2)和椭圆9x2+4y2=36有相同的焦点,且经过点(2,-3);

(3)中心在原点,焦点在x 轴上,从一个焦点看短轴两端的视角为直角,焦点到长

轴上较近顶点的距离是510-。

分析:求椭圆的标准方程,首先要根据焦点位置确定方程形式,其次是根据a2=b2

+c2及已知条件确定a2、b2的值进而写出标准方程。

解:(1)焦点位置可在x 轴上,也可在y 轴上

因此有两解:112

x 16y 112y 16x 2

222=+=+或

(2)焦点位置确定,且为(0,5±),设原方程为22

221y x a b

+=,(a>b>0),由已知条

件有?????=+=-1

4

95

2222b a

b a 10,152

2==?b a ,故方程为110x 15y 22=+。 (3)设椭圆方程为122

22=+b

y a x ,(a>b>0)

由题设条件有???-=-=5

10c a c

b 及a2=b2+c2,解得b =10,5=a

故所求椭圆的方程是15

y 10x 2

2=+。

例2.直线1+=kx y 与双曲线1322=-y x 相交于A 、B 两点,当a 为何值时,A 、B 在双曲

线的同一支上?当a 为何值时,A 、B 分别在双曲线的两支上?

解:把1+=kx y 代入1322=-y x 整理得:022)3(22=---ax x a (1)

当3±≠a 时,2424a -=?

由?>0得6a 6<<-

且3±≠a 时,方程组有两解,直线与双曲线有两个交点

若A 、B 在双曲线的同一支,须3

2

2

21-=

a x x >0,所以3?-a 或3>a 。 故当36-<<-a 或63<

两点在双曲线的两支上。

例3.已知抛物线方程为)1x (p 2y 2+=(p>0),直线m y x l =+:过抛物线的焦点F 且被抛

物线截得的弦长为3,求p 的值。 解:设l 与抛物线交于1122(,),(,),

|| 3.A x y B x y AB =则

由距离公式|AB|=|y y |2|y y |k 1

1)y y ()x -(x 21212

221221-=-+

=-+

则有2129().2

y y -=

由02y x ,)1(221222=-+?????

+=+-=+p py ,x p y p y x 得消去 .,2.

04)2(2212122p y y p y y p p -=-=+∴>+=?

从而212212214)()(y y y y y y -+=-

即2

94)2(22=+-p p

由于p>0,解得4

3=p

例4.过点(1,0)的直线l 与中心在原点,焦点在x 轴上且离心率为

2

2的椭圆C 相交

于A 、B 两点,直线y=2

1x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直

线l 对称,试求直线l 与椭圆C 的方程. 解法一:由

e=2

2

=a c ,得

2

1

2

22=

-a

b a ,从而a2=2b2,c=b.

设椭圆方程为x2+2y2=2b2,A(x1,y1),B(x2,y2)在椭圆上.

则x12+2y12=2b2,x22+2y22=2b2,两式相减得, (x12-x22)+2(y12-y22)=0,.)

(2212

12

12

1y y x x x x y y ++-

=--

设AB 中点为(x0,y0),则kAB=-0

02y x ,

又(x0,y0)在直线y=2

1

x

上,y0=2

1

x0,

于是-

02y x =-1,kAB=-1,

设l 的方程为y=-x+1.

右焦点(b,0)关于l 的对称点设为(x ′,y ′),

???-='='???????++'-='=-''

b y x b x y b

x y 11 122

1解得则 由点(1,1-b)在椭圆上,得1+2(1-b)2=2b2,b2=

8

9

,1692=a . B

A

y=12x

o

y x

F 2

F 1

∴所求椭圆C

的方程为2

29

1698y x +=1,l

的方程为y=-x+1.

解法二:由

e=21

,22222=-=a

b a a

c 得,从而a2=2b2,c=b.

设椭圆C 的方程为x2+2y2=2b2,l 的方程为y=k(x -1), 将l 的方程代入C 的方程,得(1+2k2)x2-4k2x+2k2-2b2=0, 则x1+x2=

2

2214k

k +,y1+y2=k(x1-1)+k(x2-1)=k(x1+x2)-2k=-2

212k

k +.

直线

l :y=2

1

x 过AB

的中点(2

,22

121y y x x ++),则2

2

22122121k k k k

+?

=+-,

解得k=0,或k=-1.

若k=0,则l 的方程为y=0,焦点F(c,0)关于直线l 的对称点就是F 点本身,不能在椭圆C 上,所以k=0舍去,从而k=-1,直线l 的方程为y=-(x -1),即y=-x+1,以下

同解法一.

解法3:设椭圆方程为

)1()0(12

22

2>>=+b a b y a x

直线l 不平行于y 轴,否则AB 中点在x 轴上与直线AB x y 过2

1=中点矛盾。

故可设直线)2()1(-=x k y l 的方程为

整理得:

消代入y )1()2()3(02)(2222222222=-+-+b a k a x a k x b a k )()(2211y x B y x A ,,设,2

2

2

22212b

a k a k x x +=

+知:

代入上式得:

又k x x k y y 2)(2121-+=+ 21

221=+-x x k k ,212222222=+?-∴a k b a k k k ,2122=--∴ka b k k ,22=e 又

122)

(2222

222

2-=+-=--

=-

=∴e a

c a a

b k ,x y l -=∴1的方程为直线,

222b a =此时,02243)3(22=-+-b x x 化为方程,0)13(8)1(241622>-=--=?b b

3

3

>

∴b ,)4(22222b y x C =+的方程可写成:椭圆,2222b b a c =-=又,

)0(,右焦点b F ∴,)(00y x l F ,的对称点关于直线设点,

则b y x b x y b x y -=-???????

?+-==-11212

100000

,, 得:

在椭圆上,代入,又点)4()11(b -22)1(21b b =-+,3

3

43>=∴b ,

169

2=

∴b ,8

92=a 所以所求的椭圆方程为:

116

9892

2=+y x

例5.如图,已知△P1OP2的面积为4

27,P 为线段P1P2的一个三等分点,求以直线OP1、

OP2为渐近线且过点P 的离心率为

2

13的双曲线方程.

解:以O 为原点,∠P1OP2的角平分线为x 轴建立如图所示的直角坐标系. 设双曲线方程为2

22

2b

y a

x -

=1(a >0,b >0)

由e2=

2222

)213()(1=+=a b a

c ,得23

=a b .

∴两渐近线OP1、OP2方程分别为y=2

3x 和

y=-2

3x

设点P1(x1,2

3x1),P2(x2,-2

3x2)(x1>0,x2>

0),

则由点P 分21P P 所成的比λ=2

1PP P P =2,

得P 点坐标为(2

2,3

22121x x x x -+),

又点P 在双曲线2

22

294a

y a

x -

=1上, 所以

2

2

212

2

219)2(9)2(a x x a x x --

+=1,

即(x1+2x2)2-(x1-2x2)2=9a2,整理得8x1x2=9a2①

o

y

x

P

P 2

P 1

,4

271312

41321sin ||||2113

124

91232tan 1tan 2sin 2

13

4

9||,21349||212121121212222212121121=

??=??=∴=+?

=

+==+==+

=?x x OP P OP OP S Ox P Ox P OP P x x x OP x x x OP OP P 又

即x1x2=2

9 ②

由①、②得a2=4,b2=9 故双曲线方程为

9

42

2y x -=1.

例6.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ?=?

(1)求点P 的轨迹C 对应的方程;

(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,

判断:直线DE 是否过定点?试证明你的结论.

(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的

斜率k1、k2满足k1·k2=2.求证:直线DE 过定点,并求出这个定点.

解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-?=?化简得得

代入

).

2,5(),5(1

2,0)2()5()2(),14(44

4424:).24,14(4),1(1

2:).24

,14(,242,048

4,4)1(2).2,1(,14)2,()2(2

22222221222----

=+=+--++---+=++--+=--=--+∴-=

==-+-=-=-∴==过定点即化简得方程为则直线得代入同理可设直线可得由得代入的方程为设直线的坐标为点得代入将x k k y y x k y k k x k

k k k k y DE k k E x y x k

y AE k k

D k y y k

y k y x y x k y AD A m x y m A

),

1,(21

2

12,2,0)2(24),(),,(,,

14)2,()3(212211222211112≠=--?--∴=?=+-+?????=+=+===x x x y x y k k b x kb x k x

y b kx y y x E y x D b kx y DE m x y m A AE AD 得由的方程为设直线得代入将

)

2,1(,,),2,1(,2)1(22).2,1(,2)1(22).

2().

2(,)2(,)

2(2,02)2())(22()2(,222

2212

212212122211--∴+-=-+=+=-=---+=-+=+=-=-±=∴-±=∴-==

--=

+=--+++-+-∴+=+=定点为舍去不合过定点得代入将过定点得代入将代入化简得将且x k k kx y b kx y k b x k k kx y b kx y k b k b k b k b k

b x x k

kb x x b x x k kb x x k b

kx y b kx y

【模拟试题】(答题时间:50分钟)

一、选择题

1.θ是任意实数,则方程4sin 22=+θy x 所表示的曲线不可能是()

A.椭圆

B.双曲线

C.抛物线

D.圆

2.已知椭121

)(122

2=-+

t y x 的一条准线方程是8=y ,则实数t 的值是() A.7或-7 B.4或12 C.1或15 D.0

3.双曲线142

2=+k

y x 的离心率)2,1(∈e ,则k 的取值范围为()

A.)0,(-∞

B.(-12,0)

C.(-3,0)

D.(-60,-12)

4.以112

42

2=-y x 的焦点为顶点,顶点为焦点的椭圆方程为( )

A.112162

2=+y x B.116122

2=+y x C.14

162

2=+y x

D.116

42

2=+y x 5.抛物线28mx y =的焦点坐标为()

A.)0,81

(

m

B.)321

,

0(m

C.)321

,0(m

±

D.)0,321

(m

±

6.已知点A (-2,1),x y 42-=的焦点为F ,P 是x y 42-=的点,为使PF PA +取得最

小值,P 点的坐标是()

A.)1,4

1(- B.)22,2(- C.)1,4

1(-- D.)22,2(--

7.已知双曲线的渐近线方程为043=±y x ,一条准线方程为095=-y ,则双曲线方程为

()

A.11692

2=-x y B.11692

2=-y x C.125

92

2=-x y

D.125

92

2=-y x 8.抛物线2x y =到直线42=-y x 距离最近的点的坐标为()

A.)45,23(

B.)1,1(

C.)4

9,23( D.)4,2(

9.动圆的圆心在抛物线x y 82=上,且动圆与直线02=+x 相切,则动圆必过定点()

A.(4,0)

B.(2,0)

C.(0,2)

D.(0,-2)

10.中心在原点,焦点在坐标为(0,±5

2

)的椭圆被直线3x -y -2=0截得的弦的中

点的横坐标为21,则椭圆方程为()

125

75D. 17525C.

1252752B. 1752252A.2

2

2

2

2222=+=+=+=+y x y x y x y x

二、填空题

11.到定点(2,0)的距离与到定直线8=x 的距离之比为

2

2

的动点的轨迹方程为______________。

12.双曲线2222=-my mx 的一条准线是1=y ,则=m ___________。

13.已知点(-2,3)与抛物线)0(22

>=p px y 的焦点距离是

5,=p ____________。

14.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的

焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为________________。

三、解答题

15.已知双曲线的中心在原点,过右焦点F (2,0)作斜率为

5

3

的直线,交双曲线于M 、N 两点,且MN =4,求双曲线方程。

16.过椭圆13

42

2=+y x 的左焦点F 作直线l 交椭圆于P 、Q ,2F 为右焦点。

求:22QF PF .的最值

17.已知椭圆的一个焦点为F 1

022(),-,对应的准线方程为y =-92

4

,且离心率e 满

足2

3,e、4

3

成等比数列。

(1)求椭圆的方程。

(2)试问是否存在直线l,使l与椭圆交于不同的两点M、N,且线段MN恰被直线x=-1

2平分?若存在,求出l的倾角的取值范围,若不存在,请说明理由。

18.如图所示,抛物线y2=4x的顶点为O,点A的坐标为(5,0),倾斜角为

4

π的直线l 与线段OA相交(不经过点O或点A)且交抛物线于M、N两点,求△AMN 面积最大时直线l的方程,并求△AMN的最大面积.

【试题答案】

1.C

2.C

3.B

4.A

5.B

6.A

7.A

8.B

9.B10.C

11.136

72)4(2

2=++y x 12.-3

4

13.414.

4

52

2y x +=1

15.解:设所求双曲线方程为1b

y a x 22

22=-(a>0,b>0),由右焦点为(2,0)。知c =2,

b2=4-a2

则双曲线方程为142

222=--b y a x ,设直线MN 的方程为:)2(5

3-=x y ,代入双曲线方程整理得:(20-8a2)x2+12a2x +5a4-32a2=0

设M (x1,y1),N (x2,y2),则2

2

2182012a a x x --=+

2

2

421820325a

a a x x --= ∴()21212

4531x x x x MN -+?????

??+=

48203254820125822

42

2

2

=--?-???

? ??--?=a a a a

a 解得:12=a ,3142=-=∴b

故所求双曲线方程为:13

2

2

=-y x

16.解:直线l :ααα?

??+=+-=sin 0cos 1..

t y t x 为参数 P 、Q 为l 与椭圆的交点

13

)sin (4)tan 1(2

2=++-αα.t

∴α

αα221221cos 49cos 4cos 6--=-=

+t t t t . 1

1111122)(416)

4)(4(QF PF QF PF QF PF QF PF z ..++-=--== ααα22

22

121cos 43916cos 49cos 412416416--=-+--=---=..t t t t ∴1cos 2=α时0cos ;

3z 2min ==α时4

25

max =

z 17.解:(1)依题意,2343

,,e 成等比数列,

可得e =

22

3

设P (x y ,)是椭圆上任一点

依椭圆的定义得

x y y 22

2292

4

22

3

+++

=()|| 化简得9922x y +=

即x y 2

2

9

1+=为所求的椭圆方程

(2)假设l 存在

因l 与直线x =-12

相交,不可能垂直x 轴

所以设l 的方程为:y k x m

=+ 由y kx m

x y =++=???99

22 消去y 得,9922x k x m ++=()

∴+++-=()()k x kmx m 2229290有两个不等实根

?=-+->∴--<44990

90

2222

22

k m k m m k ()()

设两交点M 、N 的坐标分别为()()x y x y 1122

,,, ∴+=-+x x k m

k 122

29

线段MN 恰被直线x =-

1

2

平分 ∴-=+12212x x

即-+=-2912

k m

k k ≠0 ∴=

+m k k

29

2 代入m k 22

90

--<得 k k k

k k

k

k k k 22

2

22

2

2

9290

909

410

3

33

+?? ???-+<+>∴+-<∴>∴>

<-() 或

∴直线倾角的范围为π

πππ32223,,?? ????? ??

?

解:由题意,可设l 的方程为y=x+m,-5<m <0.

由方程组??

???=+=x y m

x y 42,消去

y,得x2+(2m -4)x+m2=0……………①

∵直线l 与抛物线有两个不同交点M 、N , ∴方程①的判别式Δ=(2m -4)2-4m2=16(1-m)>0, 解得m <1,又-5<m <0,∴m 的范围为(-5,0) 设M(x1,y1),N(x2,y2)则x1+x2=4-2m ,x1·x2=m2,

∴|MN|=4

)

1(2m -.

点A 到直线l 的距离为d=2

5m +.

∴S△=2(5+m)m

-

1,从而S△2=4(1-m)(5+m)2

=2(2-2m)·(5+m)(5+m)≤2(

35

5

2

2m

m

m+

+

+

+

-)3=128. ∴S△≤82,当且仅当2-2m=5+m,即m=-1时取等号. 故直线l的方程为y=x-1,△AMN的最大面积为82.

高考文科数学专题复习导数训练题(文)

考点一:求导公式。 例1. ()f x '是3 1()213f x x x =++的导函数,则(1)f '-的值是 。 解析: ()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22y x = +,则(1)(1)f f '+= 。 解析:因为 21=k ,所以()211'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()251= f , 所以()()31'1=+f f 答案:3 例3.曲线 32 242y x x x =--+在点(13)-,处的切线方程是 。 解析: 443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-, 带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 考点三:导数的几何意义的应用。 例4.已知曲线C : x x x y 232 3+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析: 直线过原点,则 ()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02 0300 23x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2 +-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为 ()263'02 00+-==x x x f k ,∴ 2632302 002 0+-=+-x x x x , 整理得:03200=-x x ,解得: 2 30= x 或00=x (舍),此时, 830-=y ,41-=k 。所以,直线l 的方程为x y 41 -=,切点坐标是??? ??-83,23。 考点四:函数的单调性。 例5.已知 ()132 3+-+=x x ax x f 在R 上是减函数,求a 的取值围。 解析:函数()x f 的导数为 ()163'2 -+=x ax x f 。对于R x ∈都有()0'a 时,函数()x f 在R 上存在增区间。所以,当3->a 时,函数()x f 在R 上不是单调递减函数。 综合(1)(2)(3)可知3-≤a 。 答案:3-≤a 考点五:函数的极值。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值;(2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值围。 解析:(1) 2 ()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=?? ++=?, .,解得3a =-,4b =。 (2)由(Ⅰ)可知,32()29128f x x x x c =-++, 2 ()618126(1)(2)f x x x x x '=-+=--。

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油! 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 1 1 c a <2 2 c a . 其中正确式子的序号是B

A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C .(0, 2 D .,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .92 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为 A B C D -

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

高考数学圆锥曲线专题复习

圆锥曲线 一、知识结构 1.方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上?f(x0,y 0)=0; 点P0(x0,y0)不在曲线C上?f(x0,y0)≠0 两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则 f1(x0,y0)=0 点P0(x0,y0)是C1,C2的交点? f2(x0,y0) =0 方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.

2.圆 圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: (1)标准方程 圆心在c(a,b),半径为r 的圆方程是 (x-a)2 +(y-b)2 =r 2 圆心在坐标原点,半径为r 的圆方程是 x 2 +y 2 =r 2 (2)一般方程 当D 2 +E 2 -4F >0时,一元二次方程 x 2 +y 2 +Dx+Ey+F=0 叫做圆的一般方程,圆心为(-2D ,-2 E ),半径是 2 4F -E D 22+.配方,将方程 x 2 +y 2 +Dx+Ey+F=0化为 (x+2D )2+(y+2 E )2=44 F -E D 22+ 当D 2 +E 2 -4F=0时,方程表示一个点 (-2D ,-2 E ); 当D 2 +E 2-4F <0时,方程不表示任何图形. 点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则 |MC |<r ?点M 在圆C 内,|MC |=r ?点M 在圆C 上,|MC |>r ?点M 在圆C 内, 其中|MC |=2 02 0b)-(y a)-(x +. (3)直线和圆的位置关系 ①直线和圆有相交、相切、相离三种位置关系 直线与圆相交?有两个公共点 直线与圆相切?有一个公共点 直线与圆相离?没有公共点 ②直线和圆的位置关系的判定 (i)判别式法 (ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d= 2 2 C Bb Aa B A +++与半径r 的大小关系来判 定.

文科艺术生高考数学复习试题

精心整理 文科艺术生高考复习数学试题内容:集合与简易逻辑、函数、复数、统计与概率、立体几何(平行)、程序框图 1.已知全集R U =,集合{}{}3|,5,4,3,2,1≥∈==x R x B A ,右图中阴影部分所表示的集合为() A.{}1 B.{}2,1 C.{}32,1, D.{}21,0, 2.命题“∈?x R,0123=+-x x ”的否定是() A .∈?x R,0123≠+-x x B .不存在∈x R,0123≠+-x x C .∈?x R,0123=+-x x D .∈?x R,0123≠+-x x 3.已知函数()1,0,, 0.x x x f x a x -≤?=?>?若()()11f f =-,则实数a 的值等于() A .1 B .2 C .3 D .4 4.已知ni i m -=+11,其中n m ,是实数,i 是虚数单位,则=+ni m () A .i 21+ B .i 21- C .i +2 D .i -2 5.已知,a b R ∈,命题“若1a b +=,则2212 a b +≥”的否命题是() A .若2211,2a b a b +≠+<则B .若2211,2 a b a b +=+<则 C .若221,12a b a b +<+≠则D .若221,12 a b a b +≥+=则 6.某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是() (A )10(B )11(C )12(D )16 7.“x x 22-<0”是“40<

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

高三文科数学专题复习总结-选择填空题

水寨中学2013届高三文科数学专题复习-选择填空题 选择题的解法: 解选择题的主要方法有: 1.直接法 2.图解法 3.排除法 4.特殊值法 5.推理分析法 6.验证法. 一、直接法 直接法就是通过推理或演算,直接从选择支中选取正确答案的方法。 例1:曲线311y x =+在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A.-9 B.-3 C.9 D.15 二、图解法 据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出 正确判断的方法叫图解法或数形结合法 图解法体现了数形结合的思想。它是将函数、方程、不等式,甚至某些“式 子”以图形表示后,再设法解决的基本方法。其思维形象直观、生动活泼。 图解法,不但要求我们能建立起由“数”到“形”的联想,同时还必须自觉 地将“形”转化到“数”。 例2:函数2ln 2(0)()21(0)x x x x f x x x ?-+>=?+≤? 的零点的个数( ) A.0 B.1 C.2 D.3 三、排除法:也称筛选法(或淘汰法),结合估算、特例、逻辑分析等手段否定三 个选项,从而得到正确的选项. 例3:过抛物线y 2=4x 的焦点,作直线与此抛物线相交于两点P 和Q ,那么线段 PQ 中点的轨迹方程是______。 A. y 2=2x -1 B. y 2=2x -2 C. y 2=-2x +1 D. y 2=-2x +2 ()()22 013()A 10 B 01 C 1 D 33 6b a x x b ax a a a a <<+->-<<<<<<<<例4:设,若关于的不等式的解集中的整数恰有个,则 .... 四、特殊化法 用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各 个选项进行检验,从而作出正确判断,常用的特例有特殊数值、特殊数列、特殊 函数、特殊图形、特殊角、特殊位置等。

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线11与12是同一平面两条互相垂直的直线, 交点是A ,点B 、D 在直线11上(B 、 D 位于点A 右侧),且|AB|=4 , |AD|=1 , M 是该平面上的一个动点, M 在l i 上的射影点 是 N ,且 |BN|=2|DM|. (I )建立适当的坐标系,求动点 M 的轨迹C 的方程. (II )过点D 且不与11、12垂直的直线1交(I )中的轨迹C 于E 、F 两点;另外平面上的点 G 、 求点G 的横坐标的取值围. M ___ B ___________________ A D N B 11 、3 e 2. 设椭圆的中心是坐标原点,焦点在 x 轴上,离心率 2,已知 点P(0,3) 到这个椭圆 上的点的最远距离是 4,求这个椭圆的方程. H 满足: AD( R); G E G F 2G H ; G H E F 0. 12

2 2 C x y 1( b 0) 3. 已知椭圆/ b2的一条准线方程是25 , 4其左、右顶点分别

(I) 求椭圆C i的方程及双曲线C2的离心率; (H)在第一象限取双曲线C2上一点P,连结AP交椭圆C i于点M,连结PB并延长交椭 圆C i于点N,若AM MP.求证:MN ?AB 0. 4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45。的直线交 椭圆于A, B两点.设AB中点为M,直线AB与OM的夹角为 a. (1) 用半焦距c表示椭圆的方程及tan ; (2) 若2b>0)的离心率 3 ,过点A (0, -b)和B (a, 0)的直线 ,3 与原点的距离为 2 (1)求椭圆的方程 (2)已知定点E (-1, 0),若直线y= kx + 2 (k乒0与椭圆交于C D两点问:是否存在k的值,使以CD 为直径的圆过E点?请说明理由 2 2 C x y 是A、B;双曲线, a2b2 1 的一条渐近线方程为3x- 5y=0. 2 x 2 5.已知椭圆a

高考数学一轮复习专题突破训练圆锥曲线

圆锥曲线 一、填空题 1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值 为___ 2 __________。 2、(2013年江苏高考)双曲线19 162 2=-y x 的两条渐近线的方程为 。 3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为 )0,0(122 22>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆 C 的离心率为 。 4、( 南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C : y x 42=的焦点为F ,定点)0, 22(A ,若射线FA 及抛物线C 相交于点M ,及抛物线C 的准线相交于点N ,则FM :MN= 5、(苏锡常镇四市 高三教学情况调研(二))已知双曲线22 221(,0) x y a b a b -=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲ 6、(泰州市 高三第二次模拟考试)已知双曲线22 14x y m -=的渐近线方程为 2 y x =± ,则m = ▲

7、(盐城市 高三第三次模拟考试)若抛物线28y x =的焦点F 及双曲线 22 13x y n -=的一个焦点重合,则n 的值为 ▲ 8、( 江苏南京高三9月调研)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近 线方程 为y =±3x ,则该双曲线的离心率为 ▲ 9、( 江苏苏州高三9月调研)已知双曲线22 15 x y m -=的右焦点及抛物线 212y x =的焦点相同,则此双曲线的渐近线方程为 ▲ 10、(南京市、盐城市 高三)若双曲线222(0)x y a a -=>的右焦点及抛物线 24y x =的焦点重合,则a = ▲ . 11、(南通市 高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物 线24y x =焦点的双曲线的方程是 12、(苏州市 高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为 13、(泰州市 高三上期末)双曲线12222=-b y a x 的右焦点到渐近线的距离是其 到左顶点距离的一半,则双曲线的离心率e = ▲ 14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线22 19x y m -=的一个焦点为(5,0),则实数 m = ▲ 15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐 标系xOy 中,双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线及抛物线y 2=4x Y

高考文科数学专题复习导数训练题(文)

高考文科数学专题复习导数训练题(文) 一、考点回顾 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义。 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用。 3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213f x x x =++的导函数,则(1)f '-的值是 。 解析: ()2'2+=x x f ,所以()3211'=+=-f 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 例2. 已知函数()y f x =的图象在点(1 (1))M f ,处的切线方程是1 22y x = +,则 (1)(1)f f '+= 。 解析:因为 21= k ,所以()211'= f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25 ,所 以 ()25 1= f ,所以()()31'1=+f f 答案:3

例3.曲线 32 242y x x x =--+在点(13)-,处的切线方程是 。 解析: 443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-, 带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00 ≠x ,求直线l 的方程及切点坐标。 解析: 直线过原点,则 ()000 ≠= x x y k 。由点 () 00,y x 在曲线C 上,则 02 30023x x x y +-=,∴?2302 00 0+-=x x x y 。又263'2 +-=x x y ,∴ 在 ()00,y x 处 曲线C 的切线斜率为 ()263'02 00+-==x x x f k ,∴?2632302 002 0+-=+-x x x x ,整理 得:0 3200=-x x ,解得: 230= x 或00=x (舍),此时,830-=y ,41 - =k 。所以,直线l 的方程为 x y 41 -=,切点坐标是??? ??-83,23。 答案:直线l 的方程为 x y 41 -=,切点坐标是??? ??-83,23 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 解析:函数()x f 的导数为 ()163'2 -+=x ax x f 。对于R x ∈都有()0'

数学高考圆锥曲线压轴题

数学高考圆锥曲线压轴 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

数学高考圆锥曲线压轴题经典预测一、圆锥曲线中的定值问题 ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的离心率e= 3 2,a+b=3. (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值. ★★如图,椭圆C:x2 a2+ y2 b2=1(a>b>0)经过点P(1, 3 2),离心率e= 1 2,直 线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3若存在,求λ的值;若不存在,说明理由. ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的左右焦点分别是F1,F2,离心率为 3 2,过 F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围; (Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只 有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明 1 kk1+ 1 kk2 为定值,并求出这个定值. - 2 -

二、圆锥曲线中的最值问题 +y2 b2=1( a>b>0)的离心率为 (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. - 3 -

高考文科数学一轮复习专题 集合(学生版)

专题1:集合 【考试要求】 1、集合的含义与表示 (1)了解集合的含义、元素与集合的“属于”关系。 (2)能用自然语言、图形语言、集合语言(列举法和描述法)描述不同的具体集合。 2、集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集。 (2)在具体情境中,了解全集与空集的含义。 3、集合的基本运算 (1)理解两个集合并集与交集的含义,会求两个简单集合的并集和交集。 (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集。 (3)能用Venn 图表达集合的关系及运算。 【知识要点】 1、元素与集合 (1)集合中元素的三个特性:、、。 (2)集合中元素与集合的关系: 2、集合间的基本关系: 思考:a {}a ;?{0};?{}? 感悟:正确理解集合的含义,正确使用集合的基本符号。 3、集合的基本运算 是任何非空集A ??,?B(B ≠?)

4、常用的结论 (1))()()(B C A C B A C U U ?=?B)(C )()(U ?=?A C B A C U (2)A B A B ??= ;A B A B ??= 【考点精练】 考点一:集合的有关概念 1、已知集合2{2013,10122013,2012}A a a a =+-+,且2013A ∈,求实数a 的取值集合。 变式:已知集合{,,1}b a a 与集合2{,,0}a a b +相等,求20132013a b +的值。 2、用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则由:17A ;5-A ;17B 。 3、设集合{1,1,3}A =-,2{2,4}B a a =++,则{3}A B = 时,实数a 的值为。 考点二:集合间的基本关系 1、设全集为R ,集合{|21}M x y x ==+,2 {|}N y y x ==-,则( ) A 、M N ? B 、N M ? C 、M N = D 、{(1,1)}M N =-- 2、设集合{(,)|46}A x y x y =+=,{(,)|327}B x y x y =+=,则满足()C A B ? 的集合C 的个数是( )A 、0 B 、1 C 、2 D 、3 3、若x A ∈,则 1A x ∈,就称A 是伙伴关系的集合,集合11 {1,0,,,1,2,3}32 M =-的所有非空子集中具有伙伴关系的集合各数是。 4、设2 {|8150}A x x x =-+=,{|10}B x ax =-= (1)若1 5 a =,试判定集合A 与B 的关系;(2)若B A ?,求实数a 组成的集合C 。

2020高考数学圆锥曲线复习方法

2020高考数学圆锥曲线复习方法 2017高考数学圆锥曲线复习方法 圆锥曲线之所以叫做圆锥曲线,是因为它是从圆锥上截出来的。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直于锥轴的平面去截圆锥,得到了圆;把平面渐渐倾斜,得到了 椭圆;当平面倾斜到"和且仅和"圆锥的一条母线平行时,得到了抛物线;用平行圆锥的轴的平面截取,可得到双曲线的一边,以圆锥顶点 做对称圆锥,则可得到双曲线。 在高中的学习中,平面解析几何研究的两个主要问题,一个是根据已知条件,求出表示平面曲线的方程;而另一个就是通过方程,研 究平面曲线的性质. 那么接下来,我们就就着这两个问题来说啦 1、曲线与方程 首先第一个问题,我们想到的就是曲线与方程的这部分内容了。 在学习圆锥曲线这部分内容之前,我们最早接触到的就是曲线与方程这部分内容。在这部分呢,我们要注意到的是几种常见求轨迹 方程的方法。在这里呢,简单的说一下,一共有四种方法:1.直接 法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的 几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这 种方法叫直接法. 2、定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方 法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 3、相关点法

若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法). 4、待定系数法 求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求 (二)椭圆,双曲线,抛物线 这部分就可以研究第二个问题了呢。在椭圆,双曲线以及抛物线里,最最重要的就是他们的标准方程,因为我们可以从它们的标准方程中看到许多东西,包括顶点,焦点,图形的画法等等等等,所以这个呢是要求我们必须要会的。(不会的通宵快去恶补~~~) 在一般做题的时候,我们要首先要根据题意来画图,这点特别重要,我们要清楚题目要我们求什么才能继续做下去不是。接下来就是根据题意来写过程了,我们的一般步骤呢都是建系,设点,联立方程,化简,判断△,韦达定理,列关系式,整理,作答。在考试中,我们按照步骤一步一步的写,写到韦达定理至少8分有了。当然了,各圆锥曲线的几何性质也尤其重要,包括离心率,顶点,对称性,范围,以及焦点弦,准线,渐近线等等。这些性质大家也要熟练掌握并且会应用。在这部分呢,还有很多很多的专题,譬如弦长问题,那大家还记得弦长公式吗?中点弦问题,我们通常会用到点差法,那么何为点差法呢?就是把两点坐标代入曲线方程作差后得到直线的斜率和弦中点坐标之间的关系式,这种方法。还有一类问题就是直线与圆锥曲线的位置关系。分为三大类:有直线与椭圆的位置关系,就是看△;直线与双曲线的位置关系,先看联立之后的方程中的a,如果a=0方程有一解,直线与双曲线有一个公共点(直线与渐近线平行),a≠0的时候,还是看△啦;而直线与抛物线与直线与双曲线的位置关系是类似的,当a=0直线与抛物线有一个公共点(直线与抛物线的轴平行或重合),a≠0的时候,还是看△。

高考文科数学专题复习导数训练题(汇编)

高考文科数学专题复习导数训练题(文) 一、考点回顾和基础知识 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容.考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义. 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用. 3.应用导数解决实际问题,关键是建立适当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用和端点值进行比较,也可以得知这就是最值. 2.导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 3.求导数的四则运算法则: ''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=?+++=? ''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数)

相关文档
最新文档