2014高考真题+模拟新题 理科数学分类汇编:J单元 计数原理 纯word版解析可编辑
2014年高考真题——理科数学(全国大纲卷)精校版 Word版含解析(2014高考)

2014年普通高等学校统一考试(大纲)理科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设103iz i=+,则z 的共轭复数为 ( )A .13i -+B .13i --C .13i +D .13i - 【答案】D .2.设集合2{|340}M x x x =--<,{|05}N x x =≤≤,则M N =( )A .(0,4]B .[0,4)C .[1,0)-D .(1,0]- 【答案】B.3.设sin33,cos55,tan35,a b c =︒=︒=︒则 ( )A .a b c >>B .b c a >>C .c b a >>D .c a b >> 【答案】C .4.若向量,a b 满足:()()1,,2,a a b a a b b =+⊥+⊥则b = ( )A .2BC .1D .2【答案】B .5.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种 【答案】C .6.已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F ,离心率为3,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为 ( )A .22132x y +=B .2213x y += C .221128x y += D .221124x y += 【答案】A .7.曲线1x y xe -=在点(1,1)处切线的斜率等于 ( )A .2eB .eC .2D .1 【答案】C .8.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为 ( ) A .814πB .16πC .9πD .274π【答案】A .9.已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若122F A F A =,则21cos AF F ∠=( )A .14 B .13 C .4 D .3【答案】A .10.等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( )A .6B .5C .4D .3 【答案】C .11.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为( )A .14 B.4C.4 D .12 【答案】B.12.函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是( )A .()y g x =B .()y g x =-C .()y g x =-D .()y g x =-- 【答案】D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.8⎛⎫的展开式中22x y 的系数为 .(用数字作答) 【答案】70.14.设,x y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为 .【答案】5.15.直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为()1,3,则1l 与2l 的夹角的正切值等于 . 【答案】43. 16.若函数()cos 2sin f x x a x =+在区间(,)62ππ是减函数,则a 的取值范围是 . 【答案】(],2-∞.三、解答题 :解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知3cos 2cos a C c A =,1tan 3A =,求B .解:由题设和正弦定理得13sin cos 2sin cos ,3tan cos 2sin .tan ,cos 2sin ,3A C C A A C C A C C =\==\= ()()1tan tan tan ,tan tan 180tan 1,2tan tan 1A C CB AC A C A C +轾\=\=?+=-+==-臌-又0180,135B B?<癨? .18. (本小题满分12分)等差数列{}n a 的前n 项和为n S ,已知110a =,2a 为整数,且4n S S ≤. (I )求{}n a 的通项公式; (II )设11n n n b a a +=,求数列{}n b 的前n 项和n T . 解:(I )由110a =,2a 为整数知,等差数列{}n a 的公差d 为整数.又4n S S ≤,故450,0,a a ≥≤于是1030,1040d d +≥+≤,解得10532d -#-,因此3d =-,故数列{}n a 的通项公式为133n a n =-.(II )()()11111331033103133n b n n n n ⎛⎫==- ⎪----⎝⎭,于是()12111111111137104710313331031010103n n n T b b b n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥----⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.19. (本小题满分12分)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===.(I )证明:11AC A B ⊥;(II )设直线1AA 与平面11BCC B 1A AB C --的大小.1解:解法一:(I )1A D ^平面ABC ,1A D Ì平面11AA C C ,故平面11AA C C ^平面ABC .又BC AC ^,BC \^平面11AA C C .连结1A C ,∵侧面11AA C C 为菱形,故11AC AC ^,由三垂线定理得11AC A B ^;(II )BC ^平面11,AAC C BC Ì平面11BCC B ,故平面11AA C C ^平面11BCC B .作11,A E CC E ^为垂足,则1A E ^平面11BCC B .又直线1AA ∥平面11BCC B ,因而1AE 为直线1AA 与平面11BCC B 的距离,1A E=1A C 为1ACC Ð的角平分线,故11A D A E ==.作,DF AB F ^为垂足,连结1A F ,由三垂线定理得1A F AB ^,故1AFD Ð为二面角1A ABC --的平面角.由1AD =得D 为AC 的中点,111tan 2A DAC BCDF A FD AB DF´=??=∴二面角1A AB C --的大小为1解法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 长为单位长,建立如图所示的空间直角坐标系C xyz -.由题设知1A D 与z 轴平行,z 轴在平面11AA C C 内. (I)设()1,0,A a c,由题设有()()2,2,0,0,0,1,a A B £则()()()()()11112,1,0,2,0,0,2,0,,4,0,,,1,.AB AC AA a c AC AC AA a c BA a c =-=-=-=+=-=-由12AA =得2,即2240a a c -+=(①).于是22111140,AC BA a a c AC A B ?-+=\^.(II )设平面11BCC B 的法向量(),,,m x y z =则1,,m CB m BB ^^即10,0m CBm BB ??.()0,1,0,CB =()112,0,,BB AA a c ==-故0y =,且()20a x cz -+=.令x c =,则()2,,0,2z a m c a =-=-,点A到平面11BCC B 的距离为c o s ,C A m C A mC A c m×?==.又依题设,点A 到平面11BCC B的距离为,c \=3a =(舍去)或1a =.于是(11,0AA =-.设平面1ABA 的法向量(),,n p q r =,则1,n AA n AB ^^,即10,0,n AA n AB p r ??\-=,故且20p q -+=.令p =则1,q r ==()3,23n =.又()0,0,1p =为平面ABC 的法向量,故1cos ,4n p n p n p⋅==⋅,∴二面角1A AB C --的大小为1arccos 4. 20. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(I )求同一工作日至少3人需使用设备的概率;(II )X 表示同一工作日需使用设备的人数,求X 的数学期望.解:记i A 表示事件:同一工作日乙、丙恰有i 人需使用设备,0,1,2i =;B 表示事件:甲需使用设备;C 表示事件:丁需使用设备;D 表示事件:同一工作日至少3人需使用设备. (I )122D A B C A B A B C =⋅⋅+⋅+⋅⋅,又()()()()220.6,0.4,0.5,0,1,2.ii P B P C P A C i P D ===⨯=∴=()()()()()()()()()()()()1221221220.31.P A B C A B A B C P A B C P A B P A B C P A P B P C P A P B P A P B P C ⋅⋅+⋅+⋅⋅=⋅⋅+⋅+⋅⋅=++=(II )X 的可能取值为0,1,2,3,4.()()()()()()()200010.60.510.40.06P X P B A C P B P A P C ==⋅⋅==-⨯⨯-=,()()()()()()()()()()()200100110.60.5P X P B A C B A C B A C P B P A P C P B P A P C P B P A P C ==⋅⋅+⋅⋅+⋅⋅=++=⨯()()()()()()22210.410.60.50.410.620.510.40.25,4P X P A B C ⨯-+-⨯⨯+-⨯⨯⨯-===⋅⋅=()()()()()()()(220.50.60.40.06,340.25,210P A P B P C P X P D P X P X P X =⨯⨯===-====-=()()()13410.060.250.250.060.38.P X P X P X -=-=-==----=∴数学期望()()()()()00112233440.2520.3830.2540.062.EX P XP XP XP XP X=?+?+?+?+?=+???21. (本小题满分12分)已知抛物线C :22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且5||||4QF PQ =. (I )求C 的方程;(II )过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l '与C 相较于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程. 解:(I )设()0,4Q x ,代入22y px =,得00888,,.22p p x PQ QF x p p p=\==+=+.由题设得85824p p p+= ,解得2p =-(舍去)或2p =,∴C 的方程为24y x =;(II )由题设知l 与坐标轴不垂直,故可设l 的方程为()10x my m =+ ,代入24y x =得2440y my --=.设()()1122,,,,A x y B x y 则124,y y m +=124y y =-.故AB 的中点为()()221221,2,41D m m AB y m +=-=+.又l ¢的斜率为,m l ¢-\的方程为2123x y m m=-++.将上式代入24y x =,并整理得()2244230y y m m+-+=.设()()3344,,,,M x y Bx y 则()234344,423y y y y m m+=-=-+.故MN的中点为(223422412223,,m E m MN y mmm+骣÷ç++-=-=÷ç÷ç桫 由于MN 垂直平分线AB ,故,,,A M B N 四点在同一圆上等价于12AE BE MN ==,从而22211,44AB DE MN +=即()()()2222222244121224122m m m m m m m ++骣骣鼢珑+++++=鼢珑鼢珑桫桫,化简得210m -=,解得1m =或1m =-.所求直线l 的方程为10x y --=或10x y +-=.22. (本小题满分12分)函数()()()ln 11axf x x a x a=+->+. (I )讨论()f x 的单调性;(II )设111,ln(1)n n a a a +==+,证明:23+22n a n n <≤+. 解:(I )()f x 的定义域为()()()()()2221,,1x x a a f x x x a ⎡⎤--⎣⎦'-+∞=++.(i )当12a <<时,若()21,2x a a ∈--,则()()0,f x f x '>在()21,2a a --上是增函数;若()22,0,x a a ∈-则()()0,f x f x '<在()22,0aa -上是减函数;若()0,,x ∈+∞则()()0,f x f x '>在()0,+∞上是增函数. (ii )当2a =时,()()0,0f x f x ⅱ?成立当且仅当()0,x f x =在()1,-+ 上是增函数.(iii )当2a >时,若()1,0x ?,则()()0,f x f x '>在是()1,0-上是增函数;若()20,2x a a ∈-,则()()0,f x f x '<在()20,2a a -上是减函数;若()22,x a a ∈-+∞,则()()0,f x f x '>在()22,a a -+∞上是增函数.(II )由(I )知,当2a =时,()f x 在()1,-+ 是增函数.当()0,x ? 时,()()00f x f >=,即()()2ln 102xx x x +>>+.又由(I )知,当3a =时,()f x 在[)0,3上是减函数;当()0,3x Î时,()()00f x f <=,即()()3l n 1033xx x x +<<<+.下面用数学归纳法证明2322n a n n <++. (i )当1n =时,由已知1213a <=,故结论成立;(ii )假设当n k =时结论成立,即2322k a k k <++.当1n k =+时,()()112323223322ln 1ln 1,ln 1ln 12323232322k k k k k k a a a a k k k k k k ++创骣骣++鼢珑=+>+>==+?<=鼢珑鼢珑桫桫++++++++,即当1n k =+时有2333k a k k <++,结论成立.根据(i )、(ii )知对任何n N *Î结论都成立.。
2014-2019年高考数学真题分类汇编专题12:计数原理

2014-2019年高考数学真题分类汇编专题12:计数原理(一)排列组合选择题1.(2014•大纲版理)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( C ) A .60种B .70种C .75种D .150种2.(2014•安徽理)从正方体六个面的对角线中任取两条作为一对.其中所成的角为60︒的共有( C ) A .24对B .30对C .48对D .60对3.(2014•广东理)设集合1{(A x =,2x ,3x ,4x ,5)|{1i x x ∈-,0,1},{1i =,2,3,4,5},那么集合A 中满足条件“123451||||||||||3x x x x x ++++剟”的元素个数为( D )A .60B .90C .120D .1304.(2014•辽宁理)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为( D ) A .144B .120C .72D .245.(2014•四川理)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( B ) A .192种B .216种C .240种D .288种6.(2014•重庆理)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( B ) A .72B .120C .144D .1687.(2015•广东文)若集合{(E p =,q ,r ,)|04s p s <剟,04q s <剟,04r s <剟且p ,q ,r ,}s N ∈,{(F t =,u ,v ,)|04w t u <剟,04v w <剟且t ,u ,v ,}w N ∈,用()card X 表示集合X 中的元素个数,则card (E )()(card F += A ) A .200B .150C .100D .508.(2015•四川理)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有(B ) A .144个B .120个C .96个D .72个9.(2016•新课标Ⅱ理)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( B )A .24B .18C .12D .910.(2016•四川理)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( D ) A .24B .48C .60D .7211.(2017•新课标Ⅱ理)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( D ) A .12种B .18种C .24种D .36种12.(2018•上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设1AA 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以1AA 为底面矩形的一边,则这样的阳马的个数是( D )A .4B .8C .12D .16填空题1.(2014•北京理)把5件不同产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有 36 种.2.(2014•浙江理)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 60 种(用数字作答).3.(2015•广东理)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 1560 条毕业留言.(用数字作答) 4.(2015•上海理)在1020151(1)x x++的展开式中,2x 项的系数为 45 (结果用数值表示). 5.(2015•上海文理)在报名的3名男老师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 120 (结果用数值表示).6.(2017•天津理)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有 1080 个.(用数字作答)7.(2017•浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有 660 种不同的选法.(用数字作答) 8.(2017•上海)若排列数6654m P =⨯⨯,则m = 3 .9.(2018•浙江)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成 1260 个没有重复数字的四位数.(用数字作答)10.(2018•新课标Ⅰ理)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有 16 种.(用数字填写答案)11.(2019•上海)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有 24 种(结果用数值表示)(二)二项式定理选择题1.(2014•湖北理)若二项式7(2)a x x +的展开式中31x的系数是84,则实数(a = C )A .2BC .1D .42.(2014•湖南理)51(2)2x y -的展开式中23x y 的系数是( A )A .20-B .5-C .5D .203.(2014•四川理)在6(1)x x +的展开式中,含3x 项的系数为( C ) A .30B .20C .15D .104.(2014•浙江理)在64(1)(1)x y ++的展开式中,记m n x y 项的系数为(,)f m n ,则(3f ,0)(2f +,1)(1f +,2)(0f +,3)(= C )A .45B .60C .120D .2105.(2015•新课标Ⅰ理)25()x x y ++的展开式中,52x y 的系数为( C ) A .10B .20C .30D .606.(2015•湖北理)已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( D ) A .122B .112C .102D .927.(2015•湖南理)已知5的展开式中含32x 的项的系数为30,则(a = D )A B .C .6 D .6-8.(2015•陕西理)二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则(n = B ) A .7B .6C .5D .49.(2016•四川理)设i 为虚数单位,则6()x i +的展开式中含4x 的项为( A ) A .415x -B .415xC .420ix -D .420ix10.(2017•新课标Ⅰ理)621(1)(1)x x++展开式中2x 的系数为( C ) A .15B .20C .30D .3511.(2017•新课标Ⅲ理)5()(2)x y x y +-的展开式中的33x y 系数为( C ) A .80-B .40-C .40D .8012.(2018•新课标Ⅲ理5)252()x x+的展开式中4x 的系数为( C )A .10B .20C .40D .8013.(2019•新课标Ⅲ理4)24(12)(1)x x ++的展开式中3x 的系数为( A ) A .12B .16C .20D .24填空题1.(2014•新课标Ⅱ理)10()x a +的展开式中,7x 的系数为15,则a =12. 2.(2014•新课标Ⅰ理)8()()x y x y -+的展开式中27x y 的系数为 20- .(用数字填写答案) 3.(2014•大纲版)6(2)x -的展开式中3x 的系数是 160- .(用数字作答) 4.(2014•大纲版)8的展开式中22x y 的系数为 70 .(用数字作答)5.(2014•安徽理)设0a ≠,n 是大于1的自然数,(1)n x a +的展开式为2012n n a a x a x a x +++⋯+.若点(i A i ,)(0i a i =,1,2)的位置如图所示,则a = 3 .6.(2014•山东理)若26()bax x+的展开式中3x 项的系数为20,则22a b +的最小值为 2 .7.(2015•新课标Ⅱ理)4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a = 3 . 8.(2015•北京理)在5(2)x +的展开式中,3x 的系数为 40 (用数字作答) 9.(2015•福建理)5(2)x +的展开式中,2x 的系数等于 80 .(用数字作答) 项的系数,属于基础题.10.(2015•广东理)在41)的展开式中,x 的系数为 6 . 11.(2015•上海文)在621(2)x x +的二项式中,常数项等于 240 (结果用数值表示). 12.(2015•四川理)在5(21)x -的展开式中,含2x 的项的系数是 40- (用数字填写答案). 13.(2015•天津理)在61()4x x -的展开式中,2x 的系数为1516 . 14.(2015•重庆理)35(x 的展开式中8x 的系数是52 (用数字作答). 15.(2015•安徽理)371()x x+的展开式中的5x 的系数是 35 (用数字填写答案)16.(2016•新课标Ⅰ理)5(2x 的展开式中,3x 的系数是 10 .(用数字填写答案) 17.(2016•天津理)281()x x-的展开式中7x 的系数为 56- (用数字作答)18.(2016•上海文理)在2)n x 的二项式中,所有的二项式系数之和为256,则常数项等于 112 .19.(2016•山东理)若25(ax+的展开式中5x 的系数是80-,则实数a = 2- .20.(2016•北京理)在6(12)x -的展开式中,2x 的系数为 60 .(用数字作答)21.(2017•浙江)已知多项式32543212345(1)(2)x x x a x a x a x a x a ++=+++++,则4a = 16 ,5a = . 22.(2017•山东理)已知(13)n x +的展开式中含有2x 的系数是54,则n = 4 . 23.(2018•天津理10)在5(x 的展开式中,2x 的系数为52.24.(2018•浙江)二项式81)2x的展开式的常数项是 7 . 25.(2018•上海)在7(1)x +的二项展开式中,2x 项的系数为 21 (结果用数值表示). 26.(2019•天津理10)831(2)8x x -的展开式中的常数项为 28 . 27.(2019•上海)在6(x+的展开式中,常数项等于 15 .28.(2019•浙江)在二项式9)x 的展开式中,常数项是 系数为有理数的项的个数是 5 .解答题1.(2014•江西文)将连续正整数1,2,⋯,*()n n N ∈从小到大排列构成一个数123n ⋯,()F n 为这个数的位数(如12n =时,此数为123456789101112,共15个数字,(12)15)F =,现从这个数中随机取一个数字,()p n 为恰好取到0的概率. (1)求(100)p ;(2)当2014n …时,求()F n 的表达式;(3)令()g n 为这个数中数字0的个数,()f n 为这个数中数字9的个数,()()()h n f n g n =-,{|()1S n h n ==,100n …,*}n N ∈,求当n S ∈时()p n 的最大值.2.(2016•江苏)(1)求346774C C -的值; (2)设m ,*n N ∈,n m …,求证:21212(1)(2)(3)(1)(1)m m m m m m m m m n n n m C m C m C nC n C m C +++-+++++++⋯+++=+.3.(2018•江苏26)设*n N ∈,对1,2,⋯⋯,n 的一个排列12n i i i ⋯⋯,如果当s t <时,有s t i i >,则称(s i ,)t i 是排列12n i i i ⋯⋯的一个逆序,排列12n i i i ⋯⋯的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,⋯,n 的所有排列中逆序数为k 的全部排列的个数. (1)求3f (2),4f (2)的值;(2)求n f (2)(5)n …的表达式(用n 表示).4.(2019江苏24)设2012(1)n n n x a a x a x a x +=+++⋯+,4n …,*n N ∈.已知23242a a a =. (1)求n 的值;(2)设(1n a +=+a ,*b N ∈,求223a b -的值.。
高考数学分类汇编(高考真题 模拟新题)计数原理 文

J单元计数原理J1 基本计数原理J2 排列、组合7.[2014·全国卷] 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A.60种 B.70种C.75种 D.150种7.C [解析] 由题意,从6名男医生中选出2名,5名女医生中选出1名组成一个医疗小组,不同的选法共有C26C15=75(种).J3 二项式定理13.[2014·全国卷] (x-2)6的展开式中x3的系数为________.(用数字作答)13.-160 [解析] (x-2)6的展开式的通项为T r+1=C r6x6-r(-2)r,令6-r=3,解得r =3.因为C36(-2)3=-160,所以x3的系数为-160.J4 单元综合2.[2014·汕头一模] 某同学有2本同样的画册,3本同样的集邮册,从中取出4本赠送给4位朋友,每人1本,则不同的赠送方法共有( )A.4种 B.10种C.18种 D.20种2.B [解析] 本题可分两类:一是取出1本画册,3本集邮册,此时赠送方法有C14=4(种);二是取出2本画册,2本集邮册,此时赠送方法有C24=6(种).故赠送方法共有10种.3.[2014·惠州调研] 某班级要从4名男生、2名女生中选派4人参加社区服务,如果要求至少有1名女生,那么不同的选派方案的种数为( )A.12 B.14C.16 D.103.B [解析] 从6人中选4人的方案有C46=15(种),没有女生的方案只有1种,所以满足要求的方案共有14种.4.[2014·成都一诊] 世界华商大会的某分会场有A,B,C三个展台,将甲、乙、丙、丁4名“双语”志愿者分配到这三个展台,每个展台至少1人,其中甲、乙两人被分配到同一展台的不同分法的种数为( )A.12 B.1.C.8 D.64.D [解析] 把甲、乙作为一个整体后全排列,则不同的分法共有A33=6(种).1。
2014年高考试题理科数学真题及答案(新课标II)Word版解析

2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1} B. {2}C. {0,1}D. {1,2}【答案】D 【解析】把M={0,1,2}中的数,代入不等式,023-2≤+x x 经检验x=1,2满足。
所以选D.2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) A. - 5 B. 5C. - 4+ iD. - 4 - i【答案】A 【解析】.,5-4-1-∴,2-,2212211A z z i z z z i z 故选关于虚轴对称,与==+=∴+=3.设向量a,b 满足|a+b|a-b|=,则a ⋅b = ( ) A. 1 B. 2C. 3D. 5【答案】A 【解析】.,1,62-102∴,6|-|,10||2222A b a b a b a b a b a b a b a 故选联立方程解得,,==+=++==+4.钝角三角形ABC 的面积是12,AB=1,,则AC=( )A. 5B.C. 2D. 1【答案】B 【解析】..5,cos 2-43π∴ΔABC 4π.43π,4π∴,22sin ∴21sin 1221sin 21222ΔABC B b B ac c a b B B B B B B ac S 故选解得,使用余弦定理,符合题意,舍去。
为等腰直角三角形,不时,经计算当或=+======•••==5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A. 0.8B. 0.75C. 0.6D. 0.45【答案】A【解析】.,8.0,75.06.0,Appp故选解得则据题有优良的概率为则随后一个空气质量也设某天空气质量优良,=•=6.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727 B.59 C.1027D.13【答案】C【解析】..2710π54π34-π54π.342π944.2342π.546π96321Cvv故选积之比削掉部分的体积与原体体积,高为径为,右半部为大圆柱,半,高为小圆柱,半径加工后的零件,左半部体积,,高加工前的零件半径为==∴=•+•=∴=•=∴π7.执行右图程序框图,如果输入的x,t均为2,则输出的S= ()A. 4B. 5C. 6D. 7【答案】 D【解析】8.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=A. 0B. 1C. 2D. 3【答案】D【解析】..3.2)0(,0)0(.11-)(),1ln(-)(Daffxaxfxaxxf故选联立解得且==′=∴+=′∴+=9.设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 2 【答案】 B 【解析】..8,)2,5(07-013--2B z y x y x y x z 故选取得最大值处的交点与在两条直线可知目标函数三角形,经比较斜率,画出区域,可知区域为==+=+=10.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334B.938 C. 6332 D. 94【答案】 D【解析】..49)(4321.6),3-2(23),32(233-4322,343222,2ΔOAB D n m S n m n m n n m m n BF m AF B A 故选,解得直角三角形知识可得,,则由抛物线的定义和,分别在第一和第四象限、设点=+••=∴=+∴=+=•=+•===11.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1, 则BM 与AN 所成的角的余弦值为( )A. 110B. 25C.30D.2【答案】 C 【解析】..10305641-0θcos 2-1-,0(2-1,1-(∴).0,1,0(),0,1,1(),2,0,2(),2,2,0(,2,,111111C AN BM N M B A C C BC AC Z Y X C C A C B C 故选)。
2014汇编计数原理(末一二模)理

2014汇编计数原理(一、二模)(理)
海淀一模:6. 小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4
个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有
A. 4种
B.5种
C.6种
D.9种
西城:13. 科技活动后,3名辅导教师和他们所指导的3名获奖学生合影留念(每
名教师只指导一名学生),要求6人排成一排,且学生要与其指导教师相邻,那么不同的站法种数是______.
朝阳:
(13)有标号分别为1,2,3的红色卡片3张,标号
分别为1,2,3的蓝色卡片3张,现将全部的6张卡片放在2
行3列的格内(如图).若颜色相同的卡片在同一行,则
不同的放法种数为.(用数字作答)
石景山:13.各大学在高考录取时采取专业志愿优先的录取原则.一考生从
某大学所给的7个专业中,选择3个作为自己的第一二三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有_种不同的填报专业志愿的方法(用数字作答)
顺义:5.将4名学生分配到甲、乙、丙3个实验室准备实验,每个实验室至少
分配1名学生的不同分配方案共有
A.12种 B 24种 C. 36种 D. 48种
房山:(6)在“学雷锋,我是志愿者”活动中,有6名志学优网愿者要分配到3
个不同的社区参加服务,每个社区分配2名志愿者,其中甲、乙两人分到同一社区,则不同的分配方案共有
(A)12种(B)18种
(C)36种(D)54种
东城二模:
(6)6个人站成一排,其中甲、乙必须站在两端,且丙、丁相邻,则不同站法的种数为(A)12(B)18(C)24(D)36
昌平二模:(13)选派5名学生参加四项环保志愿活动,要求每项活动至少有一人参加,则不同的选派方法共有_____种。
2014年高考真题(理科数学)全国卷 纯Word版解析可编辑

2014·全国卷(理科数学)1.[2014·全国卷] 设z =10i3+i,则z 的共轭复数为( )A .-1+3iB .-1-3iC .1+3iD .1-3i 1.D [解析] z =10i 3+i =10i (3-i )(3+i )(3-i )=10(1+3i )10=1+3i ,根据共轭复数的定义,其共轭复数是1-3i.2.、[2014·全国卷] 设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N =( ) A .(0,4] B .[0,4) C .[-1,0) D .(-1,0]2.B [解析] 因为M ={x |x 2-3x -4<0}={x |-1<x <4},N ={x |0≤x ≤5},所以M ∩N ={x |-1<x <4}∩{0≤x ≤5}={x |0≤x <4}.3.[2014·全国卷] 设a =sin 33°,b =cos 55°,c =tan 35°,则( ) A .a >b >c B .b >c >a C .c >b >a D .c >a >b3.C [解析] 因为b =cos 55°=sin 35°>sin 33°,所以b >a .因为cos 35°<1,所以1cos 35°>1,所以sin 35°cos 35°>sin 35°.又c =tan 35°=sin 35°cos 35°>sin 35°,所以c >b ,所以c >b >a .4.[2014·全国卷] 若向量a ,b 满足:|a|=1,(a +b )⊥a ,(2a +b )⊥b ,则|b |=( ) A .2 B. 2 C .1 D.224.B [解析] 因为(a +b )⊥a ,所以(a +b )·a =0,即|a|2+b·a =0.因为(2a +b )⊥b ,所以(2a +b )·b =0,即2a·b +|b|2=0,与|a|2+b·a =0联立,可得2|a|2-|b|2=0,所以|b|=2|a|= 2. 5.[2014·全国卷] 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种5.C [解析] 由题意,从6名男医生中选2名,5名女医生中选1名组成一个医疗小组,不同的选法共有C 26C 15=75(种).6.[2014·全国卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 6.A [解析] 根据题意,因为△AF 1B 的周长为43,所以|AF 1|+|AB |+|BF 1|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =43,所以a = 3.又因为椭圆的离心率e =c a =33,所以c =1,b 2=a 2-c 2=3-1=2,所以椭圆C 的方程为x 23+y 22=1.7.[2014·全国卷] 曲线y =x e x -1在点(1,1)处切线的斜率等于( ) A .2e B .e C .2 D .17.C [解析] 因为y ′=(x e x -1)′=e x -1+x e x -1,所以y =x e x -1在点(1,1)处的导数是y ′|x =1=e 1-1+e 1-1=2,故曲线y =x e x -1在点(1,1)处的切线斜率是2.8.、[2014·全国卷] 正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π48.A [解析] 如图所示,因为正四棱锥的底面边长为2,所以AE =12AC = 2.设球心为O ,球的半径为R ,则OE =4-R ,OA =R ,又知△AOE 为直角三角形,根据勾股定理可得,OA 2=OE 2+AE 2,即R 2=(4-R )2+2,解得R =94,所以球的表面积S =4πR 2=4π×⎝⎛⎭⎫942=81π4. 9.[2014·全国卷] 已知双曲线C 的离心率为2,焦点为F 1,F 2,点A 在C 上.若|F 1A |=2|F 2A |,则cos ∠AF 2F 1=( )A.14B.13C.24D.239.A [解析] 根据题意,|F 1A |-|F 2A |=2a ,因为|F 1A |=2|F 2A |,所以|F 2A |=2a ,|F 1A |=4a .又因为双曲线的离心率e =ca =2,所以c =2a ,|F 1F 2|=2c =4a ,所以在△AF 1F 2中,根据余弦定理可得cos ∠AF 2F 1=|F 1F 2|2+|F 2A |2-|F 1A |22|F 1F 2|·|F 2A |=16a 2+4a 2-16a 22×4a ×2a=14. 10.[2014·全国卷] 等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( )A .6B .5C .4D .310.C [解析] 设数列{a n }的首项为a 1,公比为q ,根据题意可得,⎩⎪⎨⎪⎧a 1q 3=2,a 1q 4=5,解得⎩⎨⎧a 1=16125,q =52,所以a n =a 1qn -1=16125×⎝⎛⎭⎫52n -1=2×⎝⎛⎭⎫52n -4,所以lg a n =lg 2+(n -4)lg 52,所以前8项的和为8lg 2+(-3-2-1+0+1+2+3+4)lg 52=8lg 2+4lg 52=4lg ⎝⎛⎭⎫4×52=4. 11.[2014·全国卷] 已知二面角α-l -β为60°,AB ⊂α,AB ⊥l ,A 为垂足,CD ⊂β,C ∈l ,∠ACD =135°,则异面直线AB 与CD 所成角的余弦值为( )A.14B.24C.34D.1211.B [解析] 如图所示,在平面α内过点C 作CF ∥AB ,过点F 作FE ⊥β,垂足为点E ,连接CE ,则CE ⊥l ,所以∠ECF =60°.过点E 作DE ⊥CE ,交CD 于点D 1,连接FD 1.不妨设FC =2a ,则CE =a ,EF =3a .因为∠ACD =135°,所以∠DCE =45°,所以,在Rt △DCE 中,D 1E =CE =a ,CD 1=2a ,∴FD 1=2a ,∴cos ∠DCF =4a 2+2a 2-4a 22×2a ×2a=24.12.[2014·全国卷] 函数y =f (x )的图像与函数y =g (x )的图像关于直线x +y =0对称,则y =f (x )的反函数是( )A .y =g (x )B .y =g (-x )C .y =-g (x )D .y =-g (-x )12.D [解析] 设(x 0,y 0)为函数y =f (x )的图像上任意一点,其关于直线x +y =0的对称点为(-y 0,-x 0).根据题意,点(-y 0,-x 0)在函数y =g (x )的图像上,又点(x 0,y 0)关于直线y =x 的对称点为(y 0,x 0),且(y 0,x 0)与(-y 0,-x 0)关于原点对称,所以函数y =f (x )的反函数的图像与函数y =g (x )的图像关于原点对称,所以-y =g (-x ),即y =-g (-x ).13.[2014·全国卷] ⎝⎛⎭⎫x y -y x 8的展开式中x 2y 2的系数为________.(用数字作答) 13.70 [解析] 易知二项展开式的通项T r +1=C r 8⎝⎛⎭⎫x y 8-r ⎝⎛⎭⎫-y x r=(-1)r C r 8x 8-3r 2y 3r 2-4.要求x 2y 2的系数,需满足8-3r 2=2且3r 2-4=2,解得r =4,所以T 5=(-1)4C 48x 2y 2=70x 2y 2,所以x 2y 2的系数为70.14.[2014·全国卷] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +2y ≤3,x -2y ≤1,则z =x +4y 的最大值为________.14.5 [解析] 如图所示,满足约束条件的可行域为△ABC 的内部(包括边界), z =x +4y 的最大值即为直线y =-14x +14z 的纵截距最大时z 的值.结合题意,当y =-14x +14z 经过点A 时,z 取得最大值.由⎩⎪⎨⎪⎧x -y =0,x +2y =3,可得点A 的坐标为(1,1), 所以z max =1+4=5. 15.、[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.15.43 [解析] 如图所示,根据题意,OA ⊥P A ,OA =2,OP =10,所以P A =OP 2-OA 2=2 2,所以tan ∠OP A =OA P A =22 2=12,故tan ∠APB =2tan ∠OP A 1-tan 2∠OP A =43, 即l 1与l 2的夹角的正切值等于43.16.、[2014·全国卷] 若函数f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,则a 的取值范围是________.16.(-∞,2] [解析] f (x )=cos 2x +a sin x =-2sin 2x +a sin x +1,令sin x =t ,则f (x )=-2t 2+at +1.因为x ∈⎝⎛⎭⎫π6,π2,所以t ∈⎝⎛⎭⎫12,1,所以f (x )=-2t 2+at +1,t ∈⎝⎛⎭⎫12,1.因为f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,所以f (x )=-2t 2+at +1在区间⎝⎛⎭⎫12,1上是减函数,又对称轴为x =a 4,∴a 4≤12,所以a ∈(-∞,2].17.[2014·全国卷] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知3a cos C =2c cos A ,tan A =13,求B .17.解:由题设和正弦定理得3sin A cos C =2sin C cos A , 故3tan A cos C =2sin C .因为tan A =13,所以cos C =2sin C ,所以tan C =12.所以tan B =tan[180°-(A +C )] =-tan(A +C ) =tan A +tan Ctan A tan C -1=-1,所以B =135°. 18.、[2014·全国卷] 等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .18.解:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0, 于是10+3d ≥0,10+4d ≤0, 解得-103≤d ≤-52,因此d =-3.故数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝⎛⎭⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎝⎛⎭⎫17-110+⎝⎛⎭⎫14-17+…+⎝⎛⎭⎫110-3n -113-3n =13⎝⎛⎭⎫110-3n -110=n 10(10-3n ).19.、[2014·全国卷] 如图1-1所示,三棱柱ABC - A 1B 1C 1中,点A 1在平面ABC 内的射影D 在AC 上,∠ACB =90°,BC =1,AC =CC 1=2.(1)证明:AC 1⊥A 1B;(2)设直线AA 1与平面BCC 1B 1的距离为3,求二面角A 1 AB C 的大小.19.解:方法一:(1)证明:因为A 1D ⊥平面ABC ,A 1D ⊂平面AA 1C 1C ,故平面AA 1C 1C ⊥平面ABC .又BC ⊥AC ,所以BC ⊥平面AA 1C 1C .连接A 1C ,因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C . 由三垂线定理得AC 1⊥A 1B .(2)BC ⊥平面AA 1C 1C ,BC ⊂平面BCC 1B 1,故平面AA 1C 1C ⊥平面BCC 1B 1. 作A 1E ⊥CC 1,E 为垂足,则A 1E ⊥平面BCC 1B 1.又直线AA 1∥平面BCC 1B 1,因而A 1E 为直线AA 1与平面BCC 1B 1的距离,即A 1E = 3.因为A 1C 为∠ACC 1的平分线,所以A 1D =A 1E = 3.作DF ⊥AB ,F 为垂足,连接A 1F .由三垂线定理得A 1F ⊥AB ,故∠A 1FD 为二面角A 1 AB C 的平面角.由AD =AA 21-A 1D 2=1,得D 为AC 中点,DF =55,tan ∠A 1FD =A 1D DF =15,所以cos ∠A 1FD =14. 所以二面角A 1 AB C 的大小为arccos 14.方法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C - xyz .由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内.(1)证明:设A 1(a ,0,c ).由题设有a ≤2,A (2,0,0),B (0,1,0),则AB →=(-2,1,0),AC →=(-2,0,0),AA 1→=(a -2,0,c ),AC 1→=AC →+AA 1→=(a -4,0,c ),BA 1→=(a ,-1,c ).由|AA 1→|=2,得(a -2)2+c 2=2,即a 2-4a +c 2=0.①又AC 1→·BA 1→=a 2-4a +c 2=0,所以AC 1⊥A 1B .(2)设平面BCC 1B 1的法向量m =(x ,y ,z ),则m ⊥CB →,m ⊥BB 1→,即m ·CB →=0,m ·BB 1→=0.因为CB →=(0,1,0),BB 1→=AA 1→=(a -2,0,c ),所以y =0且(a -2)x +cz =0.令x =c ,则z =2-a ,所以m =(c ,0,2-a ),故点A 到平面BCC 1B 1的距离为|CA →|·|cos 〈m ,CA →〉|=|CA →·m ||m |=2c c 2+(2-a )2=c .又依题设,A 到平面BCC 1B 1的距离为3,所以c =3,代入①,解得a =3(舍去)或a =1, 于是AA 1→=(-1,0,3).设平面ABA 1的法向量n =(p ,q ,r ), 则n ⊥AA 1→,n ⊥AB →,即n ·AA 1→=0,n ·AB →=0,-p +3r =0,且-2p +q =0.令p =3,则q =2 3,r =1,所以n =(3,2 3,1). 又p =(0,0,1)为平面ABC 的法向量,故 cos 〈n ,p 〉=n ·p |n ||p |=14.所以二面角A 1 AB C 的大小为arccos 14.20.、[2014·全国卷] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.20.解:记A 1表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2. B 表示事件:甲需使用设备. C 表示事件:丁需使用设备.D 表示事件:同一工作日至少3人需使用设备.(1)因为P (B )=0.6,P (C )=0.4,P (A i )=C i 2×0.52,i =0,1,2, 所以P (D )=P (A 1·B ·C +A 2·B +A 2·B ·C )= P (A 1·B ·C )+P (A 2·B )+P (A 2·B ·C )=P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B )P (C )= 0.31.(2)X 的可能取值为0,1,2,3,4,其分布列为 P (X =0)=P (B ·A 0·C ) =P (B )P (A 0)P (C )=(1-0.6)×0.52×(1-0.4) =0.06,P (X =1)=P (B ·A 0·C +B ·A 0·C +B ·A 1·C )=P (B )P (A 0)P (C )+P (B )P (A 0)P (C )+P (B )P (A 1)P (C )=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P (X =4)=P (A 2·B ·C )=P (A 2)P (B )P (C )=0.52×0.6×0.4=0.06, P (X =3)=P (D )-P (X =4)=0.25,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)-P (X =4)=1-0.06-0.25-0.25-0.06=0.38,所以 EX =0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0.25+2×0.38+3×0.25+4×0.06=2.21.、、[2014·全国卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.21.解:(1)设Q (x 0,4),代入y 2=2px ,得x 0=8p ,所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D (2m 2+1,2m ), |AB |=m 2+1|y 1-y 2|=4(m 2+1). 又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m ,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝⎛⎭⎫2m 2+2m 2+3,-2m , |MN |=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2. 由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE |=|BE |=12|MN |,从而14|AB |2+|DE |2=14|MN |2,即4(m 2+1)2+⎝⎛⎭⎫2m +2m 2+⎝⎛⎭⎫2m 2+22= 4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1,故所求直线l 的方程为x -y -1=0或x +y -1=0. 22.、[2014·全国卷] 函数f (x )=ln(x +1)-axx +a(a >1). (1)讨论f (x )的单调性;(2)设a 1=1,a n +1=ln(a n +1),证明:2n +2<a n ≤3n +2.22.解:(1)易知f (x )的定义域为(-1,+∞),f ′(x )=x [x -(a 2-2a )](x +1)(x +a )2.(i)当1<a <2时,若x ∈(-1,a 2-2a ),则f ′(x )>0,所以f (x )在(-1,a 2-2a )是增函数; 若x ∈(a 2-2a ,0),则f ′(x )<0,所以f (x )在(a 2-2a ,0)是减函数; 若x ∈(0,+∞),则f ′(x )>0,所以f (x )在(0,+∞)是增函数.(ii)当a =2时,若f ′(x )≥0,f ′(x )=0成立当且仅当x =0,所以f (x )在(-1,+∞)是增函数.(iii)当a >2时,若x ∈(-1,0),则f ′(x )>0,所以f (x )在(-1,0)是增函数; 若x ∈(0,a 2-2a ),则f ′(x )<0, 所以f (x )在(0,a 2-2a )是减函数;若x ∈(a 2-2a ,+∞),则f ′(x )>0,所以f (x )在(a 2-2a ,+∞)是增函数. (2)由(1)知,当a =2时,f (x )在(-1,+∞)是增函数. 当x ∈(0,+∞)时,f (x )>f (0)=0,即ln(x +1)>2xx +2(x >0).又由(1)知,当a =3时,f (x )在[0,3)是减函数. 当x ∈(0,3)时,f (x )<f (0)=0,即ln(x +1)<3xx +3(0<x <3).下面用数学归纳法证明2n +2<a n ≤3n +2.(i)当n =1时,由已知23<a 1=1,故结论成立.(ii)假设当n =k 时结论成立,即2k +2<a k ≤3k +2.当n =k +1时,a k +1=ln(a k +1)>ln ⎝⎛⎭⎫2k +2+1>2×2k +22k +2+2=2k +3,a k +1=ln(a k +1)≤ln ⎝⎛⎭⎫3k +2+1<3×3k +23k +2+3=3k +3,即当n=k+1时,有2k+3<a k+1≤3k+3,结论成立.根据(i)(ii)知对任何n∈N*结论都成立.。
2014数学高考题型历炼(Word解析版):1-3 不等式与线性规划、计数原理与二项式定理

1.(交汇新)已知函数f(x)的定义域为(-∞,+∞),f ′(x)为f(x)的导函数,函数y =f ′(x)的图象如图所示,且f(-2)=1,f(3)=1,则不等式f(x 2-6)>1的解集为________.2.(背景新)给定区域D :⎩⎪⎨⎪⎧ x +4y ≥4,x +y ≤4,x ≥0,令点集T ={(x 0,y 0)∈D|x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.3.(交汇新)已知f (x )=(ax +2)6,f ′(x )是f (x )的导数,若f ′(x )的展开式中x 的系数大于f (x )的展开式中x 的系数,则a 的取值范围是________.[历 炼]1.解析:由导函数图象知当x <0时,f ′(x)>0,即f(x)在(-∞,0)上为增函数;当x >0时,f ′(x)<0,即f(x)在(0,+∞)上为减函数,故不等式f(x 2-6)>1等价于f(x 2-6)>f(-2)或f(x 2-6)>f(3),即-2<x 2-6≤0或0≤x 2-6<3,解得x ∈(-3,-2)∪(2,3).答案:(-3,-2)∪(2,3)解析:解决本题的关键是要读懂数学语言,x 0,y 0∈Z ,说明x 0,y 0是整数,作出图形可知,△ABF 所围成的区域即为区域D ,其中A (0,1)是z 在D 上取得最小值的点,B ,C ,D ,E ,F 是z 在D 上取得最大值的点,则T 中的点共确定AB ,AC ,AD ,AE ,AF ,BF 共6条不同的直线.答案:63.解析:f (x )的展开式中x 的系数是C 5625a 6-5=192a ,f ′(x )=6(ax+2)5(ax +2)′=6a (ax +2)5,f ′(x )的展开式中x 的系数是6a C 4524a5-4=480a 2,依题意得480a 2>192a ⇒a >25或a <0.所以a 的取值范围是(-∞,0)∪⎝ ⎛⎭⎪⎫25,+∞. 答案:(-∞,0)∪⎝ ⎛⎭⎪⎫25,+∞。
(完整word版)2014年高考数学理科(高考真题+模拟新题)分类汇编:D单元数列,推荐文档

数学D单元数列D1数列的概念与简单表示法17. 、[2014江西卷]已知首项都是1的两个数列{a n}, {b n}(b n M 0, n€ N*)满足a n b n+1 一a n+ 1b n+ 2b n+ 1b n= 0.(1) 令C n= ”,求数列{C n}的通项公式;b n⑵若b n= 3厂,求数列{a n}的前n项和S n.* a n+1 a n17 .解:(1)因为a n b n+ 1 —a n+ 1b n+ 2b n + 1b n = 0, b n M 0( n€ N ),所以 b + 1 —b = 2, 即卩C n一C n = 2 ,+ 1所以数列{ C n}是以C1 = 1为首项,d = 2为公差的等差数列,故C n= 2n— 1.(2) 由b n= 3n—1,知a n = (2n—1)3n—1,于是数列{a n}的前n 项和S n= 1 x 30+ 3X 31+ 5X 32 + •••+ (2n—1)x 3n —1, 35= 1 x 31+ 3x 32+ •••+ (2n—3)x 3n—1+ (2n —1)x 3n,将两式相减得—2S n= 1 + 2x (31+ 32+…+ 3n—1) —(2n—1) x 3n=—2 —(2n —2) x 3n,所以S n= (n—1)3n+ 1.17. [2014新课标全国卷I ]已知数列{a n}的前n项和为S n, a1= 1, a n^ 0, a n a n+1=入n —1,其中入为常数.(1) 证明:a n+2—a n=入⑵是否存在入使得{a n}为等差数列?并说明理由.17. 解:(1)证明:由题设,a n a n+1 =入n —1, a n+1a n+2 =入S1 —1,两式相减得a n + 1(a n+2 —a n)=入a 1.因为a n+ 1工0,所以a n + 2 —a n=入(2) 由题设,a1 = 1, a1a2=入1—1,可得a2= 一1,由(1)知,a3= + 1.若{a n}为等差数列,则2a2= a1 + a3,解得=4,故a n+ 2—a n= 4.由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n—1= 4n—3;{a2n}是首项为3,公差为4的等差数列,a2n= 4n — 1.所以a n= 2n—1, a n+1 —a n= 2.因此存在入=4,使得数列{a n}为等差数列.17. 、[2014新课标全国卷n ]已知数列{a n}满足a1= 1, a n+1 = 3a n+ 1.1(1) 证明a n + 2是等比数列,并求{a n}的通项公式;1 1 1 3(2) 证明匸+丁+…+.a1 a2 a n 21 117.解:(1)由a n+1= 3a n + 1 得a n+1 + ? = 3 a n + -.又a1 +1 = 3,所以a n+ 2是首项为§公比为3的等比数列,所以a n+1 f,因此数n— 13列{ a n}的通项公式为a n= ~2~ .1 2(2)证明:由⑴知丛=3n—1.因为当n > 1 时,3n— 1 > 2 x 3n —1,1 1 12 1 所以3^ w 2x 3n_1,即a n=3nT i w 厂. 于是丄+丄+…十丄w 1+3+-+ =31 -3 <2.a1 a2 a n 3 3 2 3 21 , 1 3所以—I ------- --- ----- v二a1 a2 a n 2'22., , [2014 重庆卷]设a1 = 1, a n+1=<a§—2a n+ 2 + b(n € N*).(1)若b = 1,求a2, a3及数列{a n}的通项公式.⑵若b =—1,问:是否存在实数c使得a2n<c<a2n+1对所有n€ N*成立?证明你的结论.22.解:(1)方法一:a2= 2, a3= ,2+ 1.再由题设条件知(a n+ 1—1)2= (a n—1)2+ 1.从而{(a n —1)2}是首项为0,公差为1的等差数列,故(a n—1)2= n—1,即卩a n= n— 1 + 1(n€ N*).方法二:a2= 2, a3= 2 + 1.可写为a1= 1—1 + 1, a2= 2— 1 + 1, a3= 3—1 + 1•因此猜想a n= n—1 + 1.下面用数学归纳法证明上式.当n = 1时,结论显然成立.假设n= k时结论成立,即a k= ''k—1+ 1,贝Va k+1= , (a k —1) 2+1 + + 1,这就是说,当n= k+ 1时结论成立.所以a n=甘n — 1 + 1(n € N ).⑵方法一:设f(x) = . (x—1) 2+1 —1,贝y a n+1= f(a n).令 c = f(c), 即卩c= ( c—1) 2+ 1 —1,解得c=下面用数学归纳法证明命题a2n<c<a2n +1<1.1当n = 1 时,a2= f(1) = 0, a3= f(0) = 2 —1,所以a2<4<a3<1,结论成立.假设n= k时结论成立,即a2k<c<a2k +1<1.易知f(x)在(—g, 1]上为减函数,从而c= f(c)> f(a2k +1)>f(1) = a2, 即卩1>C>a2k + 2> a2.再由f(x)在(—m, 1]上为减函数,得c= f(c)<f(a2k+2)<f(a2)= a3<1,故c<a2k+ 3<1,因此a2(k+ 1)<c<a2(k +1)+1<1,这就是说,当n = k+ 1时结论成立.1综上,存在c=;使a2n<C<a2a +1对所有n€ N*成立.4方法二:设f(x) =g ( X — 1 ) 2+ 1 —1,则a n+ 1= f(a n).先证:0w a n w 1(n€ N*). ①当n = 1时,结论明显成立.假设n= k时结论成立,即0 w a k w 1.易知f(x)在(—g, 1]上为减函数,从而0= f(1)w f(ak)w f(0) = ■,2—1<1.即0 w a k+1 w 1.这就是说,当n= k+ 1时结论成立.故①成立.再证:a2n<a2n +1(n€ N*). ②当n = 1 时,a2= f(1) = 0, a3= f(a2) = f(0)= . 2 —1,所以a2<a3,即n= 1 时②成立. 假设n= k时,结论成立,即a2k<a2k+1.由①及f(x)在( —g, 1]上为减函数,得a2k +1 = f(a2k)>f(a2k+ 1)= a2k+2,a2(k+ 1)= f(a2k+ 1)<f(a2k+2)= a2(k + 1) + 1.这就是说,当n= k+ 1时②成立•所以②对一切n€ N*成立.由②得a2n< a2n —2a2n+ 2— 1 , 即(a2n+ 1)2<a2n —2a2n+ 2,1因此a2n<4*③又由①②及f(x)在(一8, 1]上为减函数,得f(a2n)> f(a2n+ 1),即a2n + 1>a2n+2. 所以a2n + 1> a2n+ 1 —2a2n + 1+ 2—1,解得a2n+ 1>4・④1综上,由②③④知存在c=4使a2n<c<a2n+1对一切n € N*成立.D2等差数列及等差数列前n项和12. _____________ 、[2014安徽卷]数列{ a n}是等差数列,若a1 + 1, a3+ 3, a5+ 5构成公比为q的等比数列,贝U q = .12. 1 [解析]因为数列{a n}是等差数列,所以a1+ 1, a3 + 3, a5 + 5也成等差数列•又a1+ 1,a3+ 3, a5+ 5构为公比为q的等比数列,所以a1 +1, a3+ 3, a5 + 5为常数列,故q =1.12. [2014北京卷]若等差数列{a n}满足a7+ a8+ a9>0, a7 + a10<0,则当n = ___________ 时,{a n}的前n项和最大.12. 8 [解析]■/ a7+ a8 + a9= 3a8>0, a7 + a10= a8+ a9<0,,. a8>0, a9<0,「. n= 8 时,数列{a n}的前n项和最大.3. [2014福建卷]等差数列{a n}的前n项和为S n,若a1 = 2, S3= 12,则a6等于()A. 8B. 10C. 12D. 143. C [解析]设等差数列{a n}的公差为d,由等差数列的前n项和公式,得S3= 3X 23 X 2+ 〒d= 12,解得 d = 2,贝V a6= a1+ (6 —1)d = 2 + 5X 2= 12.18. 、[2014湖北卷]已知等差数列{a n}满足:a1 = 2,且a1, a2, a5成等比数列.(1) 求数列{a n}的通项公式.⑵记S n为数列{a n}的前n项和,是否存在正整数n,使得S n>60n+ 800?若存在,求n 的最小值;若不存在,说明理由.18. 解:(1)设数列{a n}的公差为d,依题意得,2, 2+ d, 2 + 4d成等比数列,故有(2 + d)2= 2(2 + 4d),化简得d2—4d = 0,解得d = 0或d = 4.当 d = 0 时,a n= 2;当 d = 4 时,a n= 2 + (n—1) 4= 4n — 2.从而得数列{a n}的通项公式为a n = 2或a n= 4n — 2.(2) 当a n= 2 时,S n = 2n,显然2n<60n+ 800,此时不存在正整数n,使得S n>60n + 800成立.当a n= 4n— 2 时,S = ? = 2n .令2n2>60n+ 800,即n2—30n—400>0,解得n>40或n<—10(舍去),此时存在正整数n,使得S n>60n + 800成立,n的最小值为41.综上,当a n= 2时,不存在满足题意的正整数n;当a n= 4n—2时,存在满足题意的正整数n,其最小值为41.20.、[2014 湖南卷]已知数列{a n}满足a1= 1, |a n+1—a n|= p n, n€ N*.Kru-n-HIP —fea 2 = p + 1, a 3= p 2+ p + 1 •又 a 1, 2a 2, 3a 3 成等差数列,所以1 解得p = 3或p = 0. 31当p = 0时,a n +1 = a n ,这与{a n }是递增数列矛盾,故 p = 3.1 1 、尹<尹刊,所以 |a 2n + 1— a 2n |<|a 2n — a 2n -1|.②1 1 ,,a n = a 1 + (a 2 — a 1) + (a 3 — a 2) +•••+ (a n — a n — 1) = 1 + ~ —歹 +…+[2014 •宁卷]设等差数列{a n }的公差为d.若数列{2 a 1 a n }为递减数列,—a n ) = 2a 1d<1,所得 a 1d<0.18. 、[2014全国卷]等差数列{a n }的前n 项和为3•已知a 1= 10, a 2为整数,且(1)求{a n }的通项公式;18. 解:(1)由a 1= 10, a 2为整数知,等差数列{a n }的公差d 为整数. 又 S n w S 4,故 a 4》0, a 5 w 0,10+ 3d > 0, 10 + 4d w 0, 解得—d w — 5,3 2 因此d =— 3.故数列{a n }的通项公式为a n = 13 — 3n. —1,其中入为常数.(1)若{a n }是递增数列,且a i . 2a 2, 3a 3成等差数列,求p 的值; ⑵若p = 2,且{a 2n -1}是递增数列, {a 2n }是递减数列,求数列{a n }的通项公式.20.解:(1)因为{a n }是递增数列,所以 a n + 1 一 a n = |a n +1 — a n | = p n .而 a i = 1,因此 4a 2= a 1 + 3a 3,因而 3p 2 — p = 0, ⑵由于{a 2n - 1}是递增数列,因而 a 2n + 1 —a 2n —1>0,于是 (a 2n + 1 — a 2n ) + (a 2n — a 2n -1)>0. 因为2n — 1 由①②知, a2n — a 2n —1>0,因此 a 2n — (—1) 2n a 2n — 1 = 22n -12n 因为{a 2n }是递减数列,同理可得,a 2n + 1 —a 2n <0,故 a 2n +(—1)2n + 1由③④可知, a n +1— a n = (—1) n +2n1 — a 2n = —?2n =4+3- (—1) 2门-1故数列{a n }的通项公式为(—1) 2n(—1) 2门-1 d<0 B . d>0 C . a 1d<0 D . a 1d>0C [解析]令b n = 2a 1a n ,因为数列{2 a 1 a n }为递减数列,所以b n +1 2a 1a n +1b n 2a 1a n2a 1(a n +1S n W S .⑵设b n =a n a n +1,求数列{b n }的前n 项和T n .⑵b n = (13 — 3n )(10— 3n )10 — 3n 13— 3n1.于是 T n = b 1 + b 2 + …+ b n =-17.、 10— 3n13— 3n 3 10— 3n 10 10 (10—3n )- [2014新课标全国卷I ] 已知数列{a n }的前n 项和为 S n , a 1= 1, a n ^ 0, a n a n +1=入n⑴证明:a n + 2— a n =入⑵是否存在 入使得{a n }为等差数列?并说明理由. 17. 解:⑴证明:由题设, a n a n + 1 =入 6— 1 , a n +i a n +2=入 S 1 — 1,两式相减得 a n + 1(a n +2 — a n )=入a 1. 因为a n + 1工0,所以a n + 2 — a n =入(2)由题设,a 1 = 1, a 1a 2=入 1— 1,可得 a 2= — 1, 由(1)知,a 3= + 1. 若{a n }为等差数列,则 2a 2= a 1 + a 3,解得 =4,故a n + 2— a n = 4. 由此可得{a 2n -1}是首项为1,公差为4的等差数列, a 2n—1= 4n — 3;{a 2n }是首项为3,公差为4的等差数列,a 2n = 4n — 1. 所以 a n = 2n — 1, a n +1 — a n = 2.因此存在 入=4,使得数列{ a n }为等差数列.19., , [2014山东卷]已知等差数列{a n }的公差为2,前n 项和为3,且S, 比数列. (1)求数列{a n }的通项公式;—4n ⑵令b n = ( — 1)n 1 ,求数列{b n }的前n 项和T n .a n a n +12X 119. 解:(1)因为 Si = a 1, S 2= 2a 1 + ~2~ x 2= 2a 1 + 2,4 x 3®= 4a 1+x 2= 4a 1+ 12,由题意得(2a 1+ 2)2 = a 1(4a 1 +12),解得 a 1= 1, 所以 a n = 2n — 1.⑵由题意可知,(—1)n —14n_')(2n — 1)( 2n + 1)=2n 2n + 1.当n 为奇数时, 1+ 1 +•••—亠+亠+ 亠+亠 3 5 2n — 3 2n — 1 2n — 1 2n + 11 2n + 1=(—1)n —112n — 1 12n + 1当n 为偶数时,1V 11 1T n = 1 +1 —3+ 5 十…十 2n — 3+2n — 1 =1- 12n + 11 2n — 11 +2n + 1 S 2, S 4成等 b n = (— 1)n — 14n a n a n + 11Tn= 1 + 316.,[2014陕西卷]△ ABC 的内角A , B , C 所对的边分别为 a , b , c.(1) 若 a , b , c 成等差数列,证明: sin A + sin C = 2sin(A + C); ⑵若a , b ,c 成等比数列,求 cos B 的最小值. 16. 解:⑴■/a , b , c 成等差数列,••• a + c = 2b. 由正弦定理得 sin A + sin C = 2si n B.■/ sin B= sin[ n — (A + C)] = sin(A + C),• sin A + sin C = 2sin(A + C).(2) •/ a , b , c 成等比数列,• b 2= ac. 由余弦定理得a 2+ c 2—b 2 a 2+c 2— ac 2ac — ac 1cos B- 2ac 2ac " 2ac 2,当且仅当a = c 时等号成立, 1• cos B 的最小值为》 11.[2014天津卷]设{ a n }是首项为a 1,公差为—1的等差数列,S n 为其前n 项和.若 S 1, S 2,S 4成等比数列,则a 1的值为 ___________________ .1” - 4 X 311. —[解析]T S 2= 2a 1 — 1, S 4= 4a 1+ — X (— 1) = 4a 「6, S 1, S 2, S 4成等比数列,1•- (2a 1 — 1尸=a 1(4a 1 — 6),解得 a 1 = —》22. , [2014 重庆卷]设 a 1 = 1, a n +1=p a §— 2a n + 2 + b(n € N *). (1)若b = 1,求a 2, a 3及数列{a n }的通项公式.⑵若b =— 1,问:是否存在实数 c 使得a 2n <c<a 2n +1对所有n € N *成立?证明你的结论. 22.解:(1)方法一:a 2= 2, a 3=, 2+ 1. 再由题设条件知(a n + 1— 1)2= (a n — 1)2+ 1.从而{(a n — 1)2}是首项为0,公差为1的等差数列, 故(a n — 1)2= n — 1,即 a n = ^j n — 1 + 1(n € N ). 方法二:a 2= 2, a 3= 2 + 1.可写为 a 1= 1 — 1 + 1, a 2= 2— 1 + 1, a 3=、』3— 1 + 1.因此猜想 a n = n — 1+ 1. 下面用数学归纳法证明上式.当n = 1时,结论显然成立.假设n = k 时结论成立,即a k = .''k — 1+ 1,贝ya k +1 = \' (a k — 1) 2 +1 + 1 =百(k — 1) + 1 +1 = ::/ ( k + 1) — 1 + 1, 这就是说,当n = k + 1时结论成立.所以 a n =雪n — 1 + 1(n € N ).⑵方法一:设 f(x) = . (x — 1) 2 +1 — 1,则 a n +1= f(a n ). 令 c = f(c),即 c =( c — 1) 2+ 1 — 1,解得 c = 7.4下面用数学归纳法证明命题 2n + 2 2n + 1.所以T n =, n 为奇数,2n + 1 2n冇,n 为偶数.或 “ 2n + 蔦(—;)n—12n + 1a2n<C<a2n + 1<1.1当n = 1 时,a2= f(1) = 0, a3= f(0) = 2 —1,所以a2<4<a3<1,结论成立.假设n= k时结论成立,即a2k<c<a2k+1<1.易知f(x)在(—g, 1]上为减函数,从而c= f(c)> f(a2k +1)>f(1) = a2,即卩1>C>a2k + 2> a2.再由f(x)在(—m, 1]上为减函数,得c= f(c)<f(a2k+2)<f(a2)= a3<1,故c<a2k+ 3<1,因此a2(k+ 1)<c<a2(k +1)+1<1,这就是说,当n = k+ 1时结论成立.1综上,存在c= 4使a2n<C<a2a+1对所有n€ N*成立.方法—:设f(x) = '...;( X —1) 2+ 1 —1,贝U an+ 1 = f(an).先证:0w a n W 1(n€ N*). ①当n = 1时,结论明显成立.假设n= k时结论成立,即0 w a k< 1.易知f(x)在(—g, 1]上为减函数,从而0= f(1) w f(a k) w f(0) = 2—1<1.即0 w a k+1 w 1•这就是说,当n= k+ 1时结论成立.故①成立.再证:a2n<a2n+ 1(n€ N ). ②当n = 1 时,a2= f(1) = 0, a3= f(a2) = f(0) =, 2 —1,所以a2<a3,即n= 1 时②成立. 假设n= k 时,结论成立,即a2k<a2k+1.由①及f(x)在( —g, 1]上为减函数,得a2k +1 = f(a2k)>f(a2k+ 1)= a2k+2,a2(k+ 1)= f(a2k+ 1)<f(a2k+2)= a2(k + 1)+1.这就是说,当n= k+ 1时②成立.所以②对一切n€ N*成立.由②得a2n<:-Ja2n —2a2n+ 2—1 ,即(a2n+ 1)2<a2n —2a2n+ 2 ,因此a2n<:③4又由①②及f(x)在(—g, 1]上为减函数,得f(a2n)> f(a2n +1), 即卩a2n + 1>a2n+2., _____________ 1所以a2n + 1> , a2n+1 —2a2n + 1+ 2—1,解得a2n+ 1>[. ④综上,由②③④知存在c=1使a2n<c<a2n+1对一切n € N*成立.4D3等比数列及等比数列前n项和2. [2014重庆卷]对任意等比数列{a n},下列说法一定正确的是()A. a1, a3, a9成等比数列B. a2, a3, a6成等比数列C. a2, a4, a8成等比数列D. a3, a6, a9,成等比数列2. D [解析]因为在等比数列中a n, a2n, a3n,…也成等比数列,所以a3, a6, a9成等比数列.12. 、[2014安徽卷]数列{a n}是等差数列,若a1+ 1, a3+ 3, a5+ 5构成公比为q的等比数列,贝U q = ______ .12. 1 [解析]因为数列{a n}是等差数列,所以a1+ 1, a3 + 3, a5 + 5也成等差数列.又a1+ 1, a3+ 3, a5+ 5构为公比为q的等比数列,所以a1 +1, a3+ 3, a5 + 5为常数列,故q =1.13. 、[2014广东卷]若等比数列{a n}的各项均为正数,且a10an+ a9a12 = 2e5,贝V In a1-3. 12+ In a 2 + …+ In a 20=13.50 [解析]本题考查了等比数列以及对数的运算性质. + a 9a i2 = 2e 5,cc二 a io a ii + a 9a i2 = 2a io a ii = 2e ,「• a io a ii = e , --|n a i + In a 2+…+ In a 2o = In(a i a 2…a 2o ) = In (a io a ii )io = In (e 5)i0= In e 50= 50.i0. [20i4全国卷]等比数列{a n }中,a 4= 2, a 5= 5,则数列{Ig a n }的前8项和等于(C . 4的最小值;若不存在,说明理由.18. 解:(1)设数列{a n }的公差为d , 依题意得,2, 2+ d , 2 + 4d 成等比数列,故有(2 + d)2= 2(2 + 4d),化简得d 2— 4d = 0,解得d = 0或d = 4.又a i + j j 所以a n + 是首项为2■,公比为3的等比数列,所以■/ {a }10. C [解析]设数列{a n }的首项为a 1, 公比为q ,根据a i q 3= 2,a i q 4= 5,解得16 a i = 125'所以 a n = a i q n 1=16n—4125,所以 Ig a n = Ig 2 + (n —4)Ig|,所以前8项的和为5 5 58Ig 2 + (— 3 — 2— 1 + 0 + 1+ 2+ 3 + 4)Ig- = 8Ig 2+ 4lg?= 4Ig 4X- = 4.18.、 [2014湖北卷]已知等差数列{ a n }满足:a i = 2,且a i , a 2, a 5成等比数列. (1)求数列{a n }的通项公式.⑵记S n 为数列{a n }的前n 项和,是否存在正整数n,使得S n >60n + 800?若存在,求 当d = 0时, a n = 2;当d = 4时, a n = 2 + (n — 1) 4 = 4n — 2.-3.12⑵当 a n = 2 时,S n = 2n ,显然 2n<60n + 800, 解得n>40或n<— 10(舍去),1 117. 解:(1)由 a n +1 = 3a n + 1 得 a n +1 + ? = 3 a n + —.此时存在正整数 n , 使得S n >60n + 800成立, n 的最小值为41.综上,当a n = 2时,不存在满足题意的正整数 n; 当a n = 4n — 2时,存在满足题意的正整数 其最小值为41.17.、 、[2014新课标全国卷n ]已知数列{a n }满足 a i = 1, a n + 1= 3a n + 1. (1)证明 a n + 2疋等比数列,并求{a n }的通项公式;1 1⑵证明二+ £+…+a n从而得数列{a n }的通项公式为 a n = 2 或 a n = 4n — 2. 此时不存在正整数 n ,使得 S n >60n + 800 成立.当 a n = 4n — 2 时, S n =n[2 +( 4n — 2)] =2n 2 令 2n 2>60n + 800, 即 n 2— 30n — 400>0,an + 2 = ,因此数1 2⑵证明:由⑴知a n =3n —i.因为当 n > 1 时,3n — 1 > 2 X 3n —1所以2+1+…+丄<3a 1 a 2 a n 219., , [2014 •东卷]已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1, S 2, 比数列.(1)求数列{a n }的通项公式; ⑵令b n = ( — 1)n—1—,求数列{b n }的前n 项和T n . a n a n +119. 解:(1)因为 S 1 = a 1, S 2= 2a 1 +X 2=2a 1+ 2,4 X 3 小S 4= 4a 1 + ~2~X 3= 4a 1 + 12,由题意得(2a 1+ 2)2 = a 1(4a 1 +12),解得 a 1= 1, 所以 a n = 2n — 1.⑵由题意可知,2 2n + 1 2n + 2 2n + 1.列{a n }的通项公式为3n — 1 a n = 21 a 21 2X 3n —1 即a n =右3 132 1 ― 3n <2.S 4成等 b n = (— 1)n — 14na n a n + 1=(—1)n4n(2n — 1)~( 2n + 1) =(—1)n —11_ + _J_2n — 1 2n + 1当n 为偶数时, 1 V 1 1 丄 1T n = 1 + 3 — 3+ 5 +…+ 廿+乔1 2n — 11 2n + 11 2n + 1=2n 2n + 1. 当n 为奇数时,1Tn= 1 +31 1一 + 一+…— 1 + 1 _L + 1 2n — 3+ 2n — 1 + 2n —1+2n + 1所以a1Kru-n-HIP—fe⑵若a , b , c 成等比数列,求 cos B 的最小值. 16.解:(1) •/a , b , c 成等差数列,••• 由正弦定理得 sin A + sin C = 2si n B. • sin A + sin C = 2sin(A + C). (2) •/ a , b , c 成等比数列,• b 4= ac. 由余弦定理得4 3},可得 A = {0 , 1 , 2, 3, 4, 5, 6, 7}.2n + 2 所以T n =2n + 1 ,n 为奇数, 2n + 1+(— 1)2n 2n + 1,n 为偶数.2n + 116.,, [2014陕西卷]△ ABC 的内角A , B , C 所对的边分别为a ,b , c. (1)若a ,b ,c 成等差数列,证明: sin A + sin C = 2si n(A + C); a + c = 2b.■/ sin B = sin[ 7t —(A + C)] = sin (A + C),cos B =0^^ = a^2—^ , 2ac —ac2ac 2ac2ac2'当且仅当a = c 时等号成立,1• cos B 的最小值为111. [2014天津卷]设{ a n }是首项为a 1,公差为—1的等差数列, S 1, S 2, S 4成等比数列,贝y a 1的值为2,…,n 证明:若 a n <b n ,贝U s<t.=—1<0, 所以s<t.D4数列求和—a n + 1b n + 2b n +1b n = 0.(2)证明:由 s , t € A , s = a 1 + a 2q +…+ a n q n,t = b 1+ b 2q + •••+ b n q n ai ,b i € M , i=1, 2,…,n 及 a n <b n ,可得 s —1= (a 1 — b 1) + (a 2— b 2)q + …+ (a n -1 —b n -1)q n 2+ (a n — b n )q n 1 w (q — 1) + (q — 1)q + …+ (q — 1)q n —2— qn—1(q — 1)( 1 — q n —9—q n S n 为其前n 项和.若11.[解析]T S 2= 2a 1 — 1, S 4= 4a 1 +X (— 1) = 4a 1 — 6, S 1, S 2, S 4成等比数列,•- (2a 1 — 1)2= a 1(4a 1 — 6),解得 a 1 =—2'19.、[2014天津卷]已知q 和n 均为给定的大于1的自然数.设集合M = {0,1 ,2,…, q — 1},集合 A = {x|x =X 1 + x 2q +•••+ x n q n —1 ,X i € M , i = 1, 2,…,n}.(1)当q = 2, n = 3时,用列举法表示集合 A.(2)设 s , t € A , s = a 1+ a 2q +…+ a n q n 1 t = b 1 + b 2q + …+ b n q n 1 ,其中a i , b i € M , i = 1,19.解:(1)当 q = 2, n = 3 时,M = {0 , 1}, A = {x|x = X 1+ X 2 - 2 + X 3 - 22, X i €M , i = 1, 17.、 、[2014江西卷]已知首项都是1的两个数列 { a n } , {b n }(b n M 0, n € N *)满足 a n b n + 11b n = (— 1)n —14na n a n + 1 =(—1)n4n(2n — 1)( 2n + 1)=(—1)n2n — 1 + 2n + 1 'n(1)令C n =—,求数列{ C n }的通项公式;(2)若 b n = 3n —1,求数列{a n }的前n 项和S n .17.解:(1)因为 a n b n +1 — a n + l b n + 2b n +l b n = 0, b n 工 0(n € N ),所以a n + 1b n + 1an= 2,即 C n + 1b n所以数列{ C n }是以C 1 = 1为首项,d = 2为公差的等差数列,故 c n = 2n — 1.(2) 由 b n = 3n ,知 a n = (2 n — 1)3n ,于是数列{a n }的前n 项和S n = 1 x 3°+ 3X 31 + 5X 32 + …+ (2n — 1)x 3n —1, 3S n = 1 x 31 + 3x 32 + …+ (2n — 3)x 3n —1+ (2n — 1)x 3n ,将两式相减得 —2S n = 1 + 2X (31+ 32+…+ 3n —1) — (2n — 1) x 3n =— 2 — (2n — 2) x 3n ,所以 S n = (n — 1)3n + 1. 18. 、[2014且 S n W S t .(1)求{a n }的通项公式;⑵设b n =a n a n +1,求数列{b n }的前n 项和T n .18.解:(1)由a 1= 10, a 2为整数知,等差数列 {a n }的公差又 S n W S 4,故 a 4> 0, a 5< 0,10+ 3d > 0, 10 + 4d w 0, 10 5解得一d W — 5, 3 2 因此d =— 3.故数列{a n }的通项公式为a n = 13 — 3n. (2) b n = (13 — 3n )(10— 3n )10 — 3n 13— 3n.于是 T n = b 1 + b 2 +7- 110 +10— 3n 13— 3n 3 10— 3n 1010 (10—3n )'19., [2014 •东卷]已知等差数列{a n }的公差为2,前n 项和为3,且S,S 2, S 4成等比数列.(1)求数列{a n }的通项公式;⑵令 b n = ( — 1)n 4n a n a n +1 ,求数列{b n }的前n 项和T n .19.解:(1)因为 Si = a 1, S 2= 2a 1 +2X 1x 2= 2a 1+ 2,S 4= 4a 1 +x 2= 4a 1+ 12,由题意得(2a 1+ 2)2 = a 1(4a 1 +12),解得 a 1= 1,所以 a n = 2n — 1. (2)由题意可知,=1 +1 —2 4+ 3当n 为偶数时,2n当n 为奇数时,2n + 1 2n + 22n + 120. 、[2014 湖南卷]已知数列{a n }满足 a 1= 1, |a n +1— a n |= p n , n € N .因为2n — 1 由①②知, a 2n —a 2n —1>0,因此 a 2n — a 2n —1 = (—1) 2n因为{a 2n }是递减数列,同理可得, a 2n + 1 由③④可知,a n +1— a n =(—1)n +2n22 n —1—a 2n <0,故 a 2n + a 2n =— 2n(—1)?2n2n + 1T n = 1 + 1 1 3+ 52n — 3+ 2n - 12n — 1 + 2n + 1=1-2n + 1 T n = 1 + § ―1+ 12n — 3 + 2n — 12n — 12n + 12n + 2 所以T n =2n + 1‘ n 为奇数, 2n + 1 +(—1) 2n 2n + 1'n 为偶数.2n + 1D5单元综合 (1)若{a n }是递增数列,且 a 1, 2a 2, 3a 3成等差数列,求p 的值; ⑵若p = 2,且{a 2n -1}是递增数列, {a 2n }是递减数列,求数列{a n }的通项公式. 20、解:(1)因为{a n }是递增数列,所以a n + 1 — a n = |a n +1 — a n | = p n .而 a 1 = 1,因此a 2 = p + 1, a 3= p 2+ p + 1 •又 a 1, 2a 2, 3a 3 成等差数列,所以 4a 2= a 1 + 3a 3,因而 3p 2 — p = 0,1解得p = 3或p = 0.3当p = 0时, a n +1 =a n ,1这与{a n }是递增数列矛盾,故 p = 3.⑵由于{a 2n - 1}是递增数列,因而 a 2n + 1— a 2n —1>0,于疋 (a 2n +1 — a 2n )+ (a 2n — a 2n —1)>0.①(—1) 2“-1=1 +1 —24+31 亠a n = a 1 + (a 2 — a 1) + (a 3 — a 2) +•••+ (a n — a n T ) = 1 + ? — ?2 + …+(—1)故数列{a n }的通项公式为 a n = (—1)2*-121. 、[2014安徽卷]设实数c >0,整数p > 1, n € N *.⑴证明:当 x >— 1 且 X M 0 时,(1 + x)p> 1 + px ;21.证明:(1)用数学归纳法证明如下.①当p = 2时,(1 + x)2= 1 + 2x + x 2>1 + 2x ,原不等式成立. ②假设p = k(k > 2, k € N *)时,不等式(1 + x)k >1 + kx 成立. =(1 + x)(1 + x)k >(1 + x)(1 + kx)= 1 + (k + 1)x + kx 2>1 + (k + 1)x.所以当p = k + 1时,原不等式也成立.综合①②可得,当x>— 1, X M 0时,对一切整数1 c .1 +"a p— 5.5由此可得,f(x)在[c-,+8 )上单调递增,p1⑵数列{ a n }满足a 1 > cp , a n +1 =pa n + pa n —p,证明: a n > a n +1 > c p. ⑵方法一:先a n >C_. p1①当n =1时,由题设知a1>c 1成立.②假设n = k(k > 1, k € N *)时,不等式 a k > c p 成立. 由 a n + 1 =P — 1丄 c 1a n + a n p p 易知 a >0,当n = k + 1时,a k +1p — 1 , c = +_a kpa k p当 p = k + 1 时,(1 + x)p>1,不等式(1+ x)P >1 + px 均成立.由 a k >cr>0 得一 1< 一 <一-p a p -1<0.由(1)中的结论得 a k +1a k 1+pOr 1>1 + p •—ap.因此a p + 1>c,即a k +1>c —,所以当n = k + 1时,不等式1 an >cp 也成立.综合①②可得,对一切正整数n,不等式a n >c1均成立.再由a n +1a na p可得a n + 1a n<1,即a n+ 1<a n.因而,当1 1 1 x莓时,蚀>%)=c p.综上所述, a n> a n+1 >Cp ,n€ N*方法二:设f(x)=x+px11x> c1,贝y x p> c,p所以f'x)=p—1 c+p(1 —p)xp—J _c1 —x p >°.Kru-n-HIP —fe1①当n = 1时,由a 1>c _>0 ,即卩a 1>c 可知 p1故当n = 1时,不等式a n >a n +1>c~成立. P所以当n = k + 1时,原不等式也成立.(1)求数列{a n }的通项公式. 的最小值;若不存在,说明理由.18. 解:(1)设数列{a n }的公差为d , 依题意得,2, 2+ d , 2 + 4d 成等比数列, 故有(2 + d)2= 2(2 + 4d),化简得d 2- 4d = 0,解得d = 0或d = 4.解得n>40或n<— 10(舍去),a 2 =p -1 C 1—p 1 c 彳a1+ p a1 p = a1 1 + paT 11<a 1,并且 a 2= f(a 1)>cp ,从而可得 a 1 >a 2②假设n = k(k > 1,k € N *)时,不等式 1)>f(cp),即有a k + 1>a k +2>「p综合①②可得,对一切正整数n ,不等式 a n >a n + 11 >C-均成立. p18.、、[2014湖北卷]已知等差数列{a n }满足: a 1 = 2,且 a 1, a 2,a 5成等比数列. ⑵记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n + 800?若存在,求 当d = 0时, a n = 2;当d = 4时, a n = 2 + (n - 1) 4 = 4n — 2.从而得数列{a n }的通项公式为 a n = 2 或 a n = 4n — 2. ⑵当 a n = 2 时,S n = 2n ,显然 2n<60n + 800, 此时不存在正整数 n , 使得S n >60n + 800成立. 当 an = 4n — 2 时,n[2 +( 4n — 2)]=2n 2令 2n 2>60n + 800,即 n 2— 30n — 400>0,此时存在正整数 n , 使得S n >60n + 800成立, n 的最小值为41.综上,当a n = 2时,不存在满足题意的正整数 n; 当a n = 4n — 2时,存在满足题意的正整数 其最小值为41. ,则当 n = k + 1 时,f(a k )>f(a k + a k > a k +1>、[2014江西卷]已知首项都是1的两个数列{a n }, {b n }(b n M 0, n € N *)满足a n b n +1—a n + 1b n + 2b n + 1b n = 0.+ …+ (2n — 1)x 3n —1, 3S n = 1 x 31 + 3x 睜 + …+ (2n — 3)x 3n —1—2S n = 1 + 2X (31+ 32+-+ 3n —1) — (2n — 1) x 3n =— 2 — (2n — 2)x 3n ,所以S n = (n — 1)3n + 1. 17.、(1)令 C n =a nbn'求数列{c n }的通项公式; (2)若 b n = 3n —1 ,求数列{a n }的前n 项和S n .17 .解:(1)因为 a n b n + 1 — a n + 1b n + 2b n + 1b n = 0, b n M 0( n € N ),所以a n +1 a nb n + 1b n=2, 即 卩 C n1所以数列{C n }是以 C 1 = 1为首项,d = 2为公差的等差数列,故C n = 2n — 1.(2)由 b n = 3n —1 ,知 a n = (2n — 1)3n —1,于是数列{a n }的前n 项和S n = 1 x 30 + 3X 31 + 5X 32 + (2n — 1)x 3n ,将两式相减得17.、 、[2014新课标全国卷n ]已知数列{a n }满足 a 1 = 1, a n +1 = 3a n + 1.1 , 3 t , n2T n = 1+ 2 + 歹+…+盯,因此,2T n — T n = 1 + 1 + 2^+…+ 21—1-加 2 —十—加 2n 219. [2014浙江卷]已知数列{a n }和{b n }满足a£2a 3…a n = ( . 2)b n (n € N *).若{a n }为等比 数列,且 a 1 = 2, b 3= 6 + b 2.sV1 (1) 证明a n + 2是等比数列,并求{a n }的通项公式; 1 1 1 3(2) 证明一 +—+•••+—<;.a 1 a 2 a n 21 1 17.解:(1)由 a n +1= 3a n + 1 得 a n +1 + ㊁=3 a n +2 .1 3 1 3又a 1 + = 2,所以a n +1是首项为3■,公比为3n— 1列{a n }的通项公式为a n =1 3n3的等比数列,所以a n + 2 = 3,因此数 1⑵证明:由⑴知乳=3n —1.因为当 n > 1 时,3n — 1 > 2 x 3n —1,I I 1所以 3n — 1w 2X 3n —1,即 a n = 3n — 1w 3n —1.于是丄+1+…+丄< 1+3+…+尙=21— a 1 a 2 a n 3 3 2丄 3耳<2.所以丄+1 +…+ -<3. a 1 a 2 a n 219., (n € N *).(1)若 [2014四川卷]设等差数列{a n }的公差为d ,点(a n , b n )在函数f(x) = 2x 的图像上a i =— 2,点(a 8, 4b 7)在函数f(x)的图像上,求数列{a n }的前n 项和S n ; ⑵若1 a na 1= 1,函数f(x)的图像在点(a 2,b 2)处的切线在x 轴上的截距为2 —花,求数列 厶的前n 项和T n .19.解:(1)由已知得,b 7= 2a 7, b 8= 2a 8= 4b 7,所以 2a 8= 4 x 2a 7 = 2a 7+ 2,解得 d = a 8— a 7= 2,n (n — 1)所以 S n = na 1 + d = — 2n +n(n — 1) = n 2— 3n.⑵函数f(x)= 2x 在点(a 2, b 2)处的切线方程为 y — 2a 2= (2a 2ln 2)(x — a 2), 其在X 轴上的截距为a 2—爲.1 1由题意有a 2— = 2 — ,解得a 2= 2.所以 d = a 2 — a 1= 1. 从而 a n = n , b n = 2n ,a n n_ 所以数列{和的通项公式为b n = 2n , 所以Tn =1+釘討…+F?+2n ,2nn + 1 所以,T n =2— n — 22n(1)求 a n 与 b n .1 1 *⑵设C n = — — b (n € N ).记数列{C n }的前n 项和为S n . (i) 求 S n ;(ii) 求正整数k ,使得对任意n €均有S k > S n . 19. 解:(1)由题意 a£2a 3 …a n = (,2)b n , b 3 — b 2= 6, 知 a 3= Cj 2)b 3 — b 2= 8.又由a 1 = 2,得公比q = 2(q =— 2舍去),所以数列{a n }的通项为 所以,a 1a 2a 3…a n = 2“(叮 ° = ( . 2)n(n+"_ *€ N ).2门 、 2:所以,当n > 5时,C n <0. 综上,若对任意 n € N *恒有S k >S n ,则k = 4.4. [2014 •州调研]已知数列{a n }满足a 1 = 5,a n +1 =乙^打,n € N *.a n = 2n (n €2 故数列{b n }的通项为b n = n(n + 1)(n € N *).11111(2)(i)由(1)知 c n = a ;— b ;=列n n + 1(n € N *).(ii)因为 C 1= 0, C 2>0, C 3>0, 1当n > 5时,C n而n (n +1)2nn (n + 1)(n + 1)( n + 2) C 4>0 ,n (n + 1)—1 ,2n(n + 1)( n — 2)得 n ( n + 1)三 5X( 5 + 1)3. [2014闽南四校期末]若数列{a n }的前n 项和为2 1S n = ?a n + "3,则数列{a }为( A .B .C )a n =— 2n 1 a n = (— 2)n —1 a n = (— 2)n a n =— 2n2B [解析]由 a n = S n — &i -1(n > 2),得 a n = _a n — ^a nT ..,. a n ==(—2)n —1(n >2).又 a 1 = (— 2)1—1 = 1,二 a n = (— 2)n —1.3. —2a n -1.又 a i = 1 ,「• a n a n *6. [2014南昌联考]已知数列{a n }满足 a 1= 1, a n +1 =匚卫(n € N ).若 b n + 1 = (n —1 ,Z 0_ +1 , a n . b 1=— Z,且数列{b n }是递增数列,则实数 入的取值范围为( C . 6. v 2 B .入〉3 > 2 D .入v 31 2 1 1[解析]易知—=2 + 1,•— + 1 = 2- + 1."1 J a a a a n + 1 1 1 —又 a 1= 1 ,•••:+ 1 =7+ 12n 1= 2n ,. b n +1 = (n —入)2,' a n a 1 ' '• b n +1 — b n = (n —入)2~ (n — 1 —入)2 1 = (n —入 + 1)2n 1 >0, n —入 + 1 > 0.又 n € N ,二 Z 2.1(1)求证:数列一1为等比数列.a n⑵是否存在互不相等的正整数m, s, t,使m, s, t成等差数列,且a m—1, a s—1, a t —1成等比数列?如果存在,求出所有符合条件的m, s, t;如果不存在,请说明理由.m+1+ 2 X 3m + 2 X 3t = 32s + 4 X 3s因为 m + t = 2s ,所以 3m + 3t = 2X 3s . 这与m , s , t 互不相等矛盾,(1)求a 1及数列{a n }的通项公式; 即(a n — 1)2— a 2—1 = 0,所以数列{a n }是首项为1,公差为1的等差数列,4.解:⑴证3a n 2a n + 1 ,所以a n + 1 3a n所以a n +13a n1.3因为a1 = 5,所以 a 1所以数列 a n2 11是首项为3,公比为£的等比数列.3 3 1 (2)由(1)知,a ;—1= 2X ]n -1 2 3 3 3n ,所以a n = 3n3n + 2假设存在互不相等的正整数 m , s , t 满足条件,则有m +1 = 2s ,(a s — 1) 2=( a m — 1) (at — 1).由a n = 3n3“+ 2 与(as — 1)2 =(a m — 1)(a t — 1), 3s 2_3m3t3s + 23m + 23t + 2 —1, 又 3m + 3t > 23m+1= 2 X 3s ,当且仅当m = t 时,等号成立,所以不存在互不相等的正整数m , s ,t 满足条件. 2. [2014景德镇质检]已知递增数列、卄1 2{a n }满足 a 1 + a 2 + a 3 +…+ a n = 2(a n + n).⑵设c n = a n + , n 为奇数,a n —1 • 2 a n — 1 + 1, n 为偶数, 求数列{ C n }的前2n 项和T 2n . 2.解:(1)当 n = 1 时,a 1=*(a 2+ 1),解得a 1 = 1. a1 + a 2+ a 3+…+ a n — 1=*(a 2—1 +—1),a 1 + a 2 + a 3+…+ a n = 1 22(a n + n),所以a n =詁2—a n - 1+ 1),所以 a n — a n —1 =1 或 a n + a n —1 = 1(n 》2).又因为数列{a n }为递增数列,所以 a n —a n —1 = 1,则 T 2n = (2 + 4 + …+ 2n)+ [1 x 21 + 3X 23+…+ (2n — 1)x 22n —1] + n = n(n + 1) + [1 x 21 +3X 23+…+ (2n — 1) X 22n —1记 S n = 1 x 21 + 3X 23+…+ (2n — 1) X 22n —1,① 则 4S n = 1X 23+ 3X 25+…+ (2n — 1) X 22n +1 由①一②,得—3S n = 2 + 24+ 26+…+ 22n — (2n — 1)22n +1,所以a n = n.(2)由 C n a n + , n 为奇数, a n —1 • 2a n — 1 + 1, n 为偶数, 得C n =n + 1,n 为奇数, (n — 1) 2n —1+ 1, n 为偶数,]+ n. •②=22 + 24 + 26+…+ 22n — (2n — 1)22n +1 — 2, 4(1 — 4n ) 所以一3S n = 4(: 41 — 4 4 (1 — 4n )卜 —(2n — 1)2 2n +1— 2,所以S n = (2n — 1) 22n +1 9即 S n =( 6n - 5)22n +1 2卜2, 9 罟故 T 2n = g 5)22n +17. 比数列, 2 c 109 " + 2n +[2014福建闽南四校期末]已知数列{ a n }是公差为2的等差数列,且a 1, a 2, a 5成等 则a 2的值为( 3A [解析]T a 1, A . 7. 二 a 2= (a 2— 2)(a 2 + 6),解得 a 2= 3.)2 D . — 2 a 2, a 5成等比数列,a 2= a 1 - a 5, 10. [2014郑州质检]已知各项不为0的等差数列{a n }满足a 4— 2a 7 + 3a 8= 0,数列{b n } 疋等比数列, A . C . 10. 且 b 7= a 7,贝U b 2b 8bn 等于(B . D . [解析]由已知,得 2a 2= a 4 + 3a 8= a 1+ 3d + 3a 1+ 21d = 4a 1 + 24d = 4(a 1 + 6d)= 4a 7, 2n , D ••• a 7= 2 或 a 7 = 0(舍去), 二 b 7= 2,「. b 2b 8bn = b 1q - b 1q 7 • b 1q 10= b 3q 18 = (b 1q 6)3= b 3= 8. 17. [2014温州十校联考]1 n € N *,数列{a n }满足 a n + 1 (1)求数列{a n }的通项公式; ⑵记b n = , a n a n +1,求数列{b n }的前n 项和T n . 已知二次函数f(x)= ax 2+ bx 的图像过点(一4n , 0),且f ' (0= =f '丄,且 a 1= 4. a n 17.解: 由题意知 f ' (0) b = 2n , 16n 2a — 4nb = 0, 1• • a = _, 2,1又数列{a n }满足 1 *b = 2n ,「. f(x) = 2X 2+ 2nx , n € N *. 1 f '—, f'x) = x + 2n ,a n +1 a n11 门=一+ 2n , a n +1 a n1 1 c =2n. a na n + 1 1 1由叠加法可得 a n -4= 2+ 4 + 6i ・+ 2(n - 1) = n2- n ,化简可得 a n =(2n — 1)2(n >2). 当 n = 1时,a1= 4 也符合上式,•• a n = ~2(n € N ).=2-1(2n — 1)( 2n + 1) 2n — 1 2n + 1 b n =. a 1a 2+ Ja 2a 3+・・・+ ‘叮 a n a n +1 =1 1 1 4n (2) ■/ b n = . a n a n +1 = --T n = b 1 + b 2+…+11 1 ,,21—:+7—2+…+3 3 5=21 — 2n — 1 2n + 1 2n + 1 2n + 1'1 3 1 3所以|a2n+ 1—a2n|<|a2n —a2n —11.②2n。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数 学J 单元 计数原理J1 基本计数原理 10.、[2014·福建卷] 用a 代表红球,b 代表蓝球,c 代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a )(1+b )的展开式1+a +b +ab 表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球、而“ab ”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( )A .(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5B .(1+a 5)(1+b +b 2+b 3+b 4+b 5)(1+c )5C .(1+a )5(1+b +b 2+b 3+b 4+b 5)(1+c 5)D .(1+a 5)(1+b )5(1+c +c 2+c 3+c 4+c 5)10.A [解析] 从5个无区别的红球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+a +a 2+a 3+a 4+a 5;从5个无区别的蓝球中取出若干个球,由所有的蓝球都取出或都不取出,得其所有取法为1+b 5;从5个有区别的黑球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+C 15c +C 25c 2+C 35c 3+C 45c 4+C 55c 5=(1+c )5,根据分步乘法计数原理得,适合要求的所有取法是(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5.J2 排列、组合 13.[2014·北京卷] 把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有________种.13.36 [解析] A 33A 22A 13=6×2×3=36. 8.、[2014·广东卷] 设集合A ={(x 1,x 2,x 3,x 4,x 5)|x i ∈{-1,0,1},i =1,2,3,4,5},那么集合A 中满足条件“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”的元素个数为( )A .60B .90C .120D .1308.D [解析] 本题考查排列组合等知识,考查的是用排列组合思想去解决问题,主要根据范围利用分类讨论思想求解.由“1≤|x 1|+|x 2|+|x 3|+|x 4|+|x 5|≤3”考虑x 1,x 2,x 3,x 4,x 5的可能取值,设集合M ={0},N ={-1,1}.当x 1,x 2,x 3,x 4,x 5中有2个取值为0时,另外3个从N 中取,共有C 25×23种方法;当x 1,x 2,x 3,x 4,x 5中有3个取值为0时,另外2个从N 中取,共有C 35×22种方法;当x 1,x 2,x 3,x 4,x 5中有4个取值为0时,另外1个从N 中取,共有C 45×2种方法.故总共有C 25×23+C 35×22+C 45×2=130种方法, 即满足题意的元素个数为130. 11.、[2014·广东卷] 从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.11.16 [解析] 本题主要考查古典概型概率的计算,注意中位数的求法.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,有C 710种方法,若七个数的中位数是6,则只需从0,1,2,3,4,5中选三个,从7,8,9中选三个不同的数即可,有C 36C 33种方法.故这七个数的中位数是6的概率P =C 36C 33C 710=16.6.[2014·辽宁卷] 6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( ) A .144 B .120 C .72 D .246.D [解析] 这是一个元素不相邻问题,采用插空法,A 33C 34=24. 5.[2014·全国卷] 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种5.C [解析] 由题意,从6名男医生中选2名,5名女医生中选1名组成一个医疗小组,不同的选法共有C 26C 15=75(种).6.[2014·四川卷] 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种6.B [解析] 当甲在最左端时,有A 55=120(种)排法;当甲不在最左端时,乙必须在最左端,且甲也不在最右端,有A 11A 14A 44=4×24=96(种)排法,共计120+96=216(种)排法.故选B.14.[2014·浙江卷] 在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种.(用数字作答)14.60 [解析] 分两种情况:一种是有一人获得两张奖券,一人获得一张奖券,有C 23A 24=36种;另一种是三人各获得一张奖券,有A 34=24种.故共有60种获奖情况.9.[2014·重庆卷] 某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .120C .144D .1689.B [解析] 分两步进行:(1)先将3个歌舞进行全排,其排法有A 33种;(2)将小品与相声插入将歌舞分开,若两歌舞之间只有一个其他节目,其插法有2A 33种.若两歌舞之间有两个其他节目时插法有C 12A 22A 22种.所以由计数原理可得节目的排法共有A 33(2A 33+C 12A 22A 22)=120(种).J3 二项式定理13.[2014·安徽卷] 设a ≠0,n 是大于1的自然数,⎝⎛⎭⎫1+x a n的展开式为a 0+a 1x +a 2x 2+…+a n x n .若点A i (i ,a i )(i =0,1,2)的位置如图1-3所示,则a =________.图1-313.3 [解析] 由图可知a 0=1,a 1=3,a 2=4,由组合原理知⎩⎨⎧C 1n ·1a =a 1=3,C 2n·1a 2=a 2=4,故⎩⎨⎧na=3,n (n -1)a 2=8,解得 ⎩⎪⎨⎪⎧n =9,a =3.10.、[2014·福建卷] 用a 代表红球,b 代表蓝球,c 代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a )(1+b )的展开式1+a +b +ab 表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球、而“ab ”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( )A .(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5B .(1+a 5)(1+b +b 2+b 3+b 4+b 5)(1+c )5C .(1+a )5(1+b +b 2+b 3+b 4+b 5)(1+c 5)D .(1+a 5)(1+b )5(1+c +c 2+c 3+c 4+c 5)10.A [解析] 从5个无区别的红球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+a +a 2+a 3+a 4+a 5;从5个无区别的蓝球中取出若干个球,由所有的蓝球都取出或都不取出,得其所有取法为1+b 5;从5个有区别的黑球中取出若干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为1+C 15c +C 25c 2+C 35c 3+C 45c 4+C 55c 5=(1+c )5,根据分步乘法计数原理得,适合要求的所有取法是(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5.2.[2014·湖北卷] 若二项式⎝⎛⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =( )A .2 B.54 C .1 D.242.C [解析] 展开式中含1x 3的项是T 6=C 57(2x )2⎝⎛⎭⎫a x 5=C 5722a 5x -3,故含1x3的项的系数是C 5722a 5=84,解得a =1.故选C.4.[2014·湖南卷] ⎝⎛⎭⎫12x -2y 5的展开式中x 2y 3的系数是( )A .-20B .-5C .5D .204.A [解析] 由题意可得通项公式T r +1=C r 5⎝⎛⎭⎫12x 5-r (-2y )r =C r 5⎝⎛⎭⎫125-r(-2)r x 5-r y r ,令r=3,则C r 5⎝⎛⎭⎫125-r (-2)r =C 35×⎝⎛⎭⎫122×(-2)3=-20.13.[2014·全国卷] ⎝⎛⎭⎫x y -y x 8的展开式中x 2y 2的系数为________.(用数字作答) 13.70 [解析] 易知二项展开式的通项T r +1=C r 8⎝⎛⎭⎫x y 8-r ⎝⎛⎭⎫-y x r=(-1)r C r 8x 8-3r 2y 3r 2-4.要求x 2y 2的系数,需满足8-3r 2=2且3r 2-4=2,解得r =4,所以T 5=(-1)4C 48x 2y 2=70x 2y 2,所以x 2y 2的系数为70.13.[2014·新课标全国卷Ⅰ] (x -y )(x +y )8的展开式中x 2y 7的系数为________.(用数字填写答案)13.-20 [解析] (x +y )8的展开式中xy 7的系数为C 78=8,x 2y 6的系数为C 68=28,故(x -y )(x +y )8的展开式中x 2y 8的系数为8-28=-20.13. [2014·新课标全国卷Ⅱ] (x +a )10的展开式中,x 7的系数为15,则a =________.(用数字填写答案)13.12[解析] 展开式中x 7的系数为C 310a 3=15, 即a 3=18,解得a =12.14.,[2014·山东卷] 若⎝⎛⎭⎫ax 2+bx 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.14.2 [解析]T r +1=C r 6(ax 2)6-r·⎝⎛⎭⎫b x r=C r6a 6-r ·b r x 12-3r ,令12-3r =3,得r =3,所以C 36a 6-3b 3=20,即a 3b 3=1,所以ab =1,所以a 2+b 2≥2ab =2,当且仅当a =b ,且ab =1时,等号成立.故a 2+b 2的最小值是2.2.[2014·四川卷] 在x (1+x )6的展开式中,含x 3项的系数为( ) A .30 B .20 C .15 D .102.C [解析] x (1+x )6的展开式中x 3项的系数与(1+x )6的展开式中x 2项的系数相同,故其系数为C 26=15.5.[2014·浙江卷] 在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( )A .45B .60C .120D .2105.C [解析] 含x m y n 项的系数为f (m ,n )=C m 6C n 4,故原式=C 36C 04+C 26C 14+C 16C 24+C 06C 34=120,故选C.J4 单元综合8.[2014·安徽卷] 从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A .24对B .30对C .48对D .60对8.C [解析] 方法一(直接法):在上底面中选B 1D 1,四个侧面中的面对角线都与它成60°,共8对,同样A 1C 1对应的对角线也有8对,同理下底面也有16对,共有32对.左右侧面与前后侧面中共有16对面对角线所成的角为60°,故所有符合条件的共有48对.方法二(间接法):正方体的12条面对角线中,任意两条垂直、平行或所成的角为60°,所以所成角为60°的面对角线共有C 212-6-12=48.12.[2014·北京朝阳区一模] 有3张标号分别为1,2,3的红色卡片,3张标号分别为1,2,3的蓝色卡片,现将全部的6张卡片放在2行3列的格内(如图X361所示).若颜色相同的卡片在同一行,则不同的放法种数为________.(用数字作答)图X36112.72 [解析] 由题意可知,不同的放法共有A 33A 33A 22=6×6×2=72(种).3.[2014·合肥质检] 若⎝⎛⎭⎫x -3x n的展开式的各项系数绝对值之和为1024,则展开式中x项的系数为( )A .15B .-15C .10D .-103.B [解析] 由4n =1024,得n =5,∴T r +1=C r 5(x )5-r-3x r =(-3)r C r 5x 5-3r 2.令5-3r 2=1,解得r =1,∴T 2=C 15(-3)1x =-15x ,故其系数为-15.6.[2014·江西师大附中、临川一中联考] 若直线x +ay -1=0与4x -2y +3=0垂直,则二项式⎝⎛⎭⎫ax 2-1x 5的展开式中x 的系数为( )A .-40B .-10C .10D .406.A [解析] 由题意可知,4×1+(-2)a =0,∴a =2,∴二项式为2x 2-1x5,T r +1=C r 5(2x 2)5-r -1xr .令10-2r -r =1,得r =3,∴T 4=C 3522(-1)3x =-40x ,故展开式中x 的系数为-40.8.[2014·四川渠县二中月考] 甲组有5名男同学、3名女同学,乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A .150种B .180种C .300种D .345种8.D [解析] 当从甲组中选出1名女生时,共有C 15·C 13·C 26=225(种)不同的选法;当从乙组中选出1名女生时,共有C 25·C 16·C 12=120(种)不同的选法.故共有345种选法.10.[2014·河南十校联考] 若(2x -1)2013=a 0+a 1x +a 2x 2+…+a 2013x 2013(x ∈R ),则12+a 222a 1+a 323a 1+…+a 201322013a 1=( ) A .-12013 B.12013C .-14026 D.1402610.D [解析] 令x =12,则a 0+a 12+a 222+…+a 201322013=0,令x =0,则a 0=-1.又a 1x =C 20122013(2x)1(-1)2012=4026x ,所以a 1=4026,所以12+a 222a 1+a 323a 1+…+a 201322013a 1=12+-20124026=14026.。