2021年全等三角形单元测试8(含答案)

合集下载

第12章全等三角形单元能力达标测评2021-2022学年八年级数学人教版上册

第12章全等三角形单元能力达标测评2021-2022学年八年级数学人教版上册

2021-2022学年人教版八年级数学上册《第12章全等三角形》单元能力达标测评(附答案)一.选择题(共12小题,满分36分)1.下列各组的两个图形属于全等图形的是()A.B.C.D.2.下列说法中,正确的是()A.全等图形是形状相同的两个图形B.全等三角形是指面积相同的两个三角形C.等边三角形都是全等三角形D.全等图形的周长、面积都相等3.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1B.AC=CA C.∠B=∠D D.BC=DC4.如图,△ABC≌△ADE,点D落在BC上,且∠EDC=70°,则∠B的度数等于()A.50°B.55°C.60°D.65°5.如图,∠C=∠D,那么补充下列一个条件后,仍无法判定△ABC≌△BAD的是()A.AD=BC B.AC=BD C.∠CAB=∠DBA D.∠ABC=∠BAD 6.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是()A.ASA B.SAS C.SSS D.AAS7.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC =7,则AD的长为()A.5.5B.4C.4.5D.38.如图,已知AB⊥BC于B,CD⊥BC于C,BC=13,AB=5,且E为BC上一点,∠AED =90°,AE=DE,则BE=()A.13B.8C.6D.59.如图,在△ABC中,AC⊥BC,AE为∠BAC的平分线,ED⊥AB于点D,AB=7cm,AC =3cm,则BD的长为()A.3cm B.4cm C.1cm D.2cm10.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理()A.1;SAS B.2;ASA C.3;ASA D.4;SAS11.如图,△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E.若CD=2,AB=7,则△ABD的面积为()A.3.5B.7C.14D.2812.有一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条角平分线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条中线的交点D.△ABC三条高所在直线的交点二.填空题(共4小题,满分16分)13.如图,△ABD≌△ACE,AD=8cm,AB=3cm,则BE=cm.14.如图,已知△ABC≌△DEF,A和D是对应顶点,若∠A=80°,∠B=65°,则∠F°.15.如图,点P是∠AOB平分线OC上一点,PE⊥OA,PF⊥OB,垂足分别是点E,F,若PE=3.则PF=.16.利用两块完全相同的直角三角板测量升旗台的高度.首先将两块完全相同的三角板按图1放置,然后交换两块三角板的位置,按图2放置.测量数据如图所示,则升旗台的高度是cm.三.解答题(共9小题,满分68分)17.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)18.如图,已知AB,CD相交于O,△ACO≌△BDO,AE=BF,求证:CE=FD.19.如图,在△ABC中,AB=AC,CD⊥AB于点D,BE⊥AC于点E.求证:BD=CE.20.如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE ≌Rt△BEC.21.已知:如图,AB=AE,∠B=∠E,BC=ED,AF⊥CD.求证:点F是CD的中点.22.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30°,∠BAC=45°,求∠ACF的度数.23.如图,在△ABC和△DEF中,AB∥DE,点A,F,C,D 在同一直线上,AF=CD,∠AFE=∠BCD.试说明:(1)△ABC≌△DEF;(2)BF∥EC.24.如图,已知∠B=∠C=90°,M是BC的中点,DM平分∠ADC.求证:(1)AM平分∠DAB;(2)DM⊥AM.25.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BD=DF.(1)求证:CF=EB;(2)试判断AB与AF,EB之间存在的数量关系.并说明理由.参考答案一.选择题(共12小题,满分36分)1.解:A、两个图形能够完全重合,故本选项正确.B、圆内两条相交的线段不能完全重合,故本选项错误;C、两个正方形的边长不相等,不能完全重合,故本选项错误;D、两只眼睛下面的嘴巴不能完全重合,故本选项错误;故选:A.2.解:A、全等图形是指形状相同、大小相等的两个图形,故本选项错误;B、全等三角形是指能够完全重合的两个三角形,故本选项错误;C、等边三角形的形状相同、但是大小不一定相等,所以不一定都是全等三角形,故本选项错误;D、全等图形的周长、面积相等,故本选项正确;故选:D.3.解:∵△ABC≌△CDA,∴∠1=∠2,AC=CA,∠B=∠D,BC=AD,故只有选项D,BC=DC错误.故选:D.4.解:∵△ABC≌△ADE,∴AB=AD,∠B=∠ADE,∴∠B=∠ADB,∴∠BDA=∠ADE,∵∠EDC=70°,∴∠BDA=∠ADE=×(180°﹣70°)=55°.故选:B.5.解:A、SSA无法判断三角形全等,故本选项符合题意;B、根据ASA即可判断△ACO≌△BDO,得OC=OD,OA=OB,再用SAS可得三角形全等,故本选项不符合题意;C、根据AAS即可判断三角形全等,故本选项不符合题意;D、根据AAS即可判断三角形全等,故本选项不符合题意;故选:A.6.解:小周书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他根据的定理是:两角及其夹边分别相等的两个三角形全等(ASA).故选:A.7.解:∵AB∥EF,∴∠A=∠E.又AB=EF,∠B=∠F,∴△ABC≌△EFD(ASA).∴AC=DE=7.∴AD=AE﹣DE=10﹣7=3.故选:D.8.解:∵∠B=∠AED=∠C=90°,∴∠A+∠AEB=90°,∠AEB+∠DEC=90°,∴∠A=∠DEC,在△ABE和△ECD中∴△ABE≌△ECD(AAS).∴CE=AB=5.∴BE=BC﹣CE=13﹣5=8.故选:B.9.解:∵AC⊥BC,ED⊥AB,∴∠C=∠ADE=90°,在△ACE和△ADE中,,∴△ACE≌△ADE(AAS),∴AD=AC=3cm,∴BD=AB﹣AD=4cm,故选:B.10.解:由图可知,带第2块去,符合“角边角”,可以配一块与原来大小一样的三角形玻璃.故选:B.11.解:∵△ABC中,∠C=90°,∠BAC的角平分线交BC于点D,DE⊥AB于点E,CD =2,∴DE=CD=2,∵AB=7,∴△ABD的面积是:==7,故选:B.12.解:∵三角形角平分线上的点到角两边的距离相等,∴亭的位置应选在三角形三条角平分线的交点上.故选:A.二.填空题(共4小题,满分16分)13.解:∵△ABD≌△ACE,∴AD=AE,AC=AB,又AD=8cm,AB=3cm,∵BE=AE﹣AB=8﹣3=5,∴BE=5cm.故填5.14.解:∵∠A=80°,∠B=65°,∴∠ACB=180°﹣80°﹣65°=35°,∵△ABC≌△DEF,∴∠F=∠ACB=35°,故答案为:=35.15.解:∵点P是∠AOB平分线OC上一点,PE⊥OA,PF⊥OB,∴PE=PF,∵PE=3,∴PF=PE=3,故答案为:3.16.解:设升旗台的高度是zcm,AC=xcm,BC=ycm.由题意:,①+②可得,2z=138,∴z=69,故答案为69.三.解答题(共9小题,满分68分)17.解:图象如图所示,∵∠EAC=∠ACB,∴AD∥CB,∵AD=BC,∠DAC=∠ACB,AC=CA,∴△ACD≌△CAB(SAS),∴∠ACD=∠CAB,∴AB∥CD.18.解:∵△ACO≌△BDO,∴CO=OD,AO=OB,∵AE=BF,∴OE=OF,∴△COE≌△DOF,∴CE=DF.19.证明:∵CD⊥AB,BE⊥AC,∴∠BDC=∠CEB=90°,∵AB=AC,∴∠ABC=∠ACB,在△BCD和△CBE中,∠BDC=∠CEB,∠DBC=∠ECB,BC=CB,∴△BCD≌△CBE(AAS),∴BD=CE.20.证明:∵∠1=∠2,∴DE=CE.∵∠A=∠B=90°,∴△ADE和△EBC是直角三角形,而AD=BE.∴Rt△ADE≌Rt△BEC(HL)21.证明:如图,连接AC、AD,在△ABC和△AED中,,∴△ABC≌△AED(SAS),∴AC=AD,∵AF⊥CD,∴CF=FD(等腰三角形三线合一).∴点F是CD的中点.22.(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL);(2)解:∵∠ABC=90°,∠BAC=45°,∴∠ACB=45°,又∵∠BAE=∠CAB﹣∠CAE=45°﹣30°=15°,由(1)知:Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=45°+15°=60°.23.证:(1)∵AB∥DE,∴∠A=∠D∵AF=CD,∴AF+FC=CD+FC即AC=DF∵∠AFE=∠BCD,∴∠DFE=∠ACB在△ABC和△DEF中,∴△ABC≌△DEF(ASA)(2)∵△ABC≌△DEF∴BC=EF在△BCF和△EFC中,∴△BCF≌△EFC(SAS)∴∠BFC=∠ECF∴BF∥EC24.(1)AM平分∠DAB.证明:过点M作ME⊥AD,垂足为E,∵DM平分∠ADC,∴∠1=∠2,∵MC⊥CD,ME⊥AD,∴ME=MC(角平分线上的点到角两边的距离相等),又∵MC=MB,∴ME=MB,∵MB⊥AB,ME⊥AD,∴AM平分∠DAB(到角的两边距离相等的点在这个角的平分线上).(2)DM⊥AM.证明:∵∠B=∠C=90°,∴DC⊥CB,AB⊥CB,∴CD∥AB(垂直于同一条直线的两条直线平行),∴∠CDA+∠DAB=180°(两直线平行,同旁内角互补)又∵∠1=∠CDA,∠3=∠DAB(角平分线定义)∴2∠1+2∠3=180°,∴∠1+∠3=90°,∴∠AMD=90度.即DM⊥AM.25.(1)证明:∵AD是∠BAC的平分线,DE⊥AB,∠C=90°,∴DC=DE,在Rt△FCD和Rt△BED中,,∴Rt△FCD≌Rt△BED(HL),∴CF=EB;(2)解:AB=AF+2BE,理由如下:在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∴AB=AE+BE=AF+FC+BE=AF+2BE.。

2021年苏科版数学八年级上册第1章《全等三角形》单元检测卷(含答案)

2021年苏科版数学八年级上册第1章《全等三角形》单元检测卷(含答案)

苏科版数学八年级上册第1章《全等三角形》单元检测卷一、选择题1.如果两个图形全等,则这个图形必定是()A.形状相同,但大小不同B.形状大小均相同C.大小相同,但形状不同D.形状大小均不相同2.已知图中的两个三角形全等,则∠a度数是()A.72°B.60°C.58°D.50°3.已知△ABC≌△A´B´C´,且△ABC的周长为20,AB=8,BC=5,则A´C´等于()A.5B.6C.7D.84.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A. 40°B.30°C.35°D.25°5.已知△A1B1C1,△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()A.①正确,②错误B.①错误,②正确C.①,②都错误D.①,②都正确6.如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1个 B.2个 C.3个 D.4个7.如图,AB=CD,AB∥CD,判定△ABC≌△CDA的依据是( )A.SSSB.SASC.ASAD.HL8.如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③9.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.90°B.150°C.180°D.210°10.在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形个数是()A.1B.2C.3D.411.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个12.△ABC中,AB=7,AC=5,则中线AD之长的范围是( )A.5<AD<7B.1<AD<6C.2<AD<12D.2<AD<5二、填空题13.如图是某厂房的平面图,请你指出,其中全等的有组.14.如图,四边形ABCD与四边形D′C′B′A′全等,则∠A′=_____,∠B=____,∠A=_____.15.已知△ABC≌△DEF,∠A=40°,∠B=50°,则∠F= °.16.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件: ,使△AEH≌△CEB.17.如图,点F、C在线段BE 上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件,依据是.18.如图,AC=AE,AD=AB,∠ACB=∠DAB=90°,∠BAE=35°,AE∥CB,AC,DE交于点F.(1)∠DAC= 度;(2)猜想线段AF与BC的数量关系是 .三、作图题19.如图,试沿着虚线把图形分成两个全等图形.四、解答题20.如图,点B,F,C,E在同一条直线上,△ABC≌△DEF,AB=6,BC=11,BF=3,∠ACB=30°. 求∠DFE的度数及DE,CE的长.21.如图,已知△ABC中,∠1=∠2,AE=AD,求证:DF=EF.22.如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B.试说明AD+AB=BE.23.如图所示,△ADF≌△CBE,且点E,B,D,F在一条直线上.判断AD与BC的位置关系,并加以说明.24.已知:在△ABC中,∠BAC=90°,AB=AC,AE是过点A的一条直线,且BD⊥AE于D,CE⊥AE于E.(1)当直线AE处于如图①的位置时,有BD=DE+CE,请说明理由;(2)当直线AE处于如图②的位置时,则BD、DE、CE的关系如何?请说明理由;(3)归纳(1)、(2),请用简洁的语言表达BD、DE、CE之间的关系.25.在△ABC中,AB=AC,点D是射线CB上的一个动点(不与点B,C重合),以AD为一边在AD 的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).参考答案1.B2.D3.C4.C5.D6.B7.B.8.D.9.C10.C11.C12.B13.答案为:3.14.答案为:120°,85°。

人教版2020-2021学年八年级数学上册第12章《全等三角形》单元测试卷(含答案)

人教版2020-2021学年八年级数学上册第12章《全等三角形》单元测试卷(含答案)

人教版八年级上册第12章《全等三角形》单元测试题一.选择题(共10小题,满分30分,每小题3分)1.已知△ABC≌△A1B1C1,A和A1对应,B和B1对应,∠A=70°,∠B1=50°,则∠C 的度数为()A.70°B.50°C.120°D.60°2.若△ABC≌△DEF,则根据图中提供的信息,可得出x的值为()A.30B.27C.35D.403.如图,测量河两岸相对的两点A,B的距离时,先在AB的垂线BF上取两点C,D,使CD=BC,再过点D画出BF的垂线DE,当点A,C,E在同一直线上时,可证明△EDC ≌△ABC,从而得到ED=AB,则测得ED的长就是两点A,B的距离.判定△EDC≌△ABC的依据是()A.“边边边”B.“角边角”C.“全等三角形定义”D.“边角边”4.下列说法中错误的是()A.有两个角及它们的夹边对应相等的两个三角形全等B.有两个角及其中一个角的对边对应相等的两个三角形全等C.有两条边及它们的夹角对应相等的两个三角形全等D.有两条边及其中一条边的对角对应相等的两个三角形全等5.如图,AB平分∠DAC,增加下列一个条件,不能判定△ABC≌△ABD的是()A.AC=AD B.BC=BD C.∠CBA=∠DBA D.∠C=∠D6.如图,点O在△ABC内,且到三边的距离相等.若∠A=40°,则∠BOC等于()A.110°B.115°C.125°D.130°7.如图,△ABC中,∠C=90°,E是AC上一点,连接BE,过E作DE⊥AB,垂足为D,BD=BC,若AC=6cm,则AE+DE的值为()A.4cm B.5cm C.6cm D.7cm8.在平面直角坐标系xOy中,点A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是()A.(6,0)B.(4,0)C.(4.﹣2)D.(4,﹣3)9.如图,AB,CD相交于点O,OA=OC,∠A=∠C,下列结论:(1)△AOD≌△COB;(2)AD=CB;(3)AB=CD.其中正确的个数为()A.0个B.1个C.2个D.3个10.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB 于点E,交AC于点F,过点O作OD⊥AC于点D,某班学生在一次数学活动课中,探索出如下结论,其中错误的是()A.EF=BE+CF B.点O到△ABC各边的距离相等C.∠BOC=90°+∠A D.设OD=m,AE+AF=n,则S△AEF=mn二.填空题(共6小题,满分18分,每小题3分)11.如图,Rt△ABC和Rt△EDF中,BC∥DF,在不添加任何辅助线的情况下,请你添加一个条件,使Rt△ABC和Rt△EDF全等.12.如图,∠B=∠C=90°,AB=AC,∠ADB=65°,则∠DAC的度数为°.13.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=.14.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是.15.(多选)如图,AB=4cm,AC=BD=3cm,∠CAB=∠DBA,点P在线段AB上以1cm/s 的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.设运动时间为t(s),则当△ACP与△BPQ全等时,点Q的运动速度为cm/s.A.;B.1;C.1.5;D.2.16.如图,△ABC的三边AB、BC、CA长分别为30,40,50.其三条角平分线交于点O,则S△ABO:S△BCO:S△CAO=.三.解答题(共7小题,满分52分)17.(6分)已知:如图,点E,D,B,F在同一条直线上,AD∥CB,∠E=∠F,DE=BF.求证:AE=CF.(每一行都要写依据)18.(6分)如图,已知点C是线段AB上一点,∠DCE=∠A=∠B,CD=CE.(1)说明△ACD与△BEC全等的理由;(2)说明AB=AD+BE的理由.19.(7分)已知:如图,△ABC,BD⊥AC,CE⊥AB,BD=CE,BD与CE交于点F.(1)说明AB=AC的理由;(2)联结AF并延长交BC于G,说明AG⊥BC的理由.20.(7分)已知△ABC和△ADE均为等腰三角形,且∠BAC=∠DAE,AB=AC,AD=AE.(1)如图1,点E在BC上,求证:BC=BD+BE;(2)如图2,点E在CB的延长线上,(1)的结论是否成立?若成立,给出证明;若不成立,写出成立的式子并证明.21.(8分)已知:在△ABC中,∠ABC=60°,∠ACB=40°,BD平分∠ABC,CD平分∠ACB,(1)如图1,求∠BDC的度数;(2)如图2,连接AD,作DE⊥AB,DE=2,AC=4,求△ADC的面积.22.(9分)阅读探索题:(1)如图1,OP是∠MON的平分线,以O为圆心任意长为半径作弧,分别交射线ON、OM于C、B两点,在射线OP上任取一点A(点O除外),连接AB、AC.求证:△AOB ≌△AOC.(2)请你参考以上方法,解答下列问题:如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系并证明.23.(9分)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:∵△ABC≌△A1B1C1,A和A1对应,B和B1对应,∠A=70°,∠B1=50°,∴∠B=∠B1=50°,则∠C的度数为:180°﹣50°﹣70°=60°.故选:D.2.解:∵△ABC≌△DEF,∴BC=EF=30,故选:A.3.解:∵∠ACB=∠DCE,CD=BC,∠ABC=∠EDC,∴△EDC≌△ABC(ASA),故选:B.4.解:A、有两个角及它们的夹边对应相等的两个三角形全等,是“ASA”,说法正确;B、两个角及其中一个角的对边对应相等的两个三角形全等,是“AAS”,说法正确;C、有两条边及它们的夹角对应相等的两个三角形全等,是“SAS”,说法正确;D、有两条边及其中一条边的对角对应相等的两个三角形不一定全等,说法错误;故选:D.5.解:∵AB平分∠DAC,∴∠CAB=∠DAB,∵AB=AB,∴若AC=AD,则△ABC≌△ABD(SAS),故选项A中的条件,可以判定△ABC≌△ABD;若BC=BD,则无法判断△ABC≌△ABD,故选项B中的条件,不可以判定△ABC≌△ABD;若∠CBA=∠DBA,则△ABC≌△ABD(ASA),故选项C中的条件,可以判定△ABC≌△ABD;若∠C=∠D,则△ABC≌△ABD(AAS),故选项D中的条件,可以判定△ABC≌△ABD;故选:B.6.解:∵O到三角形三边距离相等,∴O是△ABC的内心,即三条角平分线交点,∴AO,BO,CO都是角平分线,∴∠CBO=∠ABO=∠ABC,∠BCO=∠ACO=∠ACB,∵∠ABC+∠ACB=180°﹣40°=140°,∴∠OBC+∠OCB=70°,∴∠BOC=180°﹣70°=110°,故选:A.7.解:∵DE⊥AB于D,∴∠BDE=90°,在Rt△BDE和Rt△BCE中,,∴Rt△BDE≌Rt△BCE(HL),∴ED=CE,∴AE+ED=AE+CE=AC=6cm,故选:C.8.解:如图所示:△ABC与△EFB全等,点F的坐标可以是:(4,﹣3).故选:D.9.解:∵OA=OC,∠A=∠C,而∠AOD=∠BOC,∴△AOD≌△COB(ASA),所以(1)正确;∴AD=BC,OD=OB,所以(2)正确;∵OA+OB=OC+OD,∴AB=CD,所以(3)正确.故选:D.10.解:A、∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠EBO=∠OBC,∠OCB=∠FCO,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FCO=∠FOC,∴OE=BE,OF=CF,∴EF=EO+FO=BE+CF,正确,故本选项不符合题意;B、过O作OM⊥AB于M,ON⊥BC于N,∵∠ABC和∠ACB的平分线相交于点O,OD⊥AC,∴OM=ON,OD=ON,∴OM=ON=OD,即点O到△ABC各边的距离相等,正确,故本选项不符合题意;C、∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣A,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(90°﹣∠A)=90°+A,错误,故本选项符合题意;D、连接AO,∵OD=m=OM,AE+AF=n,∴S△AEF=S△AOE+S△AOF=+=×AE×m+m=m(AE+AF)=mn,正确,故本选项不符合题意;故选:C.二.填空题(共6小题,满分18分,每小题3分)11.解:∵Rt△ABC和Rt△EDF中,∴∠BAC=∠DEF=90°,∵BC∥DF,∴∠DFE=∠BCA,∴添加AB=ED,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(AAS),故答案为:AB=ED答案不唯一.12.解:∵∠B=∠C=90°,AB=AC,在Rt△ABD与Rt△ACD中,∴Rt△ABD≌Rt△ACD(HL),∴∠ADC=∠ADB=65°,∴∠DAC=90°﹣65°=25°,故答案为:25.13.解:如图所示:由题意可得:∠1=∠3,则∠1+∠2=∠2+∠3=45°.故答案为:45°.14.解:过P作PE⊥OA于点E,∵点P是∠AOB平分线OC上一点,PD⊥OB,∴PE=PD,∵PD=2,∴PE=2,∴点P到边OA的距离是2.故答案为2.15.解:当△ACP≌△BPQ时,则AC=BP,AP=BQ,∵AC=3cm,∴BP=3cm,∵AB=4cm,∴AP=1cm,∴BQ=1cm,∴点Q的速度为:1÷(1÷1)=1(cm/s);当△ACP≌△BQP时,则AC=BQ,AP=BP,∵AB=4cm,AC=BD=3cm,∴AP=BP=2cm,BQ=3cm,∴点Q的速度为:3÷(2÷1)=1.5(cm/s);故选:B、C.16.解:作OD⊥AB于D,OE⊥AC于E,OF⊥BC于F,∵三条角平分线交于点O,OD⊥BC,OE⊥AC,OF⊥AB,∴OD=OE=OF,∴S△ABO:S△BCO:S△CAO=AB:BC:CA=3:4:5,故答案为:3:4:5.三.解答题(共7小题,满分52分)17.证明:∵AD∥CB(已知),∴∠ADB=∠CBD(两直线平行,内错角相等),∴∠ADE=∠CBF(等角的补角相等).在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF(全等三角形的对应边相等).18.解:(1)∵∠DCE=∠A,∴∠D+∠ACD=∠ACD+∠BCE,∴∠D=∠BCE,在△ACD和△BEC中,,∴△ACD≌△BEC(AAS);(2)∵△ACD≌△BEC,∴AD=BC,AC=BE,∴AC+BC=AD+BE,即AB=AD+BE.19.解:(1)∵BD⊥AC,CE⊥AB,∵BD=CE,∠A=∠A,∴△ABD≌△ACE(AAS)∴AB=AC;(2)∵AB=AC,∴∠ABC=∠ACB,∵△ABD≌△ACE,∴∠ABD=∠ACE,∴∠FBC=∠FCB,∴FB=FC,在△ABF和△ACF中,,∴△ABF≌△ACF(SSS)∴∠BAF=∠CAF,∵AB=AC,∴AG⊥BC.20.(1)证明:∵∠BAC=DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=BE+CE=BD+BE;(2)解:(1)的结论不成立,成立的结论是BC=BD﹣BE.∴∠BAC+∠EAB=∠DAE+∠EAB,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=CE﹣BE=BD﹣BE.21.解:(1)∵BD平分∠ABC,∴∠DBC=∠ABC=×60°=30°,∵CD平分∠ACB,∴∠DCB=∠ACB=×40°=20°,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣30°﹣20°=130°;(2)作DF⊥AC于F,DH⊥BC于H,如图2,∵BD平分∠ABC,DE⊥AB,DH⊥BC,∴DH=DE=2,∵CD平分∠ACB,DF⊥AC,DH⊥BC,∴DF=DH=2,∴△ADC的面积=DF•AC=×2×4=4.22.(1)证明:在△AOB和△AOC中,,∴△AOB≌△AOC(SAS).(2)在CB上截取CE=CA,∵CD平分∠ACB,∴∠ACD=∠BCD,在△ACD和△ECD中,,∴△ACD≌△ECD(SAS),∴∠CAD=∠CED=60°,∵∠ACB=90°,∴∠B=30°,∴∠EDB=30°,即∠EDB=∠B,∴DE=EB,∵BC=CE+BE,∴BC=AC+DE,∴BC=AC+AD.23.解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=BC=cm,此时,点P移动的距离为AC+CP=12+=,移动的时间为:÷3=秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=BC,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+=cm,移动的时间为:÷3=秒,故答案为:或;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速为cm/s 或cm/s.1、生活不相信眼泪,眼泪并不代表软弱。

2020-2021学年人教版八年级数学上学期《第12章 全等三角形》测试卷及答案解析

2020-2021学年人教版八年级数学上学期《第12章 全等三角形》测试卷及答案解析

2020-2021学年人教版八年级数学上学期《第12章全等三角形》测试卷一.选择题(共8小题)1.下列说法正确的个数()①三角形的三条高所在直线交于一点;②一个角的补角比这个角的余角大90°;③垂直于同一条直线的两条直线互相垂直;④两直线相交,同位角相等;⑤面积相等的两个正方形是全等图形;⑥已知两边及一角不能唯一作出三角形.A.1个B.2个C.3个D.4个2.如图所示,锐角△ABC中,D,E分别是AB,AC边上的点,△ADC≌△ADC′,△AEB ≌△AEB′,且C′D∥EB′∥BC,BE、CD交于点F,若∠BAC=40°,则∠BFC的大小是()A.105°B.100°C.110°D.115°3.如图,已知:AC=DF,AC∥FD,AE=DB,判断△ABC≌△DEF的依据是()A.SSS B.SAS C.ASA D.AAS4.下列说法正确的是()A.两边及其中一边的对角分别相等的两个三角形全等B.三角形的外角等于它的两个内角的和C.斜边和一条直角边相等的两个直角三角形全等D.两条直线被第三条直线所截,内错角相等5.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还要添加一个条件是()A.AB=DC B.∠A=∠D C.∠B=∠C D.AE=BF6.如图,在△ABC中,F是高AD和BE的交点,BC=6,CD=2,AD=BD,则线段AF 的长度为()A.2B.1C.4D.37.平面内,到三角形三边所在直线距离相等的点共有()个.A.3B.4C.5D.68.下列作图语句正确的是()A.连接AD,并且平分∠BAC B.延长射线ABC.作∠AOB的平分线OC D.过点A作AB∥CD∥EF二.填空题(共2小题)9.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=.10.利用两块完全相同的直角三角板测量升旗台的高度.首先将两块完全相同的三角板按图1放置,然后交换两块三角板的位置,按图2放置.测量数据如图所示,则升旗台的高度是cm.2020-2021学年人教版八年级数学上学期《第12章全等三角形》测试卷参考答案与试题解析一.选择题(共8小题)1.下列说法正确的个数()①三角形的三条高所在直线交于一点;②一个角的补角比这个角的余角大90°;③垂直于同一条直线的两条直线互相垂直;④两直线相交,同位角相等;⑤面积相等的两个正方形是全等图形;⑥已知两边及一角不能唯一作出三角形.A.1个B.2个C.3个D.4个【分析】根据全等图形、三角形的高、互补、垂直以及平行线的性质进行判断即可.【解答】解:①三角形的三条高交于同一点,所以此选项说法正确;②设这个角为α,则这个角的补角表示为180°﹣α,这个角的余角表示为90°﹣α,(180°﹣α)﹣(90°﹣α)=90°,∴一个角的补角比这个角的余角大90°,此选项正确;③垂直于同一条直线的两条直线互相平行,所以此选项不正确;④两直线平行,同位角相等,所以此选项说法不正确;⑤面积相等的两个正方形是全等图形,此选项正确;⑥已知两边及一角不能唯一作出三角形,此选项正确.故选:D.【点评】此题考查全等图形、三角形的高以及平行线的性质等知识,关键是根据全等图形、三角形的高、互补、垂直以及平行线的性质进行判断.2.如图所示,锐角△ABC中,D,E分别是AB,AC边上的点,△ADC≌△ADC′,△AEB ≌△AEB′,且C′D∥EB′∥BC,BE、CD交于点F,若∠BAC=40°,则∠BFC的大小是()A.105°B.100°C.110°D.115°【分析】延长C′D交AB′于H.利用全等三角形的性质,平行线的性质,三角形的外角的性质证明∠BFC=∠C′+∠AHC′,再求出∠C′+∠AHC′即可解决问题.【解答】解:延长C′D交AB′于H.∵△AEB≌△AEB′,∴∠ABE=∠AB′E,∵C′H∥EB′,∴∠AHC′=∠AB′E,∴∠ABE=∠AHC′,∵△ADC≌△ADC′,∴∠C′=∠ACD,∵∠BFC=∠DBF+∠BDF,∠BDF=∠CAD+∠ACD,∴∠BFC=∠AHC′+∠C′+∠DAC,∵∠DAC=∠DAC′=∠CAB′=40°,∴∠C′AH=120°,∴∠C′+∠AHC′=60°,∴∠BFC=60°+40°=100°,故选:B.【点评】本题考查了全等三角形的性质,平行线的性质,三角形的外角的性质等知识,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应边相等,对应角相等.3.如图,已知:AC=DF,AC∥FD,AE=DB,判断△ABC≌△DEF的依据是()A.SSS B.SAS C.ASA D.AAS【分析】根据两直线平行内错角相等,再根据SAS即可证明△ABC≌△DEF.【解答】解:∵AC∥FD,∴∠CAD=∠ADF,∵AE=DB,∴ED=AB,∵AC=DF,∴△ABC≌△DEF(SAS),故选:B.【点评】本题主要考查了全等三角形的判定,关键是根据两直线平行内错角相等解答.4.下列说法正确的是()A.两边及其中一边的对角分别相等的两个三角形全等B.三角形的外角等于它的两个内角的和C.斜边和一条直角边相等的两个直角三角形全等D.两条直线被第三条直线所截,内错角相等【分析】A、根据三角形全等的判定进行判断;B、根据三角形的外角与内角和关系及三角形的内角和定理可做判断;C、根据三角形全等的判定进行判断;D、根据平行线的性质进行判断.【解答】解:A、两边及夹角分别相等的两个三角形全等,错误;B、三角形的外角等于与它不相邻的两个内角的和,错误;C、边和一条直角边相等的两个直角三角形全等,正确;D、两条平行线被第三条直线所截,内错角相等,错误;故选:C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,命题可分为真命题和假命题.5.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还要添加一个条件是()A.AB=DC B.∠A=∠D C.∠B=∠C D.AE=BF【分析】根据垂直定义求出∠CFD=∠AEB=90°,再根据全等三角形的判定定理推出即可.【解答】解:条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),故选:A.【点评】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.6.如图,在△ABC中,F是高AD和BE的交点,BC=6,CD=2,AD=BD,则线段AF 的长度为()A.2B.1C.4D.3【分析】先证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△ADC,利用全等三角形对应边相等就可得到结论.【解答】证明:∵F是高AD和BE的交点,∴∠ADC=∠FDB=∠AEF=90°,∴∠DAC+∠AFE=90°,∵∠FDB=90°,∴∠FBD+∠BFD=90°,又∵∠BFD=∠AFE,∴∠FBD=∠DAC,在△BDF和△ADC中,,∴△BDF≌△ADC(AAS),∴DF=CD=2,∴AD=BD=BC﹣DF=4,∴AF=AD﹣DF=4﹣2=2;故选:A.【点评】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;证明三角形全等是解题的关键.7.平面内,到三角形三边所在直线距离相等的点共有()个.A.3B.4C.5D.6【分析】在三角形内部到三边距离相等的点是三条内角平分线的交点,只有一个;在三角形的外部到三条边所在直线距离相等的点是外角平分线的交点,有三个【解答】解:∵在三角形内部到三边距离相等的点是三条内角平分线的交点,交点重合,只有一点;在三角形的外部到三条边所在直线距离相等的点是外角平分线的交点,交点不重合,有三个.∴到三角形三边所在直线距离相等的点有4个.故选:B.【点评】此题是考查角平分线的性质的灵活应用.注意三角形的外角平分线不要漏掉,有3个交点.8.下列作图语句正确的是()A.连接AD,并且平分∠BAC B.延长射线ABC.作∠AOB的平分线OC D.过点A作AB∥CD∥EF【分析】根据基本作图的方法,逐项分析,从而得出正确的结论.【解答】解:A.连接AD,不能同时使平分∠BAC,此作图错误;B.只能反向延长射线AB,此作图错误;C.作∠AOB的平分线OC,此作图正确;D.过点A作AB∥CD或AB∥EF,此作图错误;故选:C.【点评】此题主要考查了作图﹣尺规作图的定义:用没有刻度的直尺和圆规作图,正确把握定义是解题关键.二.填空题(共2小题)9.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=45°.【分析】根据题意,作出合适的辅助线,然后根据勾股定理的逆定理即可解答本题.【解答】解:如右图所示,作CD∥AB,连接DE,则∠2=∠3,设每个小正方形的边长为a,则CD=,DE=a,CE=a,∵CD2+DE2==10a2=CE2,CD=DE,∴△CDE是等腰直角三角形,∠CDE=90°,∴∠DCE=45°,∴∠3+∠1=45°,∴∠1+∠2=45°,故答案为:45°.【点评】本题考查全等图形,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.10.利用两块完全相同的直角三角板测量升旗台的高度.首先将两块完全相同的三角板按图1放置,然后交换两块三角板的位置,按图2放置.测量数据如图所示,则升旗台的高度是69cm.【分析】设升旗台的高度是zcm,AC=xcm,BC=ycm.构建方程组即可解决问题.【解答】解:设升旗台的高度是zcm,AC=xcm,BC=ycm.由题意:,①+②可得,2z=138,∴z=69,故答案为69.【点评】本题考查全等三角形的性质,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.。

(2021年整理)八年级数学全等三角形练习题含答案

(2021年整理)八年级数学全等三角形练习题含答案

(完整)八年级数学全等三角形练习题含答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)八年级数学全等三角形练习题含答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)八年级数学全等三角形练习题含答案的全部内容。

全等三角形复习练习题一、选择题1.如图,给出下列四组条件:①AB DE BC EF AC DF ===,,;②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,. 其中,能使ABC DEF △≌△的条件共有( )A .1组B .2组C .3组D .4组2.如图,D E ,分别为ABC △的AC ,BC 边的中点,将此三 角形沿DE 折叠,使点C 落在AB 边上的点P 处.若48CDE ∠=°, 则APD ∠等于( )A .42°B .48°C .52°D .58°3。

如图(四),点P 是AB 上任意一点,ABC ABD ∠=∠,还应补 充一个条件,才能推出APC APD △≌△.从下列条件中补充 一个条件,不一定能....推出APC APD △≌△的是( ) A .BC BD = B.AC AD = C.ACB ADB ∠=∠ D 。

CAB DAB ∠=∠ 4。

如图,在△ABC 与△DEF 中,已有条件AB=DE ,还需添加两 个条件才能使△ABC ≌△DEF ,不能添加的一组条件是( ) (A)∠B=∠E ,BC=EF (B )BC=EF ,AC=DF (C )∠A=∠D,∠B=∠E (D )∠A=∠D,BC=EF5.如图,△ABC 中,∠C = 90°,AC = BC ,AD 是∠BAC的平分线, DE⊥AB 于E ,若AC = 10cm ,则△DBE 的周长约等于( )EDCBACADP B图(四)A .14cmB .10cmC .6cmD .9cm6. 如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A.1处 B.2处 C.3处 D.4处7.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配 一块完全一样的玻璃,那么最省事的方法是( )A .带①去B .带②去C .带③去D .带①②③去 8.如图,在Rt ABC △中,90=∠B ,ED 是AC 的垂直平分线,交AC 于 点D ,交BC 于点E .已知10=∠BAE ,则C ∠的度数为( ) A . 30 B . 40 C . 50 D . 609.如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A .20°B .30°C .35°D .40°10.如图,AC =AD ,BC =BD ,则有( )A .AB 垂直平分CD B .CD 垂直平分ABC .AB 与CD 互相垂直平分 D .CD 平分∠ACB11.如图, ∠C=90°,AD 平分∠BAC 交BC 于D,若BC=5cm ,BD=3cm ,则点D 到AB 的距离为( )A. 5cmB. 3cmC. 2cm D 。

2020-2021学年冀教新版八年级上册数学《第13章 全等三角形》单元测试卷(有答案)

2020-2021学年冀教新版八年级上册数学《第13章 全等三角形》单元测试卷(有答案)

2020-2021学年冀教新版八年级上册数学《第13章全等三角形》单元测试卷一.选择题1.下列画图的语句中,正确的为()A.画直线AB=10cmB.画射线OB=10cmC.延长射线BA到C,使BA=BCD.过直线AB外一点画一条直线和直线AB相交2.用反证法证明命题:“已知△ABC,AB=AC,求证:∠B<90°.”第一步应先假设()A.∠B≥90°B.∠B>90°C.∠B<90°D.AB≠AC3.如图,△ABC≌△CDE,且B、C、D三点共线,若AB=4,DE=3,则BD长为()A.6B.7C.8D.94.在一次生活垃圾分类知识竞赛中,某校七、八年级各有100名学生参加,已知七年级男生成绩的优秀率为40%,女生成绩的优秀率为60%,八年级男生成绩的优秀率为50%,女生成绩的优秀率为70%.对于此次竞赛的成绩,下面有三个推断:①七年级男生成绩的优秀率小于八年级男生成绩的优秀率;②七年级学生成绩的优秀率一定小于八年级学生成绩的优秀率;③七、八年级所有男生成绩的优秀率一定小于七、八年级所有女生成绩的优秀率.所有合理推断的序号是()A.①②B.①③C.②③D.①②③5.如图,B、E、C、F在同一直线上,BE=CF,AB∥DE,请你添加一个合适的条件,使△ABC≌△DEF,其中不符合三角形全等的条件是()A.AC=DF B.AB=DE C.∠A=∠D D.∠ACB=∠F 6.如图,在3×4的正方形网格中,能画出与“格点△ABC”面积相等的“格点正方形”有()个.A.2B.4C.6D.87.下列命题中,假命题的是()A.对顶角相等B.同位角相等C.两点之间线段最短D.垂线段最短8.全等形是指两个图形()A.大小相等B.完全重合C.形状相同D.以上都不对9.如图,△ABC中,AB>AC,AD平分∠BAC,交BC于点D.则下列结论正确的是()A.AB﹣AC>BD﹣DC B.AB﹣AC=BD﹣DCC.AB﹣AC<BD﹣DC D.AB﹣BD<AC﹣DC10.如图,明明不小心把一块三角形的玻璃打碎成了三块,现要到玻璃店去配一块完全一样的三角形玻璃,则最省事的办法是()A.带(1)去B.带(2)去C.带(3)去D.带(1)和(2)去二.填空题11.把命题“两直线平行,同位角相等”改写成“若…,则…”.12.如图,在正方形网格中,∠1+∠2+∠3=.13.一个三角形的三条边长分别为4、7、x,另一个三角形的三条边分别为y、4、6,若这两个三角形全等,则x+y=.14.已知:如图,∠CAB=∠DBA,只需补充条件,就可以根据“SAS”得到△ABC ≌△BAD.15.只用的直尺和进行的作图称为尺规作图.16.“过点P作直线b,使b∥a”,小明的作图痕迹如图所示,他的作法的依据是.17.用反证法证明“已知,在Rt△ABC中,∠C=90°,∠A≠45°.求证:AC≠BC”.第一步应先假设.18.图所示,A,B在一条河的两侧,若BE=DE,∠B=∠D=90°,CD=160m,则河宽AB等于m.19.一个袋中装有偶数个球,其中红球、黑球各占一半,甲、乙、丙是三个空盒.每次从袋中任意取出两个球,如果先放入甲盒的球是红球,则另一个球放入乙盒;如果先放入甲盒的球是黑球,则另一个球放入丙盒.重复上述过程,直到袋中所有的球都被放入盒中.(1)某次从袋中任意取出两个球,若取出的球都没有放入丙盒,则先放入甲盒的球的颜色是.(2)若乙盒中最终有5个红球,则袋中原来最少有个球.20.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作弧MN,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,两弧交于点P,连接CP,DP;(3)作射线OP交CD于点Q.根据以上作图过程及所作图形,下列结论中正确的是.①CP∥OB;②CP=2QC;③∠AOP=∠BOP;④CD⊥OP.三.解答题21.图①、图②均为4×4的正方形网格,每个小正方形的顶点称为格点,边长均为1.在图①、图②中按下列要求各画一个三角形.要求:(1)三角形的三个顶点都在格点上.(2)与△ABC全等,且不与△ABC完全重合.22.如图,△ABC中,D是AB边上的一点,连接CD,AD=CD.(1)利用尺规作图,作△BDC的角平分线DF.(不写作法,保留作图痕迹)(2)判断DF与AC的位置关系,并说明理由.23.如图,已知:在△ABC中,AM是△ABC的中线,MP平分∠AMB,MQ平分∠AMC,且BP⊥MP于点P,CQ⊥MQ于点Q.(1)求证:MP⊥MQ;(2)求证:△BMP≌△MCQ.24.如图,已知点B、E、C、F在一条直线上,且AB=DF,BE=CF,∠B=∠F.求证:AC∥DE.25.如图,在△ABC≌△DEC,点D在AB上,且AB∥CE,∠A=75°,求∠DCB的度数.26.如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.27.如图,有以下四个条件:①AC∥DE,②DC∥EF,③CD平分∠BCA,④EF平分∠BED.(1)若CD平分∠BCA,AC∥DE,DC∥EF,求证:EF平分∠BED.(2)除(1)外,请再选择四个条件中的三个作为题设,余下的一个作为结论,写出一个真命题,再给予证明.2020年11月20日宫老师的初中数学组卷参考答案与试题解析一.选择题1.解:A、错误.直线没有长度;B、错误.射线没有长度;C、错误.射线有无限延伸性,不需要延长;D、正确.故选:D.2.解:用反证法证明命题:“已知△ABC,AB=AC,求证:∠B<90°.”第一步应先假设∠B≥90°.故选:A.3.解:∵△ABC≌△CDE,∴AB=CD,BC=DE,∵AB=4,DE=3,∴DB=BC+CD=DE+AB=7,故选:B.4.解:∵七年级男生成绩的优秀率为40%,八年级男生成绩的优秀率为50%,∴七年级男生成绩的优秀率小于八年级男生成绩的优秀率;故①正确,∵七年级学生成绩的优秀率在40%与60%之间,八年级学生成绩的优秀率在在50%与70%之间,∴不能确定哪个年级的优秀率大,故②错误;∵七、八年级所有男生成绩的优秀率在40%与50%之间,七、八年级所有女生成绩的优秀率在60%与70%之间.∴七、八年级所有男生成绩的优秀率一定小于七、八年级所有女生成绩的优秀率.故③正确.故选:B.5.解:∵AB∥DE,∴∠B=∠DEF,∵BE=CF,∴BE+EC=EC+CF,即BC=EF,∴当AC=DF时,满足SSA,无法判定△ABC≌△DEF,故A选项符合题意;当AB=DE时,满足SAS,可以判定△ABC≌△DEF,故B选项不合题意;当∠A=∠D时,满足AAS,可以判定△ABC≌△DEF,故C选项不合题意;当∠ACB=∠F时,满足ASA,可以判定△ABC≌△DEF,故D选项不合题意;故选:A.6.解:如图,∵S=2×4=4,△ABC∴与“格点△ABC”面积相等的“格点正方形”有6个,故选:C.7.解:A、∵对顶角相等,∴选项A是真命题,不符合题意;B、∵两直线平行,同位角相等,∴选项B是假命题,符合题意;C、∵两点之间线段最短,∴选项C是真命题,不符合题意;D、∵垂线段最短,∴选项D是真命题,不符合题意;故选:B.8.解:能够完全重合的两个图形叫做全等形,故选:B.9.解:在AB上截取AE=AC,连接DE,则BE=AB﹣AC,∵AD平分∠BAC,∴∠EAD=∠CAD,在△AED和△ACD中,,∴△AED≌△ACD(SAS),∴DE=DC,在△BDE中,BD﹣DE<BE,∴BD﹣DC<AB﹣AC,即AB﹣AC>BD﹣DC.故选:A.10.解:根据三角形全等的判定方法,根据角边角可确定一个全等三角形,只有第三块玻璃包括了两角和它们的夹边,只有带(3)去才能配一块完全一样的玻璃,是符合题意的.故选:C.二.填空题11.解:命题“两直线平行,同位角相等”可以改写成“若两直线平行,则同位角相等”,故答案为:“若两直线平行,则同位角相等”.12.解:∵在△ABC和△ADE中,∴△ABC≌△ADE(SAS),∴∠4=∠3,∵∠1+∠4=90°,∴∠3+∠1=90°,∵∠2=45°,∴∠1+∠2+∠3=135°,故答案为:135°.13.解:∵两个三角形全等,∴x=6,y=7,∴x+y=13,故答案为:13.14.解:补充条件AC=BD.理由:在△ABC和△BAD中,,△ABC≌△BAD(SAS).故答案为:AC=BD.15.解:只用没有刻度的直尺和圆规进行的作图称为尺规作图.故答案为:没有刻度的,圆规.16.解:由作法得∠1=∠2,所以a∥b.故答案为内错角相等,两直线平行.17.解:用反证法证明“已知,在Rt△ABC中,∠C=90°,∠A≠45°.求证:AC≠BC”.第一步应先假设AC=BC,故答案为:AC=BC.18.解:∵在△ABE和△CDE中,∴△ABE≌△CDE(ASA),∴CD=AB=160m,故答案为:160.19.解:(1)∵某次从袋中任意取出两个球,若取出的球都没有放入丙盒,∴放入了乙盒,∴先放入甲盒的球的颜色是红色.(2)由题意,可知取两个球共有四种情况:①红+红,则乙盒中红球数加1,②黑+黑,则丙盒中黑球数加1,③红+黑(红球放入甲盒),则乙盒中黑球数加1,④黑+红(黑球放入甲盒),则丙盒中红球数加1.那么,每次乙盒中得一个红球,甲盒最少得到1个红球,∴乙盒中最终有5个红球时,甲盒最少有5个红球,∵红球数=黑球数,∴袋中原来最少有2×10=20个球.故答案为:红色;20.20.解:由作图可知,OC=OD,PC=PD,OP平分∠AOB,∴OP垂直平分线段CD,故③④正确,故答案为③④.三.解答题21.解:如图1中,△ECB即为所求.如图2中,△DEF即为所求(答案不唯一).22.解:(1)如图,射线DF即为所求.(2)结论:DF∥AC.理由:∵DA=DC,∴∠A=∠DCA,∵∠BDC=∠A+∠DCA,∠BFD=∠CDF,∴∠BDF=∠A,∴DF∥AC.23.证明:(1)∵MP平分∠AMB,MQ平分∠AMC,∴∠AMP=∠AMB,∠AMQ=∠AMC,∴∠PMQ=∠AMP+∠AMQ=∠AMB+∠AMC=(∠AMB+∠AMQ)=×180°=90°,∴MP⊥MQ;(2)∵BP⊥MP,CQ⊥MQ,∴BP∥QM,∠BPM=90°,∠CQM=90°,∴∠PBM=∠QMC,∵AM是△ABC的中线,∴BM=MC,在△BMP和△MCQ中,∴△BMP≌△MCQ(AAS).24.证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF.在△ABC和△DFE中,,∴△ABC≌△DFE(SAS),∴∠ACB=∠DEF,∴AC∥DE.25.解:∵△ABC≌△DEC,∴AC=CD,∠ACB=∠DCE,∴∠A=∠ADC,∵∠A=75°,∴∠ADC=75°,∴∠ACD=180°﹣75°﹣75°=30°,∴∠ACB=30°,∵AB∥CE,∴∠DCE=∠ADC=75°,∴∠ACB=75°,∴∠DCB=75°﹣30°=45°.26.解:设计方案如下:27.(1)证明:∵CD平分∠BCA,∴∠BCD=∠ACD,∵DC∥EF,∴∠BCD=∠BEF,∠DEF=∠CDE,∵AC∥DE,∴∠ACD=∠CDE,∴∠BEF=∠DEF,即EF平分∠BED.(2)解:如果EF平分∠BED,AC∥DE,DC∥EF,那么CD平分∠BCA.证明:∵EF平分∠BED,∴∠BEF=∠DEF,∵DC∥EF,∴∠BCD=∠BEF,∠DEF=∠CDE,∵AC∥DE,∴∠ACD=∠CDE,∴∠BCD=∠ACD,即CD平分∠BCA.。

第1章全等三角形单元课后自主测评2021-2022学年八年级数学苏科版上册

2021-2022学年苏科版八年级数学上册《第1章全等三角形》单元课后自主测评(附答案)一.选择题(共8小题,满分32分)1.下列说法正确的是()A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形2.如图,△ABE≌△ACD,BE,CD相交于点M.若∠BAC=70°,∠C=30°,则∠BMD 的大小为()A.50°B.65°C.70°D.80°3.如图,点E,F是线段BC上的两点,如果△ABF≌△DCE,AB=3,则DC的长等于()A.3B.4C.5D.64.如图,已知∠CAB=∠DBA,则添加一个条件,不一定能使△ABC≌△BAD的是()A.BC=AD B.∠C=∠D C.AC=BD D.∠CBD=∠DAC 5.如图,点A,O,D在一条直线上,OC∥AB,OC=OA,OD=AB,则下列结论正确的是()A.∠AOB=∠COD B.∠OAB=∠OCD C.OB=CD D.AB=CD6.如图,将直角三角形ABC沿AB方向平移得到三角形DEF,AD=CH=2,EF=4,下列结论:①BH∥EF;②AD=BE;③∠A=∠EDF;④∠C=∠BHD;⑤阴影部分的面积为6.其中结论正确的序号是()A.①②③④⑤B.②③④⑤C.①②③⑤D.①②④⑤7.如图,∠C=∠D=90°,添加下列条件:①AC=AD;②∠ABC=∠ABD;③BC=BD,其中能判定Rt△ABC与Rt△ABD全等的条件的个数是()A.0B.1C.2D.38.如图,要测池塘两端A,B的距离,小明先在地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA;连接BC并延长到E,使CE=CB,连接DE并测量出它的长度,DE的长度就是A,B间的距离.那么判定△ABC和△DEC全等的依据是()A.SSS B.SAS C.ASA D.AAS二.填空题(共10小题,满分40分)9.如图,在由6个相同的小正方形拼成的网格中,∠2﹣∠1=°.10.若△ABC≌△ABD,BC=4,AC=5,则AD的长为.11.如图,若△ABC≌△DEF,AF=2,FD=8,则FC的长度是.12.如图,CA⊥AB于点A,AB=8,AC=4,射线BM⊥AB于点B,一动点E从A点出发以2个单位/秒沿射线AB运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,若点E经过t秒(t>0),△DEB与△BCA全等,则t的值为秒.13.如图,已知AB=AD,∠1=∠2,请你添加一个条件,使得△ABC≌△ADE,你添加的条件是.(不添加任何字母和辅助线)14.如图,OE是∠AOB的平分线,BD⊥OA于点D,AC⊥OB于点C,BD、AC都经过点E,则图中全等的三角形共有对.15.如图,在△ABC中,AD⊥BC,垂足为D,BF=AC,CD=DF,证明图中两个直角三角形全等的依据是定理.16.如图所示,某同学将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带第块去.(填序号)17.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第块去,这利用了三角形全等中的原理.18.如图,已知AE=BE,DE是AB的垂线,F为DE上一点,BF=11cm,CF=3cm,则AC=.三.解答题(共5小题,满分38分)19.如图,已知∠ABC=∠DEF,BE=CF,AB=DE,求证:AC=DF.20.如图,AD=AC,∠1=∠2=40°,∠C=∠D,点E在线段BC上.(1)求证:△ABC≌△AED;(2)求∠AEC的度数.21.如图,分别过点C、B作△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为E、F.(1)求证:BF=CE;(2)若△ACE的面积为4,△CED的面积为3,求△ABF的面积.22.如图在△CDE中,∠DCE=90°,DC=CE,DA⊥AB于A,EB⊥AB于B,试判断AB 与AD,BE之间的数量关系,并证明.23.(1)如图1,△ABC中,∠BAC=90°,AB=AC,AE是过A点的一条直线,且B、C 在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:BD=DE+CE.(2)若直线AE绕点A旋转到图2的位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请予以证明.参考答案一.选择题(共8小题,满分32分)1.解:A、两个等边三角形相似但不一定全等,故说法错误,不符合题意;B、两个全等图形的面积一定相等,正确,符合题意;C、形状相同的两个图形相似但不一定全等,故说法错误,不符合题意;D、两个正方形相似但不一定全等,故说法错误,不符合题意,故选:B.2.解:∵△ABE≌△ACD,∠C=30°,∴∠B=∠C=30°,∵∠BDM是△ADC的外角,∴∠BDM=∠A+∠C=100°,∴∠BMD=180°﹣∠BDM﹣∠B=180°﹣100°﹣30°=50°,故选:A.3.解:∵△ABF≌△DCE,AB=3,∴CD=AB=3,故选:A.4.解:∵∠CAB=∠DBA,AB=BA,∴当添加∠C=∠D时,可根据“AAS”判断△ABC≌△BAD;当添加AC=BD时,可根据“SAS”判断△ABC≌△BAD;当添加∠CBD=∠DAC时,则∠ABC=∠BAD,可根据“ASA”判断△ABC≌△BAD.故选:A.5.解:∵OC∥AB,∴∠DOC=∠A,在△DOC和△BAO中,,∴△DOC≌△BAO(SAS),∴CD=OB,∠OCD=∠AOB,∠DOC=∠OAB,OD=AB,故选:C.6.解:∵将△ABC沿AB方向平移得到△DEF,AD=CH=2,EF=4,∴BC=BC,AB=DE,∴BH∥EF,①正确;∴AB﹣DB=DE﹣DB,∴AD=BE,②正确;③∵将三角形ABC沿AB方向平移得到三角形DEF,∴△ABC≌△DEF,∴∠A=∠EDF,③正确;∵BH∥EF,∴∠BHD=∠F,由平移性质可得:∠C=∠F,∴∠C=∠BHD,④正确;∵阴影部分的面积=△ABC的面积﹣△DBH的面积=6.⑤正确;故选:A.7.解:①当AC=AD时,由∠C=∠D=90°,AC=AD且AB=AB,可得Rt△ABC≌Rt△ABD(HL);②当∠ABC=∠ABD时,由∠C=∠D=90°,∠ABC=∠ABD且AB=AB,可得Rt△ABC≌Rt△ABD(AAS);③当BC=BD时,由∠C=∠D=90°,BC=BD且AB=AB,可得Rt△ABC≌Rt△ABD(HL);故选:D.8.解:由题意知CD=CA,CE=CB,在△DCE和△ABC中,,∴△DCE≌△ABC(SAS).故选:B.二.填空题(共10小题,满分40分)9.解:如图所示:由图可知△ABF与△CED全等,∴∠BAF=∠ECD,∴∠2﹣∠1=90°,故答案为:90.10.解:∵△ABC≌△ABD,AC=5,∴AD=AC=5,故答案为:5.11.解:∵△ABC≌△DEF,AF=2,FD=8,∴AC=FD=8,∴FC=AC﹣AF=8﹣2=6,故答案为:6.12.解:①当E在线段AB上,AC=BE时,△ACB≌△BED,∵AC=4,∴BE=4,∴AE=8﹣4=4,∴点E的运动时间为4÷2=2(秒);②当E在BN上,AC=BE时,∵AC=4,∴BE=4,∴AE=8+4=12,∴点E的运动时间为12÷2=6(秒);③当E在BN上,AB=EB时,△ACB≌△BDE,AE=8+8=16,点E的运动时间为16÷2=8(秒),故答案为:2,6,8.13.解:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE.又∵AD=AE,∴可以添加AC=AE,此时满足SAS;添加条件∠B=∠D,此时满足ASA;添加条件∠C=∠E,此时满足AAS,故答案为:AC=AE或∠B=∠D或∠C=∠E.14.解:∵OE是∠AOB的平分线,BD⊥OA,AC⊥OB,∴ED=EC,在Rt△OED和△OEC中,,∴Rt△OED≌Rt△OEC(HL);∴OD=OC,在△AED和△BEC中,,∴△AED≌△BEC(ASA);∴AD=BC,∴OD+AD=OC+BC,即OA=OB,在△OAE和△OBE中,,∴△OAE≌△OBE(SAS),在△OAC和△OBD中,,∴△OAC≌△OBD(SAS).故答案为4.15.∵AD⊥BC,∴∠ADC=∠BDF=90°,在Rt△ACD和Rt△BFD中,,∴Rt△ACD≌Rt△BFD(HL).故答案为:HL.16.解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故答案为:③.17.解:由图可知,带第2块去,符合“角边角”,可以配一块与原来大小一样的三角形玻璃.故答案为:2;ASA.18.解:∵AE=BE,DE是AB的垂线,∴AD=BD,∠ADE=∠BDE=90°,在△ADF和△BDF中,,∴△ADF≌△BDF(SAS),∴AF=BF,∴AC=AF+CF=BF+CF,∵BF=11cm,CF=3cm,∴AC=14cm,故答案为:14cm.三.解答题(共5小题,满分38 分)19.证明:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DF.20.(1)证明:∵∠1=∠2=40°,∴∠1+∠CAE=∠2+∠CAE,即∠BAC=∠EAD,在△ABC和△AED中,,∴△ABC≌△AED(ASA);(2)解:由(1)得:△ABC≌△AED,∴AB=AE,∴∠B=∠AEB=(180°﹣∠1)=(180°﹣40°)=70°,∴∠AEC=∠1+∠B=40°+70°=110°.21.解:(1)∵CE⊥AD,BF⊥AF,∴∠CED=∠BFD=90°,∵AD是△ABC的中线,∴BD=CD,在△CED和△BFD中,,∴△CED≌△BFD(AAS),∴BF=CE;(2)∵AD是△ABC的中线,∴S△ABD=S△ACD,∵S△ACE=4,S CED=3,∴S△ACD=S△ABD=7,∵△BFD≌△CED,∴S△BDF=S△CED=3,∴S△ABF=S△ABD+S△BDF=7+3=10.22.解:结论:AB=AD+BE.证明:∵DA⊥AB于A,EB⊥AB于B.∴∠A=∠B;∵∠DCE=90°,∴∠ADC+∠ACD=90°,∠ACD+∠ECB=90°;∴∠ADC=∠ECB;又∵DC=CE,在△ACD和△BEC中,,∴△ACD≌△BEC;∴AD=BC,AC=BE;∴AB=AC+CB=BE+AD.23.解:(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=DE+CE;(2)BD=DE﹣CE;∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE,∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∵,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴AD+AE=BD+CE,∵DE=BD+CE,∴BD=DE﹣CE.。

2021年人教版八年级上第12章全等三角形单元检测题及答案

A. △ ACEBCD C.△ DCGECF2021年人教版八年级上第12章全等三角形单元 检测题及答案〔本检测题总分值:100分,时刻:90分钟〕 一、选择题〔每题3分,共30分〕 1•以下讲法正确的选项是〔〕 A.形状相同的两个三角形全等B.面积相等的两个三角形全等F 列不正确的等式是〔 D.AD=DE4.在厶ABC 和厶ABC 中,AB= AB , / B= / B ,补充条件后仍不一定能保 证 △ ABC ABC ,那么补充的那个条件是〔 〕A . BC= BCB ./ A= / AC . AC= A CD ./ C=/ C5•如下图,点B 、C 、E 在同一条直线上,△ ABC 与厶CDE 差不多上 等边三角形,那么以下结论不一定成立的是〔 〕C.完全重合的两个三角形全等A.AB=ACB. / BAE= / CADC.BE=DCD.所有的等边三角形全等 3•如下图,△ ABEACD ,/仁/2, / B=第3题图6. 要测量河两岸相对的两点 的距离,先在的垂线上取两点 , 使 ,再作出 的垂线,使在一条直线上〔如下图〕,能够讲明△[,疇幻△ •,得 ,因此测得 的长确实是 的长,判定△ =△ 最恰当的理由是〔〕 A.边角边 B.角边角边边角7. :如下图,AC 二CD , D ,那么不正确的结论是〔〕A ./ A 与/ D 互为余角C .A ABC CED D . Z 1 = Z 28. 在厶 和厶FED 中,Z C= Z D , Z B= Z E ,要判定这两个三角 形全等,还需要条件〔〕 A.AB=ED D. Z A= Z F9•如下图,在△ ABC 中,AB=AC , Z ABC 、Z ACB 的平分线BD , CE 相交于O 点,且BD 交AC 于点D , CE 交AB 于点E .某同学分析图形 后得B.AB=FDC.AC=FD第5题图D.AC 丄C出以下结论:①△ BCDCBE :②厶BAD幻3△ BCD :③厶 BDA CEA :④厶 BOECOD :⑤厶 ACE BCE ,上述结论一定正确的选项是〔 〕10. 如下图,在△誠中,諒>&, % //叫 阴?J 点/•在"边上,连接血;处;皿,那么添加以下哪一个条件后,仍无法判定△ b 皿与△皿H 全等〔 〕D.①③④A k //B.C. / 二/D. / = /二、填空题〔每题3分,共24 分〕11. 如果△ ABC 和厶DEF 这两个三角形全等,点 C 和点E , 点B 和点D 分不是对应点,那么另一组对 是,对应边是 , 对应角是,表示这两个三角形全等的式子是应点12. 如图,在△ ABC 中,AB=8 , AC=6,贝卩BC 边上的中线 AD 的取值 范畴是13. 如图为6个边长相等的正方形的组合图形,那么/ 1 + Z 2+Z 3= 第15题图14. 如下图,等边△ ABC 中,BD=CE , AD 与BE 相交于点P , 那么/APE 是度.15.如下图,AB=AC , AD=AE ,/ BAC= / DAE ,/ 仁25°,/ 2=317. 如下图,△ ABC 的周长是21, OB , OC 分不平分/ ABC 和 / ACB , OD 丄BC 于D ,且0D=3,那么△ ABC 的面积是18. 如下图,在厶ABC 中,/ A=90° , AB=AC , CD 平分/ AC B , DE 丄BC 于 E ,假设 BC=15。

2021-2022学年人教版八年级数学上册第12章《全等三角形》单元试卷 含答案

第十二章《全等三角形》单元同步试卷检测一、单选题1.下列说法正确的是( )A .两个等边三角形一定是全等图形B .两个全等图形面积一定相等C .形状相同的两个图形一定全等D .两个正方形一定是全等图形2.如图,B 、E 、C 、F 四点在同一直线上,在ABC 和DEF 中,AB DE =,B DEF ∠=∠,添加下列条件,仍不能证明ABC DEF △≌△的是( )A .AC DF =B .A D ∠=∠C .BE CF =D .//AC DF3.甲、乙两位同学分别用尺规作图法作∠AOB 的平分线OC ,则他们两人的作图方法()A .甲、乙两人均正确B .甲正确,乙错误C .甲错误,乙正确D .甲、乙两人均错误4.如图,在△ABC 中,AD 平分∠BAC ,且AE =AF ,则可直接用“SAS ”判断的是( )A .△ABD ≌△ACDB .△BDE ≌△CDFC .△ADE ≌△ADFD .△ABD ≌△ABC5.如图,正五边形ABCDE 中,AC 与BE 相交于点F ,则AFB ∠的度数为( )A .100°B .108°C .120°D .135°6.如图,四边形ABCD 中,AC 、BD 为对角线,且AC =AB ,∠ACD =∠ABD ,AE ⊥BD 于点E ,若BD =6.4,CD =5.2.则DE 的长度为( )A .1.2B .0.6C .0.8D .17.如图,测河两岸A ,B 两点的距离时,先在AB 的垂线BF 上取C ,D 两点,使CD =BC ,再过点D 画出BF 的垂线DE ,当点A ,C ,E 在同一直线上时,可证明△EDC △≌△ABC ,从而得到ED =AB ,测得ED 的长就是A ,B 的距离,判定△EDC ≌△ABC 的依据是:( )A .ASAB .SSSC .AASD .SAS8.如图,14AB =,6AC =,AC AB ⊥,BD AB ⊥,垂足分别为A 、B .点P 从点A 出发,以每秒2个单位的速度沿AB 向点B 运动;点Q 从点B 出发,以每秒a 个单位的速度沿射线BD 方向运动.点P 、点Q 同时出发,当以P 、B 、Q 为顶点的三角形与CAP 全等时,a 的值为( )A .2B .3C .2或3D .2或1279.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE=2BF,给出下列四个结论:①DE=DF ;②DB=DC ;③AD ⊥BC ;④AC=3BF ,其中正确的结论共有( )A .4个B .3个C .2个D .1个10.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .1二、填空题 11.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC =_____度.12.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是_____.13.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过正方形的顶点B 、D 作BF ⊥a 于点F ,DE ⊥a 于点E ,若DE =8,BF =5,则EF 的长为__.14.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC 边上的B′处,则∠ADB′等于_____.15.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是____________.16.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有____对全等三角形.17.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.三、解答题18.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.19.如图,∠D=∠C=90°,点E是DC的中点,AE平分∠DAB,∠DEA=28°,求∠ABE的大小.20.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.21.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP 与线段CE的数量关系,并说明理由.22.已知Rt△ABC中,∠BAC=90°,AB=AC,点E为△ABC内一点,连接AE,CE,CE⊥AE,过点B作BD⊥AE,交AE的延长线于D.(1)如图1,求证BD=AE;(2)如图2,点H为BC中点,分别连接EH,DH,求∠EDH的度数;(3)如图3,在(2)的条件下,点M为CH上的一点,连接EM,点F为EM的中点,连接FH,过点D作DG⊥FH,交FH的延长线于点G,若GH:FH=6:5,△FHM的面积为30,∠EHB=∠BHG,求线段EH的长.参考答案1.B解:A 、两个等边三角形不一定全等,例如两个等边三角形的边长分别为3和4,这两个三角形就不全等,故此选项错误;B 、两个全等的图形面积是一定相等的,故此选项正确;C 、形状相等的两个图形不一定全等,例如边长为3和4的正方形,故此选项错误;D 、两个正方形不一定,例如边长为3和4的正方形,故此选项错误.2.AA. AC DF =,结合已知条件,只能构成 “边边角”,故不能证明三角形全等,符合题意;B. A D ∠=∠,结合已知条件,能构成“角角边”,能证明两个三角形全都,不符合题意;C. BE CF =,可以推出BC EF =,结合已知条件,构成“边角边”,,能证明两个三角形全都,不符合题意;D. //AC DF ,可以推出ACB DFE ∠=∠,能构成“角角边”,能证明两个三角形全都,不符合题意;3.C解:由图知,甲、乙两位同学分别用尺规作图法作∠AOB 的平分线OC ,则他们两人的作图方法甲错误,乙正确,故选:C .4.C解:∵AD 平分∠BAC ,∴∠EAD =∠FAD ,在△ADE 与△ADF 中,AE AF EAD FAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△ADF (SAS ),5.B∵正五边形ABCDE∴=5405=108CBA BAE ∠=∠︒÷︒,CB BA AE ==∴()BCA ABE SAS ≅∴=AEB BAF ∠∠∴++=108AFB CAE AEB CAE BAF BAE ∠=∠∠=∠∠∠=︒6.B解:过点A 作AF ⊥CD 于点F ,如图,∵AE ⊥BD∴∠AFC =∠AEB =∠AED =90°在△AFC 和△AEB 中,AFC AEBACF ABEAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFC ≌△AEB∴AF =AE ,CF =BE在Rt △AFD 和Rt △AED 中,AF AEAD AD =⎧⎨=⎩∴Rt △AFD ≌Rt △AED∴DF =DE∵CF =CD +DF ,BE =BD -DE ,CF =BE∴CD +DF =BD -DE∴DF +DE =BD -CD∴2DE =BD -CD =6.4-5.2=1.2∴DE =0.6故选:B .7.A解:∵∠ACB =∠DCE ,CD =BC ,∠ABC =∠EDC ,∴△EDC ≌△ABC (ASA ),故选:A .8.D解:当△CAP ≌△PBQ 时,则AC =PB ,AP =BQ ,∵AC =6,AB =14,∴PB =6,AP =AB -AP =14-6=8,∴BQ =8,∴8÷a =8÷2,解得a =2;当△CAP ≌△QBP 时,则AC =BQ ,AP =BP ,.∵AC =6,AB =14,∴BQ =6,AP =BP =7,∴6÷a =7÷2,解得a =127, 由上可得a 的值是2或127, 故选:D .9.A∵BF ∥AC ,∴∠C=∠CBF , ∵BC 平分∠ABF ,∴∠ABC=∠CBF ,∴∠C=∠ABC , ∴AB=AC ,∵AD 是△ABC 的角平分线,∴BD=CD ,AD ⊥BC ,故②③正确,在△CDE 与△DBF 中,C CBF CD BD EDC BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDE ≌△DBF ,∴DE=DF ,CE=BF ,故①正确; ∵AE=2BF ,∴AC=3BF ,故④正确.10.B解:∵40AOB COD ∠=∠=︒,∴AOB AOD COD AOD ∠+∠=∠+∠,即AOC BOD ∠=∠,在AOC △和BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴()AOC BOD SAS ≌,∴,OCA ODB AC BD ∠=∠=,①正确; ∴OAC OBD ∠=∠,由三角形的外角性质得:,AMB OAC AOB OBD ∠+∠=∠+∠ ∴40AMB AOB ∠=∠=°,②正确; 作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=°,在OCG 和ODH 中,OCAODBOGC OHD OC OD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()OCG ODH AAS ≌, ∴OG OH =,∴MO 平分BMC ∠,④正确; 正确的个数有3个;故选B .11.45∵AD ⊥BC 于D ,BE ⊥AC 于E ∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°, 又∵∠BFD=∠AFE (对顶角相等) ∴∠EAF=∠DBF ,在Rt △ADC 和Rt △BDF 中, CAD FBDBDF ADC BF AC∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADC ≌△BDF (AAS ), ∴BD=AD ,即∠ABC=∠BAD=45°. 故答案为45.12.42解:连接AO,可知AO平分∠BAC,由角平分线的性质可知点O到AB、AC、BC的距离相等,把求△ABC的面积转化为求△AOB、△AOC、△BOC的面积之和,即1()42 2AB AC BC OD++⋅=13.13解:∵ABCD是正方形(已知),∴AB=AD,∠ABC=∠BAD=90°;又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,∴∠FBA=∠EAD(等量代换);∵BF⊥a于点F,DE⊥a于点E,∴在Rt△AFB和Rt△AED中,∵90AFB DEAFBA EADAB DA︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△AFB≌△DEA(AAS),∴AF=DE=8,BF=AE=5(全等三角形的对应边相等),∴EF=AF+AE=DE+BF=8+5=13.14.40°.∵将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案为40°.15.(-2,0)∵△AOB≌△COD,∴OD=OB,∴点D的坐标是(﹣2,0).故答案为(﹣2,0).16.3OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP与△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP与△FOP中,,∴△EOP≌△FOP,在R t△AEP与R t△BFP中,,∴R t△AEP≌R t△BFP,∴图中有3对全等三角形,故答案为3.17.4延长AC 至E ,使CE=BM ,连接DE .∵BD=CD ,且∠BDC=140°,∴∠DBC=∠DCB=20°,∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM 和△CDE 中,BM CEMBD ECD BD CD⎧⎪∠∠⎨⎪⎩==,=∴△BDM ≌△CDE (SAS ),∴MD=ED ,∠MDB=∠EDC ,∴∠MDE=∠BDC=140°,∵∠MDN=70°,∴∠EDN=70°=∠MDN ,在△MDN 和△EDN 中,MD EDMDN EDN DN DN⎧⎪∠∠⎨⎪⎩==,=∴△MDN ≌△EDN (SAS ),∴MN=EN=CN+CE ,∴△AMN 的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案为:4.18.(1)证明:∵AC是角平分线,CE⊥AB于E,CF⊥AD于F,∴CE=CF,∠F=∠CEB=90°,在Rt△BCE和Rt△DCF中,∴△BCE≌△DCF;(2)解:∵CE⊥AB于E,CF⊥AD于F,∴∠F=∠CEA=90°,在Rt△FAC和Rt△EAC中,,∴Rt△FAC≌Rt△EAC,∴AF=AE,∵△BCE≌△DCF,∴BE=DF,∴AB+AD=(AE+BE)+(AF﹣DF)=AE+BE+AE﹣DF=2AE. 19.28°如图,过点E作EF⊥AB于F,∵∠D=∠C=90°,AE平分∠DAB,∴DE=EF,∵E是DC的中点,∴DE=CE,∴CE=EF,又∵∠C=90°,∴点E在∠ABC的平分线上,∴BE平分∠ABC,又∵AD ∥BC ,∴∠ABC+∠BAD=180°,∴∠AEB=90°,∴∠BEC=90°-∠AED=62°,∴Rt △BCE 中,∠CBE=28°,∴∠ABE=28°.20.证明:(1)∵BF=DE ,∴BF EF DE EF -=-,即BE=DF ,∵AE ⊥BD ,CF ⊥BD ,∴∠AEB=∠CFD=90°,在Rt △ABE 与Rt △CDF 中,AB CDBE DF =⎧⎨=⎩,∴Rt ABE Rt CDF ∆∆≌(HL );(2)如图,连接AC 交BD 于O ,∵Rt ABE Rt CDF ∆∆≌,∴ABE CDF ∠=∠,∴//D AB C ,∵=D AB C ,∴四边形ABCD 是平行四边形,∴AO CO =.21.(1)、在正方形ABCD 中,AB=BC ,∠ABP=∠CBP=45°,在△ABP 和△CBP 中,又∵ PB=PB ∴△ABP ≌△CBP (SAS ),∴PA=PC ,∵PA=PE ,∴PC=PE ;(2)、由(1)知,△ABP ≌△CBP ,∴∠BAP=∠BCP ,∴∠DAP=∠DCP ,∵PA=PE , ∴∠DAP=∠E , ∴∠DCP=∠E , ∵∠CFP=∠EFD (对顶角相等),∴180°﹣∠PFC ﹣∠PCF=180°﹣∠DFE ﹣∠E , 即∠CPF=∠EDF=90°;(3)、AP =CE理由是:在菱形ABCD 中,AB=BC ,∠ABP=∠CBP ,在△ABP 和△CBP 中, 又∵ PB=PB ∴△ABP ≌△CBP (SAS ),∴PA=PC ,∠BAP=∠DCP ,∵PA=PE ,∴PC=PE ,∴∠DAP=∠DCP , ∵PA=PC ∴∠DAP=∠E , ∴∠DCP=∠E ∵∠CFP=∠EFD (对顶角相等), ∴180°﹣∠PFC ﹣∠PCF=180°﹣∠DFE ﹣∠E ,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC 是等边三角形,∴PC=CE ,∴AP=CE 22.证明:(1)∵CE ⊥AE ,BD ⊥AE ,∴∠AEC =∠ADB =90°,∵∠BAC =90°,∴∠ACE +CAE =∠CAE +∠BAD =90°,∴∠ACE =∠BAD ,在△CAE 与△ABD 中ACE BAD AEC ADB AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CAE ≌△ABD (AAS ),∴AE =BD ;(2)连接AH∵AB =AC ,BH =CH ,∴∠BAH =11904522BAC ∠=⨯︒=︒,∠AHB =90°,∴∠ABH =∠BAH =45°,∴AH =BH ,∵∠EAH =∠BAH ﹣∠BAD =45°﹣∠BAD ,∠DBH =180°﹣∠ADB ﹣∠BAD ﹣∠ABH =45°﹣∠BAD ,∴∠EAH =∠DBH ,在△AEH 与△BDH 中AE BD EAH DBH AH BH =⎧⎪∠=∠⎨⎪=⎩∴△AEH ≌△BDH (SAS ),∴EH =DH ,∠AHE =∠BHD ,∴∠AHE +∠EHB =∠BHD +∠EHB =90°即∠EHD =90°,∴∠EDH =∠DEH =18090452︒-︒=︒; (3)过点M 作MS ⊥FH 于点S ,过点E 作ER ⊥FH ,交HF 的延长线于点R ,过点E 作ET ∥BC ,交HR 的延长线于点T .∵DG ⊥FH ,ER ⊥FH ,∴∠DGH =∠ERH =90°,∴∠HDG +∠DHG =90°∵∠DHE =90°,∴∠EHR +∠DHG =90°,∴∠HDG =∠HER在△DHG 与△HER 中HDG HER DGH ERH DH EH ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DHG ≌△HER (AAS ),∴HG =ER ,∵ET ∥BC ,∴∠ETF =∠BHG ,∠EHB =∠HET ,∠ETF =∠FHM ,∵∠EHB =∠BHG ,∴∠HET =∠ETF ,∴HE =HT ,在△EFT 与△MFH 中ETF FHMEFT MFH EF FM∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EFT ≌△MFH (AAS ),∴HF =FT , ∴22HF MS FT ER =,∴ER =MS ,∴HG =ER =MS ,设GH =6k ,FH =5k ,则HG =ER =MS =6k , 563022HF MSk k==,k =2,∴FH =52,∴HE =HT =2HF =102.。

第十二章 全等三角形(含解析) 单元测试卷 2021-2022学年初中数学八年级上册

2021-2022学年度初中八年级数学上册全等三角形测试卷一、单选题1.如图,△AOC ≌△BOD ,点A 与点B 是对应点,那么下列结论中错误的是( )A .AB =CD B .AC =BD C .AO =BO D .∠A =∠B 2.一个三角形三条边长度的比为2:3:4,且其中一条边长是12cm ,这个三角形周长不可能是: ( )A .54cmB .36cmC .27cmD .24cm 3.已知三角形的三边的长依次为5,7,x ,则x 的取值范围是( )A .5<x <7B .2<x <7C .5<x <12D .2<x <12 4.如图,//AB CD ,37E ∠=,20C ∠=,则EAB ∠=( )A .37B .20C .17D .57 5.若一个正多边形的内角和为720°,则这个正多边形的每一个内角是( ) A .60° B .90° C .108° D .120° 6.以下说法正确的是 ( )①一条直角边和斜边上的高对应相等的两个直角三角形全等;②有两条边相等的两个直角三角形全等;③有一边相等的两个等边三角形全等;④两边和其中一边的对角对应相等的两个三角形全等.A .①②B .②④C .①③D .①③④ 7.如图所示,已知ABC ADE ≅,BC 的延长线交DE 于F ,25B D ∠=∠=,105ACB AED ∠=∠=,10DAC ∠=,则DFB ∠为( )A .40B .50C .55D .60 8.如图,△ABC 的面积为8cm 2,AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为( )A .3cm 2B .4cm 2C .5cm 2D .6cm 2 9.下列图形不具有稳定性的是( )A .(A )B .(B )C .(C )D .(D )10.在直角三角形ABC 中,90CAB ∠=,72ABC ∠=,AD 是CAB ∠的角平分线,交边BC 于点D ,过点C 作ACD △中AD 边上的高线CE ,则ECD ∠的度数为( )A .63B .45C .27D .18°二、填空题11.如图所示,点D 在AC 上,∠BAD=∠DBC ,△BDC 的内部到∠BAD 两边距离相等的点有________个,△BDC 内部到∠BAD 的两边、∠DBC 两边等距离的点有________个.12.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且△ABC 的面积等于4cm 2,则阴影部分图形面积等于_____cm 213.如图,AC=DC ,BC=EC ,∠A=50°,∠ACB=70°,则∠E=__________.14.如图,∠A =27°,∠COD =83°,∠D =47°,则∠B =________度.15.在Rt △ABC 中,∠C=90°,点G 是Rt △ABC 的重心,如果CG=6,那么斜边AB 的长等于________ .16.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE .图中,BAC ∠=____度.17.如图,∠ACB =90°,AC =BC ,BE ⊥CE ,AD ⊥CE 于D ,AD =2cm ,BE =0.5cm ,则DE =________cm.18.如图①,点E 、F 分别为长方形纸带ABCD 的边AD 、BC 上的点,∠DEF=19°,将纸带沿EF 折叠成图②(G 为ED 和EF 的交点,再沿BF 折叠成图③(H 为EF 和DG 的交点),则图③中∠DHF=__.19.若一个多边形的内角和是900º,则这个多边形是_____边形.三、解答题20.如图,已知点A,C,B,D在同一条直线上,AC=BD,AM=CN,BM=DN.求证:△AMB≌△CND.21.如图,△ADF≌△CBE,点E、B、D、F在同一条直线上.(1)线段AD与BC之间的数量关系是,其数学根据是.(2)判断AD与BC之间的位置关系,并说明理由.22.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.23.如图,钝角△ABC.(1)过A作AE⊥BC,过B作BF⊥AC,垂足分别为E,F,AE,BF相交于H;(2)过A作AM∥BC,过B作BM∥AC,相交于M;(3)若∠AMB=115°,求∠AHB.24.如图,△ABC中,点O是∠ABC、∠ACB角平分线的交点,AB+BC+AC=12,过O作OD⊥BC于D点,且OD=2,求△ABC的面积.参考答案1.A【分析】根据全等三角形的对应边、对应角相等,可得出正确的结论,可得出答案.【详解】∵△AOC≌△BOD,∴∠A=∠B,AO=BO,AC=BD,∴B、C、D均正确,而AB、CD不是不是对应边,且CO≠AO,∴AB≠CD,故选A.【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应边、角相等是解题的关键.2.D【分析】根据三边的长度比可求出三边分别占三角形周长的几分之几,再根据12cm是其中一条边,求出三角形的周长.【详解】由三角形三条边长度的比为234::,可得三边分别占三角形周长的214 ,, 939若12cm是最短边,则三角形周长212cm549cm =÷=若12cm是较长边,则三角形周长112cm363cm =÷=若12cm是最长边,则三角形周长412cm279cm =÷=所以三角形周长不可能是24cm.【点睛】解题的关键是根据三边长度比求出三边分别占周长的几分之几,再求出周长.3.D【解析】【分析】根据:三角形任意两边和大于第三边,任意两边之差小于第三边. 【详解】第三边取值范围:7-5<x<5+7,即:2<x<12故选D【点睛】本题考核知识点:三角形的边. 解题关键点:熟记三角形三边关系.4.D【分析】如下图,由三角形外角的性质结合已知条件易得∠AOC=∠C+∠E=57°,再结合AB∥CD即可得到∠BAE=∠AOC=57°.【详解】如下图,∵∠AOC是△COE的外角,∠C=20°,∠E=37°,∴∠AOC=∠C+∠E=57°,又∵AB∥CD,∴∠BAE=∠AOC=57°.故选D.【点睛】熟知“三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和;平行的性质:两直线平行,内错角相等”是解答本题的关键.5.D【分析】根据正多边形的内角和定义(n-2)×180°,先求出边数,再用内角和除以边数即可求出这个正多边形的每一个内角.【详解】(n-2)×180°=720°,∴n-2=4,∴n=6.则这个正多边形的每一个内角为720°÷6=120°.故选D.【点睛】考查了多边形内角与外角.解题的关键是掌握好多边形内角和公式:(n-2)×180°.6.C【分析】根据全等三角形的判定方法或者举出反例能证明原命题是错误的,分别判断各命题的正误即可.【详解】①一条直角边和斜边上的高对应相等的两个直角三角形全等;根据HL可证得两直角三角形全等,此命题正确;②有两条边相等的两个直角三角形不一定全等;比如一直角三角形的两直角边和另一个直角三角形的一直角边和一斜边相等,则这两个直角三角形并不全等;原命题错误;③有一边相等的两个等边三角形全等,符合SSS定理,此命题正确;④两边和其中一边的对角对应相等的两个三角形不一定全等,根据SSA并不能证明三角形全等;故原命题错误;故选C.【点睛】本题考查了全等三角形的判定的应用,能理解全等三角形的判定定理是解此题的关键,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等.7.D【分析】设AD与BF交于点M,要求∠DFB的大小,可以在△DFM中利用三角形的内角和定理求解,转化为求∠AMC的大小,再转化为在△ACM中求∠ACM就可以.【详解】设AD与BF交于点M,∵∠ACB=105,∴∠ACM=180°-105°=75°,∠AMC=180°-∠ACM-∠DAC=180°-75°-10°=95°,∴∠FMD=∠AMC=95°,∴∠DFB=180°-∠D-∠FMD=180°-95°-25°=60°.故选D.【点睛】本题考查了全等三角形的性质,由已知条件,联想到所学的定理,充分挖掘题目中的结论是解题的关键.8.B【分析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积.【详解】延长AP交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP,∴S△ABP=S△BEP,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,S△ABC=4cm2,∴S△PBC=S△PBE+S△PCE=12故选B.【点睛】本题主要考查面积及等积变换的知识点.证明出三角形PBC的面积和原三角形的面积之间的数量关系是解题的难点.9.A【分析】根据三角形具有稳定性进行解题.【详解】A.由一个三角形和一个矩形组成,不具有稳定性;B.由两个三角形组成,具有稳定性;C.由三个三角形组成,具有稳定性;D.由六个三角形组成,具有稳定性.故选A.【点睛】本题考查了三角形具有稳定性,熟练掌握三角形性质是本题解题的关键.10.C【分析】先根据角平分线的定义求出∠CAD=45°,再根据直角三角形两锐角互余求出∠ACB和∠ACE,然后根据∠ECD=∠ACE-∠ACB代入数据进行计算即可得解.解:∵∠CAB =90°,AD 是CAB 的角平分线,∴∠CAD =12×90°=45°,∵CE ⊥AD ,∴∠ACE =90°-45°=45°,又∵∠CAB =90°,∠ABC =72°,∴∠ACB =90°-72°=18°,∴∠ECD =∠ACE -∠ACB =45°-18°=27°. 故选C.【点睛】本题考查了直角三角形两锐角互余的性质,熟记性质并准确识图是解题关键.11.无数1【解析】根据角平分线的判定:到角的两边距离相等的点在角的平分线上,则到∠BAD 两边距离相等的点在∠BAD 的平分线上即可,而∠BAD 的平分线在△BDC 的内部是一线段,故△BDC 的内部到∠BAD 两边距离相等的点有无数个;到∠BAD 的两边、∠DBC 两边等距离的点即∠BAD 的平分线与∠DBC 的平分线的交点,此交点在△BDC 的内部,故BDC 内部到∠BAD 的两边、∠DBC 两边等距离的点有一个.故答案为无数;1.12.1【分析】由点E 为AD 的中点,可得EBC ∆的面积是ABC ∆面积的一半;同理可得BCE ∆和EFB ∆的面积之比,利用三角形的等积变换可解答.【详解】解:如图,点F 是CE 的中点,BEF 的底是EF ,BEC ∆的底是EC ,即12EF EC =,而高相等,12BEF BEC S S ∆∆∴=, E 是AD 的中点,12BDE ABD S S ∆∆∴=,12CDE ACD S S ∆∆=, 12EBC ABC S S ∆∆∴=, 14BEF ABC S S ∆∆∴=,且24ABC S cm ∆=, 21BEF S cm ∆∴=,即阴影部分的面积为21cm .故答案为1.【点睛】本题主要考查了三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍. 13.60°【解析】∵∠A=50°,∠ACB=70°,∴∠B=180°–∠A –∠ACB=60°.∵在△ACB 与△DCE 中,AC DC ACB DCE BC EC =⎧⎪∠=∠⎨⎪=⎩,∴△ACB ≌△DCE (SAS ),∴∠E=∠B=60°,故答案为60°.14.23°【分析】根据三角形外角的性质,可得∠DEB =∠A +∠D =74°,,再根据三角形的内角和定理,求得∠B 的度数即可.【详解】∵∠A =27°,∠D=47°,∴∠DEB =∠A +∠D =74°,∵∠COD=83°,∴∠BOE=83°,∴在△BOE 中,∠B =180°−(74°+83°)=23°,故答案为:23°.【点睛】此题主要考查了三角形外角的性质以及三角形内角和定理,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.15.18【解析】CD 为斜边上的中线,如图,∵点G 是Rt △ABC 的重心,∴CG :GD=2:1,∴DG=12CG=12×6=3,∴CD=3+6=9,∴AB=2CD=18.故答案为18.16.36°.【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题.【详解】(52)1801085ABC -⨯︒∠==︒,ABC ∆是等腰三角形, 36BAC BCA ∴∠=∠=度.【点睛】本题主要考查了多边形的内角和定理和等腰三角形的性质. 解题关键在于知道n 边形的内角和为:180°(n ﹣2).17.1.5【分析】证明△ACD ≌△CBE ,根据全等三角形的对应边相等即可证得CE=AD ,从而求解.【详解】∵BE ⊥CE ,AD ⊥CE∴∠E=∠ADC=90°∴∠DAC+∠DCA=90°∵∠ACB=90°∴∠BCE+∠DCA=90°∴∠BCE =∠DACDAC ECB ADC E AC CB ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△CBE∴BE=CD=0.5(cm ),EC=AD=2(cm )DE=CE-CD=1.5(cm ),故答案为1.518.57【详解】解:∵四边形ABCD 为长方形,∴AD ∥BC ,∴∠BFE=∠DEF=19°,根据折叠的性质可得,∠GEF=∠DEF=19°,则∠DGF=∠GEF +∠GFE=38°,则∠DHF=∠DGF+∠GFE=38°+19°=57°.故答案为57.19.七【分析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n -︒=⋅︒,解得7n =.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.20.见解析【解析】试题分析:首先根据AC BD =可得AB CD =,再加上条件,AM CN BM DN ==, 可利用SSS 定理证明AMB ≌.CND试题解析:AC BD =,AC CB DB CB ∴+=+,即AB CD =:,AM CN AB CD BM DN =⎧⎪=⎨⎪=⎩, ∴AMB ≌CND △(SSS ).21.(1)见解析;(2)见解析.【分析】根据全等三角形对应角相等,对应边相等,可得答案.【详解】解:(1)∵△ADF ≌△CBE ,∴AD=BC (全等三角形的对应边相等),故答案为AD=BC ,全等三角形的对应边相等;(2)结论:AD ∥BC .理由:∵△ADF ≌△CBE ,∴∠ADF=CBE ,∴∠ADB=∠CBD ,∴AD ∥BC .【点睛】本题考核知识点:全等三角形性质. 解题关键点:熟记全等三角形性质.22.(1)150°、120°、90°.(2)12.【分析】(1)解答本题需要熟练掌握三角形内角和定理的知识,熟知三角形的内角和等于180°.通过解题,求出三个内角,再根据内角加对应的外交和等于180°算出外角;(2)根据多边形内角和即可求出.【详解】(1)设此三角形三个内角的比为x ,2x ,3x ,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n ,则(n ﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.【点睛】本题考查的知识点是多边形内角和,解题的关键是熟练的掌握多边形内角和. 23.65°【分析】首先根据已知条件进行作图,然后运用平行四边形的性质及多边形内角和定理即可解答此题.【详解】(1)、(2)根据要求进行画图,如图所示:(3)因为AM//BC,BM//AC.所以四边形ACBM是平行四边形,所以∠AMB=∠ACB=115°所以∠ECF=∠ACB=115° .在四边形ECFH中,∠ECF= 115°,∠CFH=90°,∠CEH=90° .所以,∠AHB=360°-∠ECF-∠CFH-∠CEH=65° .【点睛】本题考查了作图及平行四边形的性质及多边形内角和定理,解题的关键是掌握作垂线和平行线的方法.24.12【详解】试题分析:过点O作OE⊥AB于E,OF⊥AC于F,连接OA.根据角平分线的性质得:OE =OF=OD=2.然后根据三角形的面积公式进行计算即可.试题解析:如图,过点O作OE⊥AB于E,OF⊥AC于F,连接OA.∵点O是∠ABC,∠ACB平分线的交点,∴OE=OD,OF=OD,即OE=OF=OD=2.∴S△ABC=S△ABO+S△BCO+S△ACO=12AB·OE+12BC·OD+12AC·OF=12×2×(AB+BC+AC)=12×2×12=12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.填空题:(33分)
1.如图1,AD ⊥BC ,D 为BC 的中点,则△ABD ≌
2.如图2,若AB =DE ,BE =CF ,要证△ABF ≌△DEC ,
6.如图6,四边形ABCD 的对角线相交于O 点,且有AB ∥DC ,AD ∥BC ,则图中有___对全等三角形.
7.“全等三角形对应角相等”的条件是,结论是
8.如图8,AE =AF ,AB =AC ,∠A =60°,∠B =24°,则∠BOC =
__________.
9.若△ABC ≌△A′B′C′,AD 和A′D′和B′C′的高,则△ABD ≌△A′B′D′,理由是10.在Rt △ABC 中,∠C =90°,∠A.∠B 的平分线相交于O ,则∠AOB =_________. 二.选择题:24分)
11.如图9,△ABC ≌△BAD ,A 和B.C 和D 分别是对应顶点,若

A
E B O
F C
图8
A B
C
D
图9
图10
图 11
B D
O
C A
AB=6cm,AC=4cm,BC=5cm,
则AD的长为 A.4cm B.5cm C.6cm D.以上都不对()
12.下列说法正确的是()
A.周长相等的两个三角形全等
B.有两边和其中一边的对角对应相等的两个三角形全等
C.面积相等的两个三角形全等
D.有两角和其中一角的对边对应相等的两个三角形全等
13.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,
那么在△ABC中与这100°角对应相等的角是 A.∠A B.∠B
C.∠C
D.∠B或∠C()
14.下列条件中,能判定△ABC≌△DEF的是()
A.AB=DE,BC=ED,∠A=∠D
B.∠A=∠D,∠C=∠F,AC=EF
C.∠B=∠E,∠A=∠D,AC=EF
D.∠B=∠E,∠A=∠D,AB=DE
15.AD是△ABC中BC边上的中线,若AB=4,AC=6,则AD的取值范围是()
A.AD>1
B.AD<5
C.1<AD<5
D.2<AD<10
16.下列命题正确的是()
A.两条直角边对应相等的两个直角三角形全等;
B.一条边和一个锐角对应相等的两个直角三角形全等
C.有两边和其中一边的对角(此角为钝角)对应相等的两个三角形全等
D.有两条边对应相等的两个直角三角形全等
17.如图10.△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 和CE 交于点O ,AO 的延长线交BC 于F ,则图中全等直角三角形的对数为A.3对 B.4对 C.5对 D.6对()
18.如图11,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是()
A. 线段CD 的中点
B. OA 与OB 的中垂线的交点
C. OA 与CD 的中垂线的交点
D. CD 与∠AOB 的平分线的交点 三.解答题
19 (7分)如图, ∠AOB 是一个任意角,在边OA,OB 上分别取OM=ON, 移动角尺,使角尺两边相同的刻度分别与M,N 重合, 过角尺顶点C 的射线OC 便是∠AOB 的平分线,为什么?
20. (9分)如图,已知AB =DC ,AC =DB ,BE =CE,求证:AE =DE.
21. (9分)如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD , 试猜想线段CE 与DE 的大小与位置关系,并证明你的结论. 22. (9分)已知如图,E.F 在BD 上,且AB =CD ,BF =DE ,AE =CF,
求证:AC 与BD 互相平分.
23. (9分)如图,∠ABC =90°,AB =BC ,D 为AC 上一点,分别过A.C 作BD 的垂线,
垂足分别为E.F,求证:EF =CF -AE.
A
B E C
D
A
B E
O F
D
C
A
B
C
F
D E A C E D
B
参考答案
1.△ADC
2. ∠B=∠C或AF=DC
3.70
4.27°
5.3
6.3
7.两个三角形全等
8.72°
9.HL 10.135° 11.B 12.D 13.A 14.D 15.C 16.A 17.D 18.D 19. 对应边:AB AC,AN,AM,BN,CM 对应角:∠BAN=∠CAM, ∠ANB=∠AMC 20. △AMC≌△CON 21.先证△ABC≌△DBC得∠ABC=∠DCB,再证△ABE≌△CED 22.垂直23. 先证△ABE≌△DFC得∠B=∠D,再证△ABO≌△COD 24.证△ABF≌△BCF。

相关文档
最新文档