温度温标 分子动理论概念总结

合集下载

高中物理人教版2019选修第三册温度和温标

高中物理人教版2019选修第三册温度和温标
解析 温标是温度数值的表示方法,所以温度与温标是不同的概念,用热力 学温标表示的温度称为热力学温度,选项A错.摄氏温度可以取负值,但是 热力学温度不能取负值,因为热力学温度的零点是低温的极限,故选项B 错.摄氏温度的每一度与热力学温度的每一度的大小相等,选项D正确.摄 氏温度升高3 ℃,也就是热力学温度升高了3 K,故选项C错.
【例2 】 关于热平衡,下列说法正确的是( ) A.系统甲与系统乙达到热平衡就是它们的温度达到相同的状态 B.标准状况下,冰水混合物与0 °C的水未达到热平衡 C.量体温时温度计需和身体接触十分钟左右是为了让温度计跟身
体达到热平衡 D.冷热程度相同的两系统处于热平衡状态
解析 两系统达到热平衡时的标志是它们的温度相同,或者说它
如果两个系统分别与第三个系统达到热平衡, 那么这两个系统也必定处于热平衡。
3.热平衡与温度 (1)一切达到热平衡的物体都具有相同的 温度 . (2)温度计的测温原理 若物体与A处于热平衡,它同时也与B达到热平衡,则A的温度 等于 B的温度,这就是温度计用来测量温度的基本原理.
三、温度计与温标
问题设计
C.只有处于平衡状态的系统才有状态参量 D.两物体发生热传递时,它们组成的系统处于平衡状态
解析 处于非平衡状态的系统也有状态参量,而且参量会发生 变化.经过足够长的时间,系统若不受外界影响就会达到平衡 状态,各部分状态参量将会相同,故B项正确,A、C项错误; 处于热传递过程中的两系统处于非平衡状态,故D项错误.
三、温度计与温标
2、几种温度计的测量原理 (1)水银温度计是根据水银 热胀冷缩 的性质来测量温度的. (2)金属电阻温度计是根据金属的电阻随 温度的变化来测量温 度的. (3)气体温度计是根据气体压强与 温度 的关系来测量温度的. (4)热电偶温度计是根据不同导体因温差产生的电动势大小来测 量温度的.

分子运动理论

分子运动理论

2500年前,古希 腊学者德谟克利 特认为“世界上 有无数很小的不 可再分的粒子组 成”。
1811年,意大利 科学家阿伏伽德 罗提出分子概念, 认为分子是保持 物质化学性质的 最小微粒。
今天,通过电子 显微镜,科学家 不仅可以清晰地 看到物质的分子, 还能看到分子的 更微小结构。
用电子显微镜观察到的石墨 烯表面分子的排列
5.1 温度 温标
分子动理论
2500年前,一位古希 腊学者提出这样一个 问题:试想我们把一 颗沙糖分成两半,每 一半都是砂糖。再把 其中的一半分成两半, 每一半还是甜的……., 如此不断分割下去, 有没有一个限度呢?
早在我国春秋战国 时期,墨子就提出 了物体不断分割到 最小的一点,称为 “端”。
三十天
分子动理论之二:分子在不停地做无规 则运动 1、由于分子运动,某种物质逐渐进入到 另一种物质中的现象叫做扩散; 2、扩算现象说明:分子在永不停息地做 无规则运动(也说明分子间存在间隙); 3、气体、液体、固体中的分子都会发生 扩散现象(扩散速度越来越慢); 4、分子具有动能。
生活、生产中利用分子运动的事例 在汤里加些盐, 整个锅里都会 有咸味。
分子动理论之一:物体是有分子组 成的。
1、分子能保持物质原来的性质 2、分子很小,直径大约为1个 水分子,若将这些水分子平 摊到整个地面上,1平方厘米 大约能分到400个水分子。
德谟克利特认识 到花香扑鼻是因 为扩散
例:硫酸铜和水的扩散
十天
二十天
用力可以忽略。
固态、液态、气态分子间相互作用图
分子动理论的基本内容:
1、物质是由分子组成的。 2、分子在不停的做无规则运动。 3、分子间存在相互作用力——引
力和斥力。
将硼、磷等物 质扩散到纯净 的硅晶体中, 可以制成各种 性能半导体。

温度、气体动理论

温度、气体动理论

N
N N
20 0.2
50 0.5
30 0.3
单位速率区间内分子数占总分子数的百分率:N v ~
N v
v
速率分布函数: f (v) (几率密度) v 0
lim
N v 1 dN v Nv N dv
f (v) 物理意义:
速率在 v附近,单位速率区间 内分子数占总分子数的百分率。
dN v f (v)dv N
3
3
1
M 28 10 26 m 4.65 10 kg 23 N A 6.022 10
P0 1.013 10 25 3 n 2.7 10 m 23 kT0 1.38 10 273.15
5
n N v f (v)dv n N m e 2 kT
结论: 温度标志着物体内部分子热运动的剧 烈程度,它是大量分子热运动的平均平动 动能的 t 的量度。
1 2 3 t mv kT 2 2
3kT 方均根速率: v m kN A k R m mN A M
2
方均根速率:
3kT 3RT v m M
2
例题、两瓶不同种类的气体,其分子平均平动动能 相等,但分子密度数不同。问:它们的温度是否相 同?压强是否相同? 解:
归一化条件:


0
f (v)dv 1
麦克斯韦速率分布函数:
m 32 f (v ) 4 ( ) v e 2 kT
dN v f (v)dv N
在平衡态下, 气体分子速率在v到 v+dv区间内的分子 数占总分子数的百 分比。 dv
mv2 2 2 kT
f(v)
v

高中物理:温度和温标 (动图)

高中物理:温度和温标 (动图)
③一般情况下,0K是低温的极限,只能无限接近,但不 能达到。
③华氏温标
华氏温标的温度tF与t之间的关系:
tF=32+9/5t
单位: °F
华氏温标在欧美使用非常普遍,摄氏温标在亚洲使用较多, 科学研究中多使用绝对温标。
例 一金属棒的一端与0℃冰接触,另一端与 100℃水接触,并且保持两端冰、水的温度不变.问当 经过充分长时间后,金属棒所处的状态是否为热平衡态? 为什么?
一个物理学系统,在没有 外界影响的情况下,只要 经过足够长的时间,系统 内各部分的状态参量会达 到稳定.
问题3:什么是热平衡和热平衡定律?
1.热平衡
如果两个系统相互接触而传热,它们的状态参量将改变,但 经过一段时间后,状态参量不再变化,达到了相同的温度,两个系 统已经具有了某个“共同性质”,我们就说两个系统达到了热 平衡。(两个系统达是通过热传递热达到的平衡)
问题4:温度和温标是如何定义的?
1.温度
温度是决定一个系统与另一个系统是否达到热平衡状态的 物理量,它的特征就是“一切达到热平衡的系统都具有相同的 温度”这就是常用温度计能够用来测量温度的基本原理.
系统达到热平衡的宏观标志就是温度相同,若温度不同即系 统处于非平衡态,则系统一定存在着热交换。
一切达到热平衡的系统都具有相同的在着引力和斥力,都随分子间距离r的 增大而减小,随r的减小而增大,但斥力比引力变化的快
当分子间距r
<r0 =r0 时分子力表现为 >r0
斥力 零 引力
F
当分子间距r的数量级大于10-9m时, 分子力可忽略不计。
分子动理论的内容
F斥
r0
r
F分
F引
学习目标
1.什么是系统和状态参量? 2.什么是平衡态? 3.什么是热平衡和热平衡定律? 4.温度和温标是如何定义的? 5.如何确定温标?

上海初中物理-温度和分子动理论-知识点和习题

上海初中物理-温度和分子动理论-知识点和习题

TC= 5/9*(TF -32)
热力学温标:也是国际温标,开尔文,符号K。1848年开尔文以热力学第二定律为基础引出的与测温物质无关的温标。
规定水的三相点(水的固、液、汽三相平衡的状态点)的温度为273.15K,热力学温标与摄氏温标的每刻
度的大小是相等的,但绝对温标的0K,则是摄氏温标的-273.15℃。
用途
测物体温度
测室温
测体温
温度计的玻璃泡要做大目的是:温度变化相同时,体积变化大,
量程
-20℃~110℃ -30℃~50℃ 35℃~42℃
上面的玻璃管做细的目的是:液体体积变化相同时液柱变化大 两项措施的共同目的是:读数准确
分度值 所 用液 体
1℃
1℃
银煤油(红) 酒精(红)
0.1℃ 水银
水银
酒精
使用步骤: ①估计被测物体温度,选择合适量程和最小分度值的温度计 标准状态下凝
人的正常体温:37℃ 30分钟杀死新冠病毒的温度:56℃
上海昼夜温差:约10℃ “高温天气”的最高气温:35℃ 公共场所夏季室内空调温度设置的最低温度:26℃
高温预警信号分三级,分别以黄色、橙色、红色表示 高温黄色预警信号 指天气闷热,一般指连续3天日最高气温将在35℃以上 高温橙色预警信号 指天气炎热,一般指24小时内最高气温将要升至37℃以上 高温红色预警信号 指天气酷热,一般指24小时内最高气温将升至40℃以上
3. 夏天的早晨,上海地区自来水龙头流出水的温度最接近于( )
A. 0 ℃
B. 25℃
C. 50 ℃
D. 75 ℃
4. 下列关于温度的描述中符合实际的是( )
A. 发高烧时人体温度可达40℃
B. 冰箱冷冻室的温度为10℃

分子动理论知识点总结

分子动理论知识点总结

分子动理论知识点总结分子动理论知识点总结11.分子动理论(1)物质是由大量分子组成的分子直径的数量级一般是10-10m。

(2)分子永不停息地做无规章热运动。

①扩散现象:不同的物质相互接触时,可以彼此进入对方中去。

温度越高,扩散越快。

②布朗运动:在显微镜下看到的悬浮在液体(或气体)中微小颗粒的无规章运动,是液体分子对微小颗粒撞击作用的不平衡造成的,是液体分子永不停息地无规章运动的宏观反映。

颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。

(3)分子间存在着相互作用力分子间同时存在着引力和斥力,引力和斥力都随分子间距离增大而减小,但斥力的改变比引力的改变快,实际表现出来的是引力和斥力的合力。

2.物体的内能(1)分子动能:做热运动的分子具有动能,在热现象的讨论中,单个分子的动能是无讨论意义的,重要的是分子热运动的平均动能。

温度是物体分子热运动的平均动能的标识。

(2)分子势能:分子间具有由它们的相对位置决断的势能,叫做分子势能。

分子势能随着物体的体积改变而改变。

分子间的作用表现为引力时,分子势能随着分子间的距离增大而增大。

分子间的作用表现为斥力时,分子势能随着分子间距离增大而减小。

对实际气体来说,体积增大,分子势能增加;体积缩小,分子势能减小。

(3)物体的内能:物体里全部的分子的动能和势能的总和叫做物体的内能。

任何物体都有内能,物体的内能跟物体的温度和体积有关。

(4)物体的内能和机械能有着本质的区分。

物体具有内能的`同时可以具有机械能,也可以不具有机械能。

3.转变内能的两种方式(1)做功:其本质是其他形式的能和内能之间的相互转化。

(2)热传递:其本质是物体间内能的转移。

(3)做功和热传递在转变物体的内能上是等效的,但有本质的区分。

4.★能量转化和守恒定律5★.热力学第肯定律(1)内容:物体内能的增量(U)等于外界对物体做的功(W)和物体汲取的热量(Q)的总和。

(2)表达式:W+Q=U(3)符号法那么:外界对物体做功,W取正值,物体对外界做功,W取负值;物体汲取热量,Q取正值,物体放出热量,Q取负值;物体内能增加,U取正值,物体内能减削,U取负值。

高中物理选修3-3第七章分子动理论 4 温度和温标

高中物理选修3-3第七章分子动理论 4 温度和温标

4温度和温标[学科素养与目标要求]物理观念:1.知道平衡态及系统的状态参量.2.明确温度的概念,知道热平衡定律及其与温度的关系.3.了解温度计的原理,知道热力学温度与摄氏温度的换算关系.一、状态参量与平衡态1.热力学系统和外界(1)热力学系统:由大量分子组成的研究对象叫做热力学系统,简称系统.(2)外界:系统之外与系统发生相互作用的其他物体统称外界.2.状态参量:用来描述系统状态的物理量.常用的状态参量有体积V、压强p、温度T等.3.平衡态:在没有外界影响的情况下,系统所有性质都不随时间而变化的稳定状态.二、热平衡与温度1.热平衡:两个相互接触的热力学系统,最后系统的状态参量都不再变化,这时两个系统具有“共同性质”,我们就说这两个系统达到了热平衡.2.热平衡定律:如果两个系统分别与第三个系统达到热平衡,那么这两个系统彼此之间也必定处于热平衡.3.温度:热平衡中具有的“共同热学性质”叫做温度.这就是温度计能够用来测量温度的基本原理.4.热平衡的性质:一切达到热平衡的系统都具有相同的温度.三、温度计与温标1.常见温度计及其测温原理名称原理水银温度计根据水银热胀冷缩的性质来测量温度金属电阻温度计根据金属铂的电阻随温度的变化来测量温度气体温度计根据气体压强随温度的变化来测量温度热电偶温度计根据不同导体因温差产生电动势的大小来测量温度2.确定一个温标的方法(1)选择某种具有测温属性的物质.(2)了解测温物质随温度变化的函数关系.(3)确定温度的零点和分度的方法.3.热力学温度T与摄氏温度t(1)摄氏温标:一种常用的表示温度的方法,规定标准大气压下冰的熔点为0 ℃,水的沸点为100 ℃,在0 ℃和100 ℃之间均匀分成100等份,每份算做1 ℃.(2)热力学温标:现代科学中常用的表示温度的方法,热力学温标也叫绝对温标.热力学温标表示的温度叫热力学温度.用符号T表示,单位是开尔文,符号为K.(3)摄氏温度与热力学温度的关系为T=t+273.15_K.1.判断下列说法的正误.(1)表示系统的状态参量常用的有体积、压强、阿伏加德罗常数和温度.(×)(2)两个系统处于热平衡时,它们一定具有相同的热量.(×)(3)温度计测温原理就是热平衡定律.(√)(4)0 ℃的温度可以用热力学温度粗略地表示为273 K.(√)2.(1)两个系统具有相同的________时,即达到了热平衡.(2)北京时间2016年8月6日是第31届里约奥运会开幕的日子,中央电视台播报天气预报,里约的最高气温是38 ℃,它是________K.我国在研究超导问题方面走在世界前列,我国科学家发现某种超导材料的临界温度是90 K,它是________℃.答案(1)温度(2)311.15-183.15一、状态参量与平衡态(1)在力学中,为了确定物体运动的状态,我们使用了物体的位移和速度这两个物理量.在热学中如果我们要研究一箱气体的状态,需要哪些物理量呢?(2)如果系统与外界没有能量交换,该系统就达到平衡态了吗?答案(1)体积、压强和温度.(2)不是.1.热力学系统的状态参量(1)体积V:系统的几何参量,它可以确定系统的空间范围.(2)压强p:系统的力学参量,它可以描述系统的力学性质.(3)温度T:系统的热学参量,它可以确定系统的冷热程度.2.平衡态的理解(1)热力学的平衡态与力学的平衡态的意义不同,热力学的平衡态是一种动态平衡,组成系统的分子仍在不停地做无规则运动,只是分子运动的平均效果不随时间变化,表现为系统不受外界的影响,状态参量(压强、体积和温度)不随时间变化.(2)平衡态是一种理想情况,因为任何系统完全不受外界影响是不可能的.例1(多选)下列各个系统处于平衡态的是()A.放在0 ℃的房间里的冰水混合物B.放在沸水中加热足够长时间的铜块C.电影院开空调5分钟内放映厅内的气体D.突然被压缩的气体答案AB解析A选项中在0 ℃的房间里的冰水混合物,其温度、体积都不再变化,处于平衡态;B 选项中铜块在沸水中加热足够长的时间后,其温度、体积也不再变化,处于平衡态;C选项中开空调5分钟内放映厅内气体的温度、压强都要变化,处于非平衡态;D选项中突然被压缩的气体体积变化,故其处于非平衡态.故选A、B.二、平衡态与热平衡的比较温度(1)用手心握住体温计玻璃泡,观察到体温计的示数逐渐上升.当上升到36 ℃左右时,为什么不再上升?(2)当把它立即放入40 ℃的水中时,你又看到什么现象?为什么?答案(1)因为体温计与人体温度相同,即达到了热平衡.(2)体温计的示数继续上升,因为体温计玻璃泡的温度与水的温度不相同,没有达到热平衡.1.平衡态与热平衡的区别和联系平衡态热平衡区别研究对象一个系统两个接触的系统判断依据系统不受外界影响,状态参量不变两个系统的温度相同联系处于热平衡的两个系统都处于平衡态2.热平衡定律的意义决定两个系统是否达到了热平衡的最主要参量是温度.因为互为热平衡的物体具有相同的温度,所以在比较各物体的温度时,不需要将各物体直接接触,只需将温度计分别与各物体接触,即可比较温度的高低.3.热平衡与温度(1)对温度的理解①宏观上,表示物体的冷热程度.②微观上,反映分子热运动的剧烈程度.③一切达到热平衡的物体都具有相同的温度.(2)温度计的测温原理若物体与A处于热平衡,它同时也与B处于热平衡,则A的温度等于B的温度,这就是温度计用来测量温度的基本原理.例2(多选)有甲、乙、丙三个温度不同的物体,将甲和乙接触一段时间后分开,再将乙和丙接触一段时间后分开(发生了热交换),假设只有在它们相互接触时有热传递,不接触时与外界没有热传递,则()A.甲、乙、丙三个物体都达到了平衡态B.只有乙、丙达到了平衡态,甲没有达到平衡态C.乙、丙两物体都和甲达到了热平衡D.乙、丙两物体达到了热平衡答案AD解析乙和丙分开后,甲、乙、丙三个物体与外界没有热传递,所以甲、乙、丙三个物体都达到了平衡态,A正确,B错误;甲和乙接触一段时间后分开,甲和乙达到了热平衡,但乙和丙接触一段时间后,乙的温度又发生了变化,甲和乙的热平衡被破坏,乙和丙两物体达到了热平衡,C错误,D正确.例3(多选)关于热平衡,下列说法正确的是()A.系统甲与系统乙达到热平衡就是它们的温度达到相同的数值B.标准状况下冰水混合物与0 ℃的水未达到热平衡C.量体温时体温计需要和身体接触十分钟左右是为了让体温计跟身体达到热平衡D.冷热程度相同的两系统处于热平衡状态答案ACD解析两个系统达到热平衡时的标志是它们的温度相同,或者说它们的冷热程度相同.A、C、D正确,B错误.三、温度计与温标(1)如图所示,伽利略温度计是利用玻璃管内封闭的气体作为测量物质制成的,当外界温度越高时,细管内的水柱越高吗?(2)如果气体的温度是1 ℃,也可以说气体的温度是多少K?如果气体的温度升高了1 ℃,也可以说气体的温度升高了多少K?答案(1)不是.由热胀冷缩可知,当外界温度越高时,气体膨胀越厉害,细管内的水柱越低.(2)274.15 K 1 K1.“温度”含义的两种说法(1)宏观角度:表示物体的冷热程度.(2)热平衡角度:两个处于热平衡的系统存在一个数值相等的物理量,这个物理量就是温度.2.温度计测温原理一切互为热平衡的系统都具有相同的温度.温度计与待测物体接触,达到热平衡,其温度与待测物体相同.例4(多选)关于温度与温标,下列说法正确的是()A.用摄氏温标和热力学温标表示温度是两种不同的表示方法B.摄氏温度与热力学温度都可以取负值C.摄氏温度升高3 ℃,在热力学温标中温度升高276.15 KD.-33 ℃与240.15 K表示同一温度答案AD解析温标是温度数值的表示方法,常用的温标有摄氏温标和热力学温标,选项A正确;摄氏温度可以取负值,但是热力学温度不能取负值,因为热力学温度的零点是低温的极限,选项B错误;摄氏温度升高3 ℃,也就是热力学温度升高了3 K,选项C错误;由T=273.15 K +t,可知-33 ℃与240.15 K表示同一温度,D正确.1.(状态参量和平衡态)如果一个系统达到了平衡态,那么这个系统各处的()A.温度、压强、体积都一定达到了稳定的状态不再变化B.温度一定达到了某一稳定值,但压强和体积仍是可以变化的C.温度一定达到了某一稳定值,并且分子不再运动,达到了“凝固”状态D.温度、压强变得一样,但体积仍可变化答案 A解析如果一个系统达到了平衡态,系统内各部分的状态参量如温度、压强和体积等不再随时间发生变化.温度达到稳定值,分子仍然是运动的,不可能达到所谓的“凝固”状态,故A正确.2.(热平衡与温度)(多选)下列说法正确的是()A.放在腋下足够长时间的水银体温计中的水银与人体达到热平衡B.温度相同的棉花和石头相接触,需要经过一段时间才能达到热平衡C.若a与b、c分别达到热平衡,则b、c之间也达到了热平衡D.两物体温度相同,可以说两物体达到了热平衡答案ACD解析当温度计的液泡与被测物体紧密接触时,如果两者的温度有差异,它们之间就会发生热传递,高温物体将向低温物体传热,最终使二者的温度达到相等,即达到热平衡,故A、D正确;两个物体的温度相同时,不会发生热传递,已经达到热平衡,故B错误;若a与b、c分别达到热平衡,三者温度一定相等,所以b、c之间也达到了热平衡,故C正确.3.(温标和温度)(多选)下列关于温度的说法正确的是()A.水银温度计是根据水银热胀冷缩的性质制造的B.水的沸点为100 ℃,用热力学温度表示即为373.15 KC.水从0 ℃升高到100 ℃,用热力学温度表示即为从273.15 K升高到373.15 KD.温度由摄氏t升至2t,对应的热力学温度由T升到2T答案ABC解析水银温度计是根据水银热胀冷缩的性质制造的,A正确.根据T=t+273.15 K可知,100 ℃相当于热力学温标373.15 K,水从0 ℃升高到100 ℃,即从273.15 K升高到373.15 K;从t升高到2t,即从T=t+273.15 K升高到2t+273.15 K,B、C正确,D错误.4.(温度计和温标)(2018·镇江市高三月考)仿照实验使用的液体温度计的原理,某同学设计了一个简易的气体温度计,如图1所示,瓶中装的是气体,瓶塞密封不漏气,瓶塞上面细弯管中有一段液柱.图1(1)当温度升高时,液柱将向哪边移动?(2)此温度计如何标上刻度呢?(3)你能说出这个温度计的测温原理吗?(4)为了提高此温度计的灵敏度,便于读数,可采取什么措施?答案见解析解析(1)当温度升高时,瓶内的气体受热膨胀挤压上方的液柱,液柱就会向左移动;(2)将此装置放在一个标准大气压下的冰水混合物中,在液柱正中间处标上0 ℃,将它放在一个标准大气压下的沸水中,在液柱正中间处标上100 ℃,然后将以上两个刻度之间的部分进行100等分,标上刻度就成了一个温度计;(3)这个温度计的测温原理是测温气体的热胀冷缩;(4)细弯管再细一点,瓶子再大些且气体再多些,细弯管内的液体尽可能少些等.一、选择题考点一平衡态与热平衡1.(多选)热力学系统的平衡态是一种()A.定态平衡B.动态平衡C.分子已经不动D.分子仍做无规则运动答案BD解析热力学系统的平衡态是大量分子的平均效果,是动态平衡,分子仍做无规则运动,故选B、D.2.(多选)两个原来处于热平衡状态的系统,分开后,由于受外界的影响,其中一个系统的温度升高了5 K,另一个系统的温度升高了5 ℃,则下列说法正确的是()A.两个系统不再是热平衡状态B.两个系统此时仍是热平衡状态C.两个系统的状态都发生了变化D.两个系统的状态都没有发生变化解析由于两个系统原来处于热平衡状态,温度相同,当分别升高5 ℃和5 K后,温度仍相同,两个系统仍为热平衡状态,故A错误,B正确;由于温度发生了变化,系统的状态也发生了变化,故C正确,D错误.3.有关热平衡的说法正确的是()A.如果两个系统在某时刻处于热平衡状态,则这两个系统永远处于热平衡状态B.热平衡定律只能研究三个系统的问题C.如果两个系统彼此接触而不发生状态参量的变化,这两个系统又不受外界影响,那么这两个系统一定处于热平衡状态D.两个处于热平衡状态的系统,温度可以有微小的差别答案 C解析处于热平衡状态的系统,如果受到外界的影响,状态参量会随之变化,温度也会变化,故A错误;热平衡定律对多个系统也适用,故B错误;由热平衡的意义知,C正确;温度是热平衡的标志,一定相同,故D错误.4.下列说法正确的是()A.只有处于平衡态的系统才有状态参量B.状态参量是描述系统状态的物理量,故当系统状态变化时,其各个状态参量都会改变C.两物体发生热传递时,它们组成的系统处于非平衡态D.0 ℃的冰水混合物放入1 ℃的环境中,冰水混合物处于平衡态答案 C解析状态参量是描述系统状态的物理量,与系统是否处于平衡态无关,且系统状态变化时,不一定各个状态参量都改变,A、B错误;处于热传递过程中的两系统处于非平衡态,C正确;0 ℃的冰水混合物放入1 ℃的环境中,周围环境会向冰水混合物传热,不是平衡态,D 错误.考点二温度、温度计与温标5.(多选)关于温度的物理意义,下列说法中正确的是()A.温度是物体冷热程度的客观反映B.人如果感觉到某个物体很凉,就说明这个物体的温度很低C.人如果感觉到某个物体很热,就说明这个物体的温度很高D.达到热平衡的两个系统温度相同解析温度是表示物体冷热程度的物理量,但人们对物体冷热程度的感觉具有相对性,A正确,B、C错误;温度是决定一个系统与另一个系统是否达到热平衡状态的物理量,两系统达到热平衡,则温度相同,D正确.6.(多选)关于热力学温度和摄氏温度,以下说法正确的是()A.热力学温度的单位“K”是国际单位制中的基本单位B.温度升高了1 ℃就是升高了1 KC.物体的温度由本身决定,数值与所选温标无关D.5 ℃的温度可用热力学温度粗略地表示为278 K答案ABD7.(多选)伽利略在1593年制造了世界上第一个温度计——空气温度计,如图1所示,一个细长颈的球形瓶倒插在装有红色液体的槽中,细管中的液面清晰可见,如果不考虑外界大气压的变化,就能根据液面的变化测出温度的变化,则()图1A.该温度计的测温物质是槽中的液体B.该温度计的测温物质是细管中的红色液体C.该温度计的测温物质是球形瓶中的空气D.该温度计是利用测温物质的热胀冷缩性质制造的答案CD解析细管中的红色液体是用来显示球形瓶中空气的体积随温度变化情况的,测温物质是球形瓶中封闭的空气,该温度计是利用空气的热胀冷缩的性质制造的,故A、B错误,C、D 正确.8.(多选)严冬,湖面上结了厚厚的冰,但冰下鱼儿仍在游动.为了测出冰下水的温度,徐强同学在冰上打了一个洞,拿来一支实验室温度计,用下列四种方法测水温,正确的做法是()A.用线将温度计拴牢从洞中放入水里,待较长时间后从水中提出,读出示数B.取一空的塑料饮水瓶,将温度计悬吊在瓶中,再将瓶拴住从洞中放入水里,水灌满瓶后待较长时间,然后将瓶提出,立即读出温度计的示数 C .若温度计显示的示数为摄氏温度4 ℃,即热力学温度4 KD .若温度计显示的示数为摄氏温度4 ℃,即热力学温度277.15 K答案 BD解析 要测量冰下水的温度,必须使温度计与冰下的水达到热平衡时,再读出温度计的示数,但因隔着冰无法直接读数,把温度计取出来,显示的也不再是原热平衡状态下的温度,故选项A 错误,B 正确.T =t +273.15 K =277.15 K ,故选项C 错误,D 正确.9.实验室有一支读数不准确的温度计,在测冰水混合物的温度时,其读数为20 ℃;在测1标准大气压下沸水的温度时,其读数为80 ℃.下列分别是温度计示数为41 ℃时对应的实际温度和实际温度为60 ℃时温度计的示数,其中正确的是( )A .41 ℃,60 ℃B .21 ℃,40 ℃C .35 ℃,56 ℃D .35 ℃,36 ℃答案 C解析 此温度计每一刻度表示的实际温度为10080-20℃=53 ℃,当它的示数为41 ℃时,它上升的格数为(41-20)格=21格,对应的实际温度应为21×53℃=35 ℃;同理,当实际温度为60 ℃时,此温度计应从20开始上升格数为6053格=36格,它的示数为36 ℃+20 ℃=56 ℃,所以C 正确.10.(多选)实际应用中,常用到一种双金属温度计,它是利用铜片与铁片压合在一起的双金属片的弯曲程度随温度的变化而变化的原理制成的,如图2甲中双金属片被加热时,其弯曲程度会增大,则下列各种相关叙述中正确的有( )图2A .该温度计的测温物质是铜、铁两种热膨胀系数不同的金属B .双金属温度计是利用测温物质热胀冷缩的性质来工作的C .由图甲可知,铜的热膨胀系数大于铁的热膨胀系数D .由图乙可知,双金属片的内层一定为铜,外层一定为铁答案ABC解析双金属温度计是利用热膨胀系数不同的铜、铁两种金属制成的,双金属片的弯曲程度随温度变化而变化,A、B正确;题图甲中,加热时,双金属片弯曲程度增大,即进一步向上弯曲,说明双金属片下层热膨胀系数较大,即铜的热膨胀系数较大,C正确;题图乙中,温度计示数是沿顺时针方向增大的,说明当温度升高时温度计指针沿顺时针方向转动,则其双金属片的弯曲程度在增大,故可以推知双金属片的内层一定是铁,外层一定是铜,D错误.二、非选择题11.小明在家制作了简易温度计,一根装有一小段有色水柱的细玻璃管穿过橡皮塞插入烧瓶内,封闭一定质量的气体.当外界温度变化时,水柱位置将上下移动.当有色水柱下端与D 和A对齐时,温度分别为15 ℃和75 ℃.A、D间刻度均匀分布.由图3可知,图中有色水柱下端所示温度为多少℃?图3答案27 ℃解析由题图知A、D间共有15个格,每个格表示温度为75-1515℃=4 ℃,有色水柱的下端离D点3个格,即3×4 ℃=12 ℃,所以图中有色水柱下端所示温度为t=15 ℃+12 ℃=27 ℃.。

温度归纳总结

温度归纳总结

温度归纳总结温度是物体分子热运动的表现,是描述物体热度高低的物理量。

在自然界和日常生活中,温度是一个非常重要的参数,对于人类的生活和工业生产都有着重要的影响。

本文将对温度的概念、温度的测量方法、温度的影响因素以及温度单位进行归纳总结。

一、温度的概念温度是物体内部分子热运动程度的度量,也可以理解为物体的热度高低。

温度的概念是由人们对物体热现象的直观感受和经验总结而来的。

二、温度的测量方法1. 摄氏度(℃):摄氏度是最常用的温度单位,常用于日常生活和科学研究中。

这种温标将水的三相点(水的冰点)定义为0℃,将水的沸点定义为100℃。

通过将温度计浸入物体中,测量物体与水的温度差来确定物体的温度。

2. 华氏度(℉):华氏度是美国最常用的温度单位,在某些国家和地区也有使用。

华氏度的定义将水的三相点温度设定为32℉,将水的沸点温度设定为212℉。

和摄氏度相比,华氏温标的刻度稍有不同,但转换公式很容易得到。

3. 开尔文(K):开尔文是国际单位制中的温度单位,也是热力学温度的标准单位。

开尔文温标以绝对零度作为0K,绝对零度是一种理论上的极低温度,温度在开尔文温标中没有负数。

开尔文温度与摄氏度之间的转换公式是K = ℃ + 273.15。

三、温度的影响因素1. 热量的输入和输出:温度的高低主要与物体内部所含热量相关。

当物体吸收或释放热量时,其温度会相应升高或降低。

2. 物体的性质:不同物质的分子结构和能级分布会影响其温度对热量的响应。

比如,金属具有良好的导热性质,故能够迅速平衡温度;而绝缘体对热量的传导不太敏感,导致温度上升较慢。

3. 外部环境:外界环境的温度变化也会对物体的温度产生影响。

例如,夏季高温天气中,物体会因为周围温度较高而升高温度。

四、温度单位1. 摄氏度(℃):摄氏度是国际通用的温度单位。

2. 华氏度(℉):华氏度常用于美国等地区。

3. 开尔文(K):开尔文是国际通用的热力学温度单位。

归纳总结:温度是物体热度高低的度量,常用的温度单位有摄氏度、华氏度和开尔文。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温度温标
1.1、温度定义:表示物体冷热程度的物理量
2、摄氏温标是一种确定的温度的标准。

标准大气压下,冰水混合物的温度为0℃,把标
准大气压下沸水的温度定为100℃。

2.液体温度计的原理:液体的热胀冷缩原理
结构:一根内径均匀的密封细玻璃管,和一个盛有
液体的玻璃泡(主要是水银、酒精和煤油。


最小分度:1℃
使用:①估计被测物体温度,选择合适量程和最小
分度的温度计
②测量时,温度计的玻璃泡要与被测物体充分接触
③温度计的玻璃泡不能接触容器的侧壁与底部
④待示数稳定有读数
⑤读数时,温度计不能离开被测物体
⑥眼睛的视线应与温度计内的液面相平
⑦记录数值和单位
温度计的工作液体不选用水。

因为水的热胀冷缩有反常现象,在同样受热与遇冷时,水的温度变化小。

第一支温度计是伽利略发明的气体温度计,根据气体的热胀冷缩原理制成。

当温度升高,液面下降,与常用温度计相反。

3.体温计结构:玻璃泡与细玻璃管的连接处有一段细弯管
量程:35℃~42℃最小分度:0.1℃
使用:读数时,温度计可以离开人体。

但使用前必须用力甩几下。

4.物质是由分子组成的。

5.分子是在不停地做无规则运动的。

温度越高,分子运动就越激烈。

分子的运动跟物
体的温度有关,叫做分子热运动。

6.分子间的相互作用力(斥力和引力):
当分子间距离变大时,分子间相互作用力减小,但表现为引力
当分子间距离变小时,分子间相互作用力增大,但表现为斥力
基本考点一:知道摄氏温标定标的规定,学会使用温度计和体温计。

宏观解释:表示物体的冷热程度;
微观解释:表示分子作无规则运动的剧烈程度。

测量仪器:温度计。

测量体温的仪表:体温计。

摄氏温标:定义在一个标准大气压下,冰水共存物(冰水混合物)的温度为零摄氏度(0℃),一个标准大气压下,沸水的温度为 100摄氏度(100℃)。

基本考点二:
扩散:不同的物质在相互接触时,彼此进入对方的现象。

扩散现象可以在气体、液体和固体之间进行。

大量实验事实表明:一切物体的分子都在不停地做无规则的运动。

一、分子动理论的基本内容
(1)物质是由分子构成的;(2)分子永不停息地做无规则的运动;(3)分子之间有相互作用的引力和斥力.
1、分子:分子是保持物质化学性质的最小微粒.
如氧分子、水分子等。

各种不同的物质是由不同的分子组成的,分子有多大呢?
(1)分子的体积和质量非常小.
如果把分子看作球形的,一般分子的直径只有几个埃(1=10-10m),氧分子大约为3埃,质量约为5.3×10-23克。

(2)宏观物体中分子数非常多。

例:如果把1克蔗糖(含1.8×1021个分子)放入洪泽湖中(正常蓄水31.3亿m3),均匀之
后,取1cm3的湖水,其中仍有蔗糖分子56.5万多个,这糖水还甜吗?
(3)分子之间有空隙.
演示一:酒精和水的混合.
去一根玻璃管中放一半水,再放一半加颜色的酒精,用手堵住管口,来回倒
置几次,总体积的高度下降1厘米多。

分析:由于分子间有空隙,在酒精与水混合的过程中,有些酒分子进入了水分子的空隙中,有些水分子也进入酒精分子的空隙中,这一实验证明了水分子、酒精分子之间有空隙.
2、分子的运动
问:若上面的实验不把玻璃管来回倒置,而是静放一段时间后,有色
的酒精分子会运动到水中,——液体的扩散
如图,在冷、热两杯水中放一滴蓝墨水,
现象1:过一会儿水就变蓝了.——说明液体分子在运动。

现象2:在热水变式比冷水快——说明液体分子的运动与温度有关,温度越高,分子无规则运动越快。

请举出气体运动的例子吗?二氧化氮气体的扩散。

装置如图:过一会儿,在上面的瓶中有明显的棕色.
问:这说明了什么?
这两种气体的混合,不是重力等外来的作用,而是分子本身无规则运动
的结果.
扩散:两种不同物质在接触时,彼此进入对方的现象.
水变色——液体扩散、气体的混合叫做气体扩散,固体之间也有扩散现象
大量的实验表明,一切物体里的分子都在不停地做无规则运动.
3、分子间的作用
(1)分子间有引力.
分子既然在不停地无规则运动着,为什么没有人看见固体分散成一个个分子呢?原来分子间有很大的引力,要想分开固体,必需克服分子间的引力才行.
演示三:铅块分子引力实验。

装置如图.
在铅块下可挂多个50克砝码.
问:这说明了什么?说明固体分子之间有很大的引力.
(2)分子间有斥力.
若要压缩固体,减小分子间的空隙,是十分困难的,如压缩粉笔,
比分开要困难得多.这是因为,若分子距离很近时,分子间斥力就
显示出来,要使分子靠得更近,必须克服分子间的斥力才行.
(3)分子间的引力和斥力是同时存在的.
何时表现为引力,何时又表现为斥力呢?
说明:
①平衡位置r=r0;
②分子间的距离r>r0时,引力大于斥力,表现为引力;
③分子间的距离r<r0时,引力小于斥力,表现为斥力.
④当r>10倍分子直径时,分子间作用力变得十分微弱,可以认为没有作用力了.
分子运动论的内容物质由大量的分子组成
分子大小,肉眼看不见
分子数目多
分子在不停地做无规则运动扩散现象
分子间存在引力和斥力
很难分开——表现引

很难压缩——表现斥
力。

相关文档
最新文档