Eviews中向量自回归模型解读

合集下载

EVIEWS回归结果的理解

EVIEWS回归结果的理解

EVIEWS回归结果的理解在经济学和统计学中,回归分析是一种常用的方法,用于研究变量之间的关系。

EVIEWS是一款常用的计量经济学软件,通过进行回归分析,可以得到一系列统计结果。

本文将介绍EVIEWS回归结果的理解,并解释这些结果对研究的意义和解释。

一、回归方程在进行回归分析后,EVIEWS将给出一个回归方程。

回归方程表示了自变量与因变量之间的关系。

通常,回归方程的形式为:Y = β0 + β1X1 + β2X2 + ... + βkXk + ε其中,Y代表因变量,X1、X2、...、Xk代表自变量,β0、β1、β2、...、βk代表回归系数,ε代表误差项。

回归系数可以理解为自变量对因变量的影响程度,而误差项表示了模型无法解释的部分。

二、回归系数的解释EVIEWS给出的回归结果中,包含了回归方程中自变量的回归系数。

这些回归系数可以帮助我们理解自变量对因变量的影响。

回归系数的正负值表示变量间的正相关或负相关关系,绝对值大小表示相关关系的强弱程度。

需要注意的是,回归系数的统计显著性非常重要。

EVIEWS会给出回归系数的t值和p值,用于判断回归系数是否显著。

如果p值小于设定的显著性水平(通常为0.05),则认为回归系数是显著的,即表明自变量对因变量的影响是存在的。

三、决定系数(R-squared)在EVIEWS回归结果中,还会给出一个被称为决定系数的统计量,用于衡量回归模型对因变量的解释程度。

决定系数的取值范围在0到1之间,越接近1表示回归模型对因变量的解释能力越强。

需要注意的是,决定系数并不代表回归模型的好坏。

一个决定系数较高的回归模型并不一定是更好的模型,因为决定系数受到样本大小、变量选择等多个因素的影响。

因此,在解读决定系数时,需要结合实际问题和模型的适用性进行综合评估。

四、残差分析在EVIEWS回归结果中,还会给出一系列统计指标,用于评估回归模型的拟合优度和模型的合理性。

其中,残差是一项重要指标。

EVIEWS软件的使用说明--向量自回归和误差修正模型

EVIEWS软件的使用说明--向量自回归和误差修正模型

EVIEWS软件的使用说明--向量自回归和误差修正模型第二十章向量自回归和误差xx模型联立方程组的结构性方法是用经济理论来建立变量之间关系的模型。

但是,经济理论通常并不足以对变量之间的动态联系提供一个严密的说明。

并且,内生变量既可以出现在等式的左端又可以出现在等式的右端使得估计和推断更加复杂。

为解决这些问题产生了一种用非结构性方法来建立各个变量之间关系的模型。

就是这一章讲述的向量自回归模型(Vector Auto regression, VAR)以及向量误差修正模型(VectorError Correction, VEC)的估计与分析。

同时给出一些检验几个非稳定变量之间协整关系的工具。

§20.1向量自回归理论向量自回归(VAR)常用于预测相互联系的时间序列系统以及分析随机扰动对变量系统的动态影响。

VAR方法通过把系统中每一个内生变量作为系统中所有内生变量的滞后值的函数来构造模型,从而回避了结构化模型的需要。

一个VAR(p)模型的数学形式是:(20.1)这里是一个维的内生变量,是一个维的外生变量。

和是要被估计的系数矩阵。

是扰动向量,它们相互之间可以同期相关,但不与自己的滞后值相关及不与等式右边的变量相关。

作为VAR的一个例子,假设工业产量(IP)和货币供应量(M1)联合地由一个双变量的VAR模型决定,并且让常数为唯一的外生变量。

内生变量滞后二阶的VAR(2)模型是:(20.2)其中,是要被估计的参数。

也可表示成:§20.2估计VAR模型及估计输出选择Quick/EstimateVAR…或者在命令窗口中键入var,并在出现对话框内添入适当的信息:1.选择说明类型:Unrestricted VAR(无约束向量自回归)或者VectorError Correction(向量误差修正)2.设置样本区间。

3.在适当编辑框中输入滞后信息。

这一信息应被成对输入:每一对数字描述一个滞后区间。

4.在相应的编辑栏中输入适当的内生及外生变量。

向量自回归模型

向量自回归模型
移而发生突变。
诊断主要是对模型残差进行一系列检验, 如果诊断结果表明模型存在问题,需要
以判断模型是否充分拟合了数据,是否 对模型进行修正或重新设定,以确保模
存在异常值或违反模型假设的情况。常
型的准确性和可靠性。
见的诊断方法包括残差诊断、正态性检
验、异方差性检验等。
03
向量自回归模型的实现
向量自回归模型的编程语言实现
诊断与修正困难
向量自回归模型在诊断和修正模型中的问题时较为复杂,需要较高 的统计技巧和经验。
对数据要求高
向量自回归模型要求数据具有平稳性,对于非平稳数据需要进行差分 或其他处理,可能会影响模型的准确性和稳定性。
向量自回归模型的发展趋势与未来展望
改进估计方法
针对向量自回归模型参数过多的问题,未来研究可以探索更加有 效的参数估计方法,提高模型的泛化能力。
能够更好地捕捉时间序列数据的长期趋势和稳定性。
解释性强
02
向量自回归模型能够清晰地揭示多个变量之间的相互影响关系,
有助于理解经济现象之间的内在联系。
适用范围广
03
向量自回归模型适用于多种类型的数据,包括平稳和非平稳时
间序列数据。
向量自回归模型的缺点
参数过多
向量自回归模型需要估计的参数数量较多,容易产生过拟合问题, 导致模型泛化能力下降。
极端天气事件预测
通过向量自回归模型预测极端天气事件的发生, 如暴雨、洪涝、干旱等,有助于减轻灾害损失。
3
气候变化对生态系统的影响
利用向量自回归模型分析气候变化对生态系统的 影响,如植被分布、物种多样性和生态平衡等。
向量自回归模型在社会科学领域的应用
经济发展预测
通过分析历史经济发展数据,利用向量自回归模型预测未来经济 发展趋势,为政策制定提供依据。

EVIEWS回归结果的理解

EVIEWS回归结果的理解

回归结果的理解参数解释:1、回归系数(coefficient)注意回归系数的正负要符合理论和实际。

截距项的回归系数无论是否通过T 检验都没有实际的经济意义。

2、回归系数的标准误差(Std.Error)标准误差越大,回归系数的估计值越不可靠,这可以通过T值的计算公式可知3、T检验值(t-Statistic)T值检验回归系数是否等于某一特定值,在回归方程中这一特定值为0,因此T值=回归系数/回归系数的标准误差,因此T值的正负应该与回归系数的正负一致,回归系数的标准误差越大,T值越小,回归系数的估计值越不可靠,越接近于0。

另外,回归系数的绝对值越大,T值的绝对值越大。

4、P值(Prob)P值为理论T值超越样本T值的概率,应该联系显著性水平α相比,α表示原假设成立的前提下,理论T值超过样本T值的概率,当P值<α值,说明这种结果实际出现的概率的概率比在原假设成立的前提下这种结果出现的可能性还小但它偏偏出现了,因此拒绝接受原假设。

5、可决系数(R-squared)都知道可决系数表示解释变量对被解释变量的解释贡献,其实质就是看(y 尖-y均)与(y=y均)的一致程度。

y尖为y的估计值,y均为y的总体均值。

6、调整后的可决系数(Adjusted R-squared)即经自由度修正后的可决系数,从计算公式可知调整后的可决系数小于可决系数,并且可决系数可能为负,此时说明模型极不可靠。

7、回归残差的标准误差(S.E.of regression)残差的经自由度修正后的标准差,OLS的实质其实就是使得均方差最小化,而均方差与此的区别就是没有经过自由度修正。

8、残差平方和(Sum Squared Resid)见上79、对数似然估计函数值(Log likelihood)首先,理解极大似然估计法。

极大似然估计法虽然没有OLS运用广泛,但它是一个具有更强理论性质的点估计方法。

极大似然估计的出发点是已知被观测现象的分布,但不知道其参数。

eviews操作实例-向量自回归模型VAR和VEC

eviews操作实例-向量自回归模型VAR和VEC
-4.3194
-5.4324 -5.7557
5% 临界值
-2.9202 -2.9202 -2.9202
模型形式 (C t p)
(c 0 3) (c 0 0) (c 0 0)
DW值
1.6551 1.9493 1.8996
结论
LGDPt ~I(1) LCt ~I( 1)
LIt~I(1)
注 C为位移项, t为趋势,p为滞后阶数。
yNt
的最大p阶滞后变量为解释变量的方程组模型,方程组模 型中共有N个方程。显然,VAR模型是由单变量AR模型推广到 多变量组成的“向量”自回归模型。
对于两个变量(N=2),Yt ( yt xt )T 时,VAR(2)模型为
2
Yt iYti Ut 1Yt1 2Yt2 Ut i 1
6
用矩阵表示:
xt
121 yt1
122xt1
221yt2
222xt2
u2t
显然,方程组左侧是两个第t期内生变量;右侧分 别是两个1阶和两个2阶滞后应变量做为解释变量,且 各方程最大滞后阶数相同,都是2。这些滞后变量与随 机误差项不相关(假设要求)。
7
由于仅有内生变量的滞后变量出现在等式的 右侧,故不存在同期相关问题,用“LS”法估计 参数,估计量具有一致和有效性。而随机扰动列 向量的自相关问题可由增加作为解释应变量的滞 后阶数来解决。
3
政策分析。但实际中,这种模型的效果并不令人满 意。
联立方程组模型的主要问题:
(1)这种模型是在经济理论指导下建立起来的结构模型 。遗憾的是经济理论并不未明确的给出变量之间的动态关 系。
(2)内生、外生变量的划分问题较为复杂; (3)模型的识别问题,当模型不可识别时,为达到可识别 的目的,常要将不同的工具变量加到各方程中,通常这种 工具变量的解释能力很弱; (4)若变量是非平稳的(通常如此),则会违反假设, 带来更严重的伪回归问题。

eviews回归分析结果解读

eviews回归分析结果解读

eviews回归分析结果解读EViews回归分析结果解读:一、模型验证1.残差检验:通过残差的自相关检验来评估模型拟合的效果。

EViews 提供的残差检验的指标主要有自相关系数(AC)、均值偏差(PD)和多元偏差(MD)等,通过综合这三个指标来验证模型的优度。

2.残差的正态性检验:通过对残差的正态检验,来判断模型是否拟合得合适。

EViews绘出的正态性检验图,其上四象限内的残差数据点簇应该尽可能集中在图中心。

3.异方差性检验:这是检验模型拟合优度的另一种用法,主要依靠残差曲线的图形显示。

异方差的判定参考指标主要有自相关(ACF)和偏度(SKEW),此外还可以看“逐步残差图”。

二、系数验证1.系数绝对值:通过检验系数,来确定模型中每个变量的解释力。

系数的绝对值越大,说明该变量对模型影响越大。

2.系数t检验:系数t检验主要用来检验回归分析模型中,系数中存在的显著性关系。

EViews通过给出系数的t值和概率值来做检验,如果概率值小于一定的显著性水平,则该系数的t值就具有统计学显著性,表明变量与目标变量有关系。

3.系数F检验:F检验用来检验模型均方根残差对应回归方程变量对解释能力的贡献程度。

F检验的结果反映了模型在拟合中的效果,当F值较大时,说明模型所用的变量都有较强的解释能力。

三、模型优度1.R平方:R平方指的是回归方程对于平均自变量的拟合程度。

它衡量的是样本内变量和预期值之间的相似程度,R平方越大,模型对数据的拟合度越高。

2.拟合误差:拟合误差指的是拟合出来的模型误差,它反映了独立变量与因变量之间存在的不确定性。

拟合误差越小,说明模型拟合效果越好。

3.解释力:这是一个衡量模型效果的比率,主要反映模型对数据集中变量对解释能力,一般要在0.7以上才有一定的参考价值。

四、回归方程概况回归方程概况意指模型中因变量的各种参数,如常数项a0、斜率a1以及误差项的统计量。

这些参数的准确性和完整度将影响到模型的拟合程度和预测能力。

eviews做回归分析报告

eviews做回归分析报告

eviews做回归分析报告回归分析是一种常用的统计分析方法,通过建立一个数学模型来描述自变量和因变量之间的关系。

EViews是一种专业的统计软件,可以使用它来进行回归分析并生成相应的分析报告。

下面是使用EViews进行回归分析报告的详细步骤:1. 导入数据:使用EViews打开数据文件,确保数据文件包含自变量和因变量的数据。

2. 创建回归方程:选择菜单栏中的“Quick/Estimate Equation”或者在工具栏中点击“Estimate Equation”按钮来创建一个回归方程。

在弹出的对话框中选择自变量和因变量,可以选择更多的选项来调整回归模型的设定。

3. 进行回归分析:点击对话框中的“OK”按钮,EViews将会进行回归分析并显示回归模型的估计结果。

在结果窗口中,你可以查看模型的拟合统计量、系数估计值、标准误差等信息。

4. 诊断检验:在结果窗口中,EViews会给出一些诊断检验的结果,如残差的正态性检验、异方差性检验等。

你可以根据这些检验结果来进一步判断回归模型的合理性。

5. 绘制图表:EViews提供了丰富的绘图功能,你可以在结果窗口中选择需要的图表类型,如散点图、回归方程图等。

6. 生成报告:最后,你可以将回归分析的结果和图表导出为报告文件。

在EViews中,你可以选择“File/Export/Report…”选项来将分析结果导出为报告文件。

你可以选择不同的格式,如Word、Excel等。

以上是使用EViews进行回归分析报告的基本步骤。

当然,在具体的应用中,你可能需要根据具体的研究问题进行更加详细和复杂的分析。

EViews提供了丰富的功能和命令,可以帮助你进行更深入的回归分析。

第十一章_向量自回归(VAR)模型和向量误差修正(VEC)模型_理论及EVIEWS操作

第十一章_向量自回归(VAR)模型和向量误差修正(VEC)模型_理论及EVIEWS操作
5
由此可知,经济理论指导下建立的结构性经典计量模 型存在不少问题。为解决这些问题而提出了一种用非结构 性方法建立各变量之间关系的模型。本章所要介绍的VAR模 型和VEC模型,就是非结构性的方程组模型。 VAR (Vector Autoregression)模型由西姆斯 (C.A.Sims,1980)提出,他推动了对经济系统动态分析的 广泛应用,是当今世界上的主流模型之一。受到普遍重视, 得到广泛应用。 VAR模型主要用于预测和分析随机扰动对系统的动态冲 击,冲击的大小、正负及持续的时间。 T Y t ( y 1 t y 2 t y N t ) 是N×1阶时序 VAR模型的定义式为:设 应变量列向量,则p阶VAR模型(记为VAR(p)):
1.格兰杰因果性定义 2.格兰杰因果性检验 案例 五、 建立VAR模型 案例 六、利用VAR模型进行预测 案例 七、脉冲响应函数与方差分解 案例 八、向量误差修正模型 案例
3
一、VAR模型及特点
1. VAR模型—向量自回归模型
经典计量经济学中,由线性方程构成的联立方程 组模型,由科普曼斯(poOKmans1950)和霍德-科普曼 斯(Hood-poOKmans1953)提出。联立方程组模型在20 世纪五、六十年代曾轰动一时,其优点主要在于对每个方 程的残差和解释变量的有关问题给予了充分考虑,提出了 工具变量法、两阶段最小二乘法、三阶段最小二乘法、有 限信息极大似然法和完全信息极大似然法等参数的估计方 法。这种建模方法用于研究复杂的宏观经济问题,有时多 达万余个内生变量。当时主要用于预测和
19
表11.3
P AIC
A)
1 2 3 4
-5.3753 -5.6603 -5.8804 -5.6693
-4.8474 -4.7271 -4.5337 -3.9007
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 在残差序列数据组窗口中点击View键,选择 Covariances功能
上一排数值为方差或协方差,下一排为相关 系数。
五、VAR、协整与VEC模型
• 在金融活动中,VAR应用于国际金融、资本市场 等多个领域,可以说,只要问题涉及多变量,时 间序列数据,都有利用VAR的可能。
一、向量自回归(VAR)模型定义
• VAR模型是自回归模型的联立形式,所以 称向量自回归模型。假设y1t,y2t之间存在 关系,如果分别建立两个自回归模型
• y1t = f (y1,t-1, y1,t-2, …) • y2t = f (y2,t-1, y2,t-2, …) • 则无法捕捉两个变量之间的关系。如果采
c
1 2 k1 k
ut
0
I
0 0
0
0
Yt
Y t2
,
C0, A0 I 0
0,
Ut 0

则有:
Y
t
k
1
0
0 0 0 I 0
0
Yt CAt Y 1U t (6.5)
• 这样k阶VAR模型就被转化为1阶VAR,用前面讲过的方法 检验稳定性。
滞后期4阶的检验过程
特征值在单位圆内,模型稳定
• 可见,VAR模型就是一个联立方程模型, 只是解释变量全为内生变量的滞后值。
• 由传统计量经济学知,这样的解释变量为 “前定变量”,可以求参数估计值。
• 写成矩阵形式:
y y1 2tt c c1 2 1 2,,1 1 1 1 1 2,,1 1 2 2 y y1 2,,tt 1 1 u u1 2tt (6.1)
上述五个指标,3个显示k=4,2个显示k=2
四、VAR模型的脉冲响应函数
• 脉冲响应函数描述一个内生变量对误差冲 击的反应。具体地说,它描述的是在随机 误差项上施加一个标准差大小的冲击后对 内生变量的当期值和未来值所带来的影响。
• 只有稳定的VAR模型,脉冲响应函数才会 收敛,否则无意义。
• 在Eviews6里,点VAR方程窗口的 View/Impulse,再作各项选择,即可得到脉 冲响应函数图形。
• (5)无约束VAR模型的应用之一是预测。由于在VAR模型中每个方程的右侧 都不含有当期变量,这种模型用于样本外一期预测的优点是不必对解释变量 在预测期内的取值做任何预测。
• (6)用VAR模型做样本外近期预测非常准确。做样本外长期预测时,则只能 预测出变动的趋势,而对短期波动预测不理想。
VAR模型回归的Eviews实现
VAR模型的特点
• (1)不以严格的经济理论为依据。在建模过程中只需明确两件事:①共有哪 些变量是相互有关系的,把有关系的变量包括在VAR模型中;②确定滞后期k。 使模型能反映出变量间相互影响的绝大部分。
• (2)VAR模型对参数不施加零约束。(对无显着性的参数估计值并不从模型 中剔除,不分析回归参数的经济意义。)
: 得到VAR的代数式输出结果
滞后期选择结果
二、VAR模型的稳定性检验
• VAR模型稳定的充分与必要条件是1(见
(6.2) 式)的所有特征值都要在单位圆以内 (在以横轴为实数轴,纵轴为虚数轴的坐标体 系中,以原点为圆心,半径为1的圆称为单位 圆),或特征方程 1I 0 的根都要小于1。
• 或者,| I - 1L | = 0的根都在单位圆以外。| I – 1L| = 0在此称作相反的特征方程(reverse
用联立的形式,就可以建立起两个变量之 间的关系。
VAR模型的形式
• 以两个变量y1t,y2t滞后1期的VAR模型为例, VAR模型可表达为:
• y1t = c1 + 11.1 y1.t-1 + 12.1 y2,t-1 + u1t • y2t = c2 + 21.1 y1,t-1 + 22.1 y2,t-1 + u2t
特征根数值
特征根图形,在单位圆内,模型稳定
高阶VAR模型的稳定性检验
• 对于k>1的k阶VAR模型可以通过友矩阵变换 (companion form),改写成1阶分块矩阵的 VAR模型形式。然后利用其特征方程的根判别 稳定性。
• 对k阶VAR模型 Y t c 1 Y t 1 2 Y t 2 k Y t k u t
残差序列相关分析
• 因脉冲响应函数原理是误差项的冲击,误差项之 间可能存在交叉相关,一般处理脉冲响应函数时, 会作一个误差相关分析,实际操作中,只能利用 误差项的模拟序列-残差序列来进行分析。
• 点击VAR方程窗口中的Procs键,选Make Residuals(生成残差)功能,工作文件中就会 生成以resid01, resid02,…为编号的残差序列及 新窗口。
三、VAR模型滞后期k的选择
• 在VAR模型中适当加大k值(增加滞后变量 个数),可以消除误差项中存在的自相关。 但从另一方面看,k值又不宜过大。k值过 大会导致自由度减小,直接影响模型参数 估计量的有效性。
• Eviews软件给出五个确定最佳k值的指标, 并给出结论。
• 方法:在VAR模型估计结果窗口点击View 选 Lag Structrure/ Lag Lengyh Criteria 功 能,即可得到5个评价统计量的值。


Y t y y 1 2 t t ,c c c 1 2 , 1 1 2 ,,1 1 1 1 1 2 ,,1 1 2 2 ,Y t 1 y y 1 2 ,,t t 1 1 ,u t u u 1 2 t t
• 则有:Yt c 1Yt1ut (6.2)
• 打开工作文件,点击Quick键, 选Estimate VAR功能。作相应选项后,即可得到VAR 的表格式输出方式。在VAR模型估计结果 窗口点击View 选 representation功能可得 到VAR的代数式输出结果。
• 用VAR进行回归分析的关键是选择变量及 滞后阶数k。
在VAR模型估计结果窗口点击View 选 representation功能可
• (3)VAR模型的解释变量中不包括任何当期变量,所有与联立方程模型有关 的问题在VAR模型中都不存在(主要是参数估计量的非一致性问题)。
• (4)VAR模型的另一个特点是有相当多的参数需要估计。比如一个VAR模型 含有三个变量,最大滞后期k = 3,则有k N 2 = 3 32 = 27个参数需要估计。 当样本容量较小时,多数参数的估计量误差较大。

配上如下等式:
Y t1
Y t1
Yt2 Yt2
Y tk 1 Y tk 1
• 将这K个等式写成矩阵形式:


Yt Yt1
c 0
1
I
00
Ytk1
0 0
2 0 I 0
0
k1 0 0 I
kYt1 ut 0Yt2 0 0Yt 30 (6.4) 0Ytk 0
Y t Y t1
characteristic function)。此处L为滞后算
子。 Yt1 LYt
求VAR模型特征根的EViews 6.1操作
• 在VAR模型估计结果窗口点击View 选 Lag Structrure/AR Roots Table 功能,即可得到 VAR模型的全部特征根。若选Lag Structrure/ AR Roots Graph 功能,即可得 到单位圆曲线以及VAR模型全部特征根的 位置图。
11,j
j
21,j
N1,j
12,j 22,j
N2,j
1N,j
2N,j
,
j
1,2,,k
NN,j
对单一方程而言,每个方程的随机误差项独立不相关(时间序列上前 后不相关),但对模型而言,同方程的随机误差项存在相关性。
因VAR模型中每个方程的右侧只含有内生变量的滞后项,他们与ut是 渐近不相关的,所以可以用OLS法依次估计每一个方程,得到的参数 估计量都具有一致性。
金融市场计量经济学 第六讲
向量自回归模型(VAR)
• 对于经济活动中变量间关系如何确定,前面我们 学过了协整检验和Granger因果检验,如果变量 间互相有影响,VAR模型比较合适。
• 向量自回归模型(vector autoregressive model) 1980年由Sims提出。VAR模型采用多 方程联立的形式,不以经济理论为基础,在模型 的每一个方程中,内生变量对模型的全部内生变 量的滞后值进行回归,从而估计全部内生变量的 动态关系,并进行预测。
• 上式即为VAR模型的矩阵形式。
• 推广至N个变量滞后k期的VAR模型 ,有:
Y t c 1 Y t 1 2 Y t 2 k Y t k u t (6.3)
• (6.3)中,
Y t (y 1 t,y 2 t, y N )',t c ( c 1 ,c 2 , c N )'
ut (u1t,u2t,uN)t'
相关文档
最新文档