第八章 相关分析和回归分析

合集下载

统计学 第8章 相关与回归分析

统计学 第8章 相关与回归分析

2
-1 1 0 -1 -2 0 1 -2
4
1 1 0 1 4 0 1 4 20
6 * 20 r 1 2 1 0.8788 2 n(n 1) 10 * (10 1)
6 d 2
8.3
8.3.1 8.3.2 8.3.3 8.3.4 8.3.5
一元线性回归
一元线性回归模型 参数的最小二乘估计 回归直线的拟合优度 显著性检验 利用回归方程进行预测
共计
325
462 77
445 89
707 101
685 137
1043 149
E(Y|X) 65
Y
X=X1时Y 的分布
X=X2时Y 的分布 X=X3时Y 的分布
b0
X=X1时的E(Y)
b0+ b 1X
X=X2时的E(Y) X=X3时的E(Y)
X1=80
X2=100
X3=120
X
总体回归函数
(population regression function)
相关系数的显著性检验
(检验的步骤)
1. 检验两个变量之间是否存在线性相关关系 2. 利用样本的相关系数对总体相关系数进行 检验 3. 采用R.A.Fisher提出的 t 检验 4. 检验的步骤为



提出假设:H0: ;H1: 0
n2 计算检验的统计量: tr ~ t (n 2) 2 1 r 确定显著性水平,并作出决策
2
2
或化简为 r
n x x n y y
2 2 2
n xy x y
2
例 产品产量与单位成本相关系数
产 月 量 份 x 1 2 2 3 3 4 4 3 5 4 6 5 合 21 计 单位 成本 y 73 72 71 73 69 68

《应用统计学》第八章相关和回归分析

《应用统计学》第八章相关和回归分析

《应用统计学》第八章相关和回归分析相关和回归分析是统计学中常用的分析方法,用来研究变量之间的关系以及预测因变量的值。

本章将介绍相关和回归分析的原理和应用。

相关分析是研究两个或多个变量之间关系的统计方法。

通过计算相关系数来衡量变量之间的线性相关程度。

常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。

皮尔逊相关系数适用于两个连续变量的相关分析,而斯皮尔曼相关系数适用于两个有序变量的相关分析。

回归分析是研究因变量与自变量之间关系的统计方法。

通过建立回归模型来预测因变量的值。

回归模型可以是线性模型、非线性模型或者多元回归模型。

线性回归模型的表达式为Y=a+bX,其中Y为因变量,X为自变量,a和b为参数。

回归分析有两个主要目的,一是预测因变量的值,二是研究自变量对因变量的影响程度和方向。

常用的回归分析方法有简单线性回归分析、多元线性回归分析和逻辑回归分析等。

相关和回归分析在实际应用中有着广泛的应用。

在社会科学研究中,相关和回归分析可以用来研究变量之间的关系,如收入和教育水平的相关性。

在医学研究中,相关和回归分析可以用来探索疾病与一些特定因素之间的关系,如高血压和体重的相关性。

在商业领域中,相关和回归分析可以用来分析销售量与广告投资的关系,预测未来的销售量。

需要注意的是,相关和回归分析只是描述性分析方法,并不能确定因果关系。

除了变量之间的线性关系,还可能存在其他非线性的关系。

此外,相关和回归分析只能用于连续变量的分析,不能用于分类型变量的分析。

在进行相关和回归分析时,需要注意几个问题。

首先是样本的选择和数据的收集,确保样本具有代表性,并获得准确和可靠的数据。

其次是确保数据满足相关和回归分析的假设前提。

例如,线性回归模型要求因变量与自变量之间呈线性关系,并且误差项满足正态分布和独立性。

最后是正确选择和解释统计指标,如相关系数和回归系数。

总之,相关和回归分析是应用统计学中常用的分析方法,用来研究变量之间的关系和预测因变量的值。

第八章 相关分析与回归分析

第八章 相关分析与回归分析
第8章 回归分析
下一页
返回本节首页
19
③在数据区域中输入B2:C11,选择“系列产 生在—列”,如下图所示,单击“下一步” 按钮。
上一页
第8章 回归分析
下一页
返回本节首页
20
④打开“图例”页面,取消图例,省略标题,如 下图所示。
上一页
第8章 回归分析
下一页
返回本节首页
21
⑤单击“完成”按钮,便得到XY散点图如下图 所示。
n 8, x 36.4, x 207.54 , y 104214 y 880, . xy 4544 6
2 2
r
n xy x y n x2 x 2 n y2 y 2 8 4544 6 36.4 880 .
第8章 回归分析
40
(二)回归分析的种类: 1、按自变量 x 的多少,分为一元回归和多 元回归; 2、按 y 与 x 关系的形式,分为线性回归和 非线性回归。
第8章 回归分析
41
二、一元线性回归分析
x y 62 86 80 110 115 132 135 160
42
(一)一元线性回归方程:
2、非线性相关:当一个变量变动时, 另一个变量也相应发生变动,但这种变 动是不均等的。
第8章 回归分析
9
㈢根据相关关系的方向 1、正相关:两个变量间的变化方向一 致,都是增长趋势或下降趋势。 2、负相关:两个变量变化趋势相反。
上一页
第8章 回归分析
下一页
返回本节首页
10
(四)根据相关关系的程度 1、完全相关:两个变量之间呈函数关系 2、不相关:两个变量彼此互不影响,其 数量的变化各自独立

第八章 相关与回归分析

第八章 相关与回归分析

相关系数的特点:
相关系数的取值在-1与1之间。 相关系数的取值在之间。 =0时 表明X 没有线性相关关系。 当r=0时,表明X与Y没有线性相关关系。 表明X 当 时,表明X与Y存在一定的线性相关关 系; 表明X 为正相关; 若 表明X与Y 为正相关; 表明X 为负相关。 若 表明X与Y 为负相关。 表明X 完全线性相关; 当 时,表明X与Y完全线性相关; r=1, 完全正相关; 若r=1,称X与Y完全正相关; r=完全负相关。 若r=-1,称X与Y完全负相关
25 20 15 10 5 0 0 2 4 6 8 10 12
11.2 11 10.8 10.6 10.4 10.2 10 0 5 10
相关关系的类型
25
● 从变量相关关系变化的方向 方向看 方向 正相关——变量同方向变化 正相关 负相关——变量反方向变化 负相关 ● 从变量相关的程度看 完全相关 不完全相关 不相关
x
最小二乘法 ˆ ˆ (α 和 β 的计算公式)
根据最小二乘法, 根据最小二乘法,可得求解 和 的公式如下
最小二乘估计的性质 ——高斯 马尔可夫定理 高斯—马尔可夫定理 前提: 在基本假定满足时
最小二乘估计是因变量的线性函数 线性函数 最小二乘估计是无偏估计 无偏估计,即 无偏估计 在所有的线性无偏估计中,回归系数的最小二 乘估计的方差最小 方差最小。 方差最小
结论:
回归系数的最小二乘估计是最佳线性无偏估计 最佳线性无偏估计
四、简单线性回归模型的检验
回归模型的检验包括: 回归模型的检验包括: 理论意义检验: 理论意义检验:主要涉及参数估计值的符号和取 值区间,检验它们与实质性科学的理论以及人们 的实践经验是否相符。 一级检验: 一级检验:又称统计学检验,利用统计学的抽样 理论来检验样本回归方程的可靠性,具体分为拟 合优度检验和显著性检验。 二级检验: 二级检验:又称计量经济学检验,它是对标准线 性回归模型的假设条件是否满足进行检验,包括 自相关检验、异方差检验、多重共线性检验等。

相关分析和回归分析

相关分析和回归分析

即r (x x)( y y) 或r (x x)( y y)
n x y
(x x)2 ( y y)2
•协方差的意义
①显示x与y是正相关还是负相关 协方差为负,是负相关, 协方差为正,是正相关。 ②协方差显示x与y相关程度的大小 当相关点在四个象限呈散乱的分布,相关程度很低 当相关点分布在x与y的平均值线上时,表示不相关 当相关点靠近一直线,表示相关关系密切 当相关点全部落在一直线,表示完全相关
2、相关图被形象地称为相关散点图 3、因素标志分了组,结果标志表现为组平均数,
所绘制的相关图就是一条折线,这种折线又叫 相关曲线。
三、相关系数的计算:
1、符号系数:把两个同平均值的离差数列做对称 比较。
①如果一个数列的离差与另一个数列的离差有很 多同号,就可以认为这两标志之间存在正相关。
②如果大多数为异号,就可以认为他们之间存在 负相关。
.............b

xx x
y x

2
y


xy

1 n

x
y

x2

1 n

x2
当出现权数时:
方程为:a f b xf yf ................a xf b x2 f xyf
解得:a y bx
•相关系数的r的推导公式:
r
n xy x y
n x2 x2 n y2 y2
r
xy nxy
(
x2

2
nx )
y2

2
ny
r
xy x y

统计学原理第八章相关与回归分析

统计学原理第八章相关与回归分析
相关分析的内容 1.判断现象之间是否存在相关关系; 2.如果存在相关关系,则要进一步判断相
关关系的种类和关系的紧密程度; 3.对相关系数进行显著性检验。
回归分析的内容
• 1. 建立反映变量间依存关系的数学模型 即回归方程;
• 2.对回归方程进行显著性检验; • 3.用回归过程进行预测。
回归分析和相关分析的主要区别
4.相关系数的绝对值越接近于1,表示相关 程度越强;越接近于0,表示相关程度越 弱。具体标准为:
R 的绝对值:0.3以下 微弱相关;
0.3-0.5 低度相关;
0.5-0.8 显著相关;
0.8以上 高度相关。
以上结论必须建立在对相关系数的显著性 检验基础之上。
三、相关系数的显著性检验
显著性检验的具体步骤:
资料:
销售量 500
(公斤)
价格 10
(元)
相关表

700 9
900 7
600 9
1000 800 89
1200 6
销售量 500
(公斤)
价格 10
(元)
600 9
700 9
800 9
900 7
1000 8
1200 6
相关图(散点图)
完全正线性相关
正线性相关
完全负线性相关
负线性相关
非线性相关
一、一元线性回归方程
❖ 只涉及一个自变量的回归
❖ 因变量y与自变量x之间为线性关系
➢ 被预测或被解释的变量称为因变量,用y表示
➢ 用来预测或用来解释因变量的一个或多个变量称为
自变量,用x表示
❖ 因变量与自变量之间的关系用一个线性方 程来表示
一元线性回归模型
❖ 一元线性回归模型可表示为

第八章 相关分析与回归分析习题答案

第八章 相关分析与回归分析习题答案

第八章 相关分析与回归分析习题参考答案一、名词解释函数关系:函数关系亦称确定性关系,是指变量(现象)之间存在的严格确定的依存关系。

在这种关系中,当一个或几个相互联系的变量取一定的数值时,必定有另一个且只有一个变量有确定的值与之对应。

相关关系:是指变量(现象)之间存在着非严格、不确定的依存关系。

在这种关系中,当一个或几个相互联系的变量取一定的数值时,可以有另一变量的若干数值与之相对应。

这种关系不能用完全确定的函数来表示。

相关分析:相关分析主要是研究两个或者两个以上随机变量之间相互依存关系的方向和密切程度的方法,直线相关用相关系数表示,曲线相关用相关指数表示,多元相关用复相关系数表示。

回归分析:回归分析是研究某一随机变量关于另一个(或多个)非随机变量之间数量关系变动趋势的方法。

其目的在于根据已知非随机变量来估计和预测随机变量的总体均值。

单相关:单相关是指仅涉及两个变量的相关关系。

复相关:复相关是指一个变量对两个或者两个以上其他变量的相关关系。

正相关:正相关是指两个变量的变化方向是一致的,当一个变量的值增加(或减少)时,另一变量的值也随之增加(或减少)。

负相关:负相关是指两个变量的变化方向相反,即当一个变量的值增加(或减少)时,另一个变量的值会随之减少(或增加)。

线性相关:如果相关的两个变量对应值在直角坐标系中的散点图近似呈一条直线,则称为线性相关。

非线性相关:如果相关的两个变量对应值在直角坐标系中的散点图近似呈现出某种曲线形式,则为非线性相关。

相关系数:相关系数是衡量变量之间线性相关密切程度及相关方向的统计分析指标。

取值在-1到1之间。

两个变量之间的简单样本相关系数的计算公式为:()()niix x y y r --∑二、单项选择1.B;2.D;3.D;4.C;5.A;6.D 。

三、判断题(正确的打“√”,错误的打“×”) 1.×; 2.×; 3.√; 4.×; 5.×; 6.×; 7.×; 8.√. 四、简答题1、什么是相关关系?相关关系与函数关系有什么区别?答:相关关系,是指变量(现象)之间存在着非严格、不确定的依存关系。

第8章 相关与回归分析

第8章 相关与回归分析

4、在相关关系中,变量之间是平等关系,不存在自变量和因变量。 、在相关关系中,变量之间是平等关系,不存在自变量和因变量。
而在回归分析中必须明确划分自变量和因变量。 而在回归分析中必须明确划分自变量和因变量。
8-9
统计学
STATISTICS
8.2 简单线性相关与回归分析
8 - 10
STATISTICS
8-5
统计学
STATISTICS
(三)从变量相关关系变化的方向看 从变量相关关系变化的方向看 变化的方向 正相关: A 正相关:变量同方向变化 , 即同增同减 (A) 同增同减 负相关:变量反方向变化, 负相关:变量反方向变化, 即一增一减 (B) B 一增一减 从变量相关的程度 相关的程度看 (四)从变量相关的程度看
完全相关 (B) 不完全相关 (A) 不相关 (C)
8-6
25 20 15 10 5 0 0 2 4 6 8 10 12
25 20 15 10 5 0 0 2 4 6 8 10 12
C
35 30 25 20 15 10 5 0 0 5 10 15
统计学
STATISTICS
三、回归分析
回归一词的由来: 回归一词的由来:
8 - 13
见第218页例题 页例题 见第 页例
统计学
STATISTICS
相关系数的特点: 相关系数的特点:
1、r 的取值范围是 − 1 ≤ r ≤ 1 。 、 2、r<0时,β<0 为负相关;r>0时, β>0 为正相关。 为负相关; 为正相关。 、 时 时 3、|r|=1,为完全相关。r =1,为完全正相关;r = -1, 、 ,为完全相关。 ,为完全正相关; , 为完全负正相关。 为完全负正相关。 4、r = 0,不存在线性相关。 、 线性相关。 ,不存在线性相关 5、|r|越趋于 表示两变量线性关系越密切;|r|越趋于 、 越趋于 表示两变量线性关系越密切; 越趋于 越趋于1表示两变量线性关系越密切 越趋于0 表示两变量线性关系越不密切。 表示两变量线性关系越不密切。 线性关系越不密切 6、r是一个随机变量。 、 是一个随机变量 是一个随机变量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元线性回归模型
多元线性回归方程: y=β0+β1x1+β2x2+...+βkxk

β1、β2、βk为偏回归系数。 β1表示在其他自变量保持不变的情况下,自变量x1变动 一个单位所引起的因变量y的平均变动。
对于多元线性回归方程:
R
2
R2
SSE 1 SST SSE/ n p 1 1 SST / n 1
偏相关系数的取值范围及大小含义与相关系数相同。
• 第二,对样本来自的两总体是否存在显著的净相关进 •
行推断 检验统计量为:
nq2 tr 1 r2
其中,r为偏相关系数,n为样本数,q为阶数。 T统计量服从n-q-2个自由度的t分布。
8.3.2 偏相关分析的基本操作
1.选择菜单Analyze-Correlate-Partial
(4)Model fit:SPSS默认输出项,输出判定系 数、调整的判定系数、回归方程的标准误差、回 归方程显著F检验的方程分析表。 (5)R squared change:输出每个解释变量进 入方程后引起的判定系数的变化量和F值的变化 量。 (6)Part and partial correlation:输出方程中 各解释变量与被解释变量之间的简单相关、偏相 关系数。
Toli 1 Ri
Ri 是第i个解释变量与方程中其他解释变量间的复 其中,
2
相关系数的平方,表示解释变量之间的线性相关程度。容忍 度的取值范围在0-1之间,越接近0表示多重共线性越强,越 接近1表示多重共线性越弱。 2、方差膨胀因子VIF。方差膨胀因子是容忍度的倒数。VIF越 大多重共线性越强,当VIF大于等于10时,说明存在严重的 多重共线性。
• 8.4.3.4残差分析
残差是指由回归方程计算得到的预测值与实际样本值之间 的差距,定义为:
ˆi yi பைடு நூலகம் (0 1x1 2 x2 ... p x p ) ei yi y
对于线性回归分析来讲,如果方程能够较好的反映被解 释变量的特征和规律性,那么残差序列中应不包含明显的规 律性。残差分析包括以下内容:残差服从正态分布,其平均 值等于0;残差取值与X的取值无关;残差不存在自相关;残 差方差相等。
2 ( e e ) t t 1 t 2
et
t 2
n
2(1 )
2
DW=2表示无自相关,在0-2之间说明存在正自相关, 在2-4之间说明存在负的自相关。一般情况下,DW值在 1.5-2.5之间即可说明无自相关现象。
• 8.4.3.5多重共线性分析
多重共线性是指解释变量之间存在线性相关关系的现象 。测度多重共线性一般有以下方式: 2 1、容忍度:
• 偏相关分析也称净相关分析,它在控制其他变量的
线性影响的条件下分析两变量间的线性关系,所采 用的工具是偏相关系数。 • 控制变量个数为1时,偏相关系数称一阶偏相关; 当控制两个变量时,偏相关系数称为二阶偏相关; 当控制变量的个数为0时,偏相关系数称为零阶偏 相关,也就是简单相关系数。
利用偏相关系数进行分析的步骤
• 第一,计算样本的偏相关系数
假设有三个变量y、x1和x2,在分析x1和y之间的净 相关时,当控制了x2的线性作用后,x1和y之间的一阶偏 相关定义为:
ry1,2 ry1 ry 2 r12
2 (1 ry22 )(1 r12 )
其中,ry1、ry 2、r12分别表示y和x1的相关系数、y和x 2的相关系数、 x1和x 2的相关系数。
注:多元回归分析中,变量的筛选一般有向前筛选、向后筛 选、逐步筛选三种基本策略。 • 向前筛选( Forward )策略:解释变量不断进入回归方程 的过程。首先,选择与被解释变量具有最高线性相关系数 的变量进入方程,并进行回归方程的各种检验;然后,在 剩余的变量中寻找与被解释变量偏相关系数最高且通过检 验的变量进入回归方程,并对新建立的回归方程进行各种 检验;这个过程一直重复,直到再也没有可进入方程的变 量为止。 • 向后筛选( Backward )策略:变量不断剔除出回归方程 的过程。首先,所有变量全部引入回归方程,并对回归方 程进行各种检验;然后,在回归系数显著性检验不显著的 一个或多个变量中,剔除t检验值最小的变量,并重新建立
4、Save选项,该窗口将回归分析的某些结果以SPSS变量 的形式保存到数据编辑窗口中,并可同时生成XML格式的 文件,便于分析结果的网络发布。 (1)Predicted Values框中:保存非标准化预测值、标 准化预测值、调整的预测值和预测值的均值标准误差。 (2)Distance框中:保存均值或个体预测值95%(默认) 置信区间的下限值和上限值。 (3)Residual框中:保存非标准化残差、标准化残差等。 (4)Influence Statistics框中:保存剔除第i个样本后统 计量的变化量。 5、WSL选项,采用加权最小二乘法替代普通最小二乘法估计 回归参数,并指定一个变量作为权重变量。
8.4.4 线性回归分析的其他操作 1、Statistics按钮,出现的窗口可供用户选择更多 的输出统计量。
(1)Estimates:SPSS默认输出项,输出与回归 系数相关的统计量。包括回归系数(偏回归系数 )、回归系数标准误差、标准化回归系数、回归 系数显著性检验的t统计量和概率p值,各解释变 量的容忍度。 (2)Confidence Intervals:输出每个非标准化 回归系数95%的置信区间。 (3)Descriptive:输出各解释变量和被解释变量 的均值、标准差、相关系数矩阵及单侧检验概率 p值。
8.4 线性回归分析
8.4.1线性回归分析概述 • 线性回归分析的内容 能否找到一个线性组合来说明一组自变量和因变量的关 系 如果能的话,这种关系的强度有多大,也就是利用自变 量的线性组合来预测因变量的能力有多强 整体解释能力是否具有统计上的显著性意义 在整体解释能力显著的情况下,哪些自变量有显著意义 • 回归分析的一般步骤 确定回归方程中的解释变量(自变量)和被解释变量( 因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
1、对于残差均值和方差齐性检验可以利用残差图进行分析。如 果残差均值为零,残差图的点应该在纵坐标为0的中心的带状 区域中随机散落。如果残差的方差随着解释变量值(或被解 释变量值)的增加呈有规律的变化趋势,则出现了异方差现 象。 2、DW检验。 DW检验用来检验残差的自相关。检验统计量为 : n
DW
(7)Covariance matrix:输出方程中各解释变量 间的相关系数、协方差以及各回归系数的方差。 (8)Collinearity Diagnostics:多重共线性分析 ,输出各个解释变量的容忍度、方差膨胀因子、特 征值、条件指标、方差比例等。 (9)在Residual框中:Durbin-waston表示输出 DW检验值;Casewise Diagnostic表示输出 标准化残差绝对值大于等于3(SPSS默认值)的 样本数据的相关信息,包括预测值、残差、杠杆值 等。
2、Options选项,出现的窗口可供用户设置多元 线性回归分析中解释变量筛选的标准以及缺失值 的处理方式。 3、Plot选项,出现的窗口用于对残差序列的分析 。
(1)窗口左边框中各变量名的含义是:DEPENDNT表示 被解释变量,*ZPRED表示标准化预测值,*ZRESID 表示标准化残差,*DRESID表示剔除残差, *ADJPRED表示调整的预测值,*SRESID表示学生化 残差,*SDRESID表示剔除学生化残差。 (2)绘制多对变量的散点图,可根据需要在scatter框中 定义散点图的纵坐标和横坐标变量。 (3)在Standardized Residual Plots框中选择 Histogram选项绘制标准化残差序列的直方图;选择 Normal probability plot绘制标准化残差序列的正态 分布累计概率图。选择Produce all partial plots选 项表示依次绘制被解释变量和各个解释变量的散点图。
第八章
SPSS相关分析与回归分析
8.2.4 相关分析应用举例 为研究高等院校人文社会科学研究中立项课 题数会受哪些因素的影响,收集1999年31个省 市自治区部分高校有关社科研究方面的数据,研 究立项课题数(当年)与投入的具有高级职称的 人年数(当年)、发表的论文数(上年)之间是 否具有较强的线性关系。
回归方程和进行各种检验;如果新建回归方程中所有变量 的回归系数检验都显著,则回归方程建立结束。否则按上 述方法再一次剔除最不显著的变量,直到再也没有可剔除 的变量为止。 • 逐步筛选( Stepwise )策略:在向前筛选策略的基础上 结合向后筛选策略,在每个变量进入方程后再次判断是否 存在应该剔除出方程的变量。因此,逐步筛选策略在引入 变量的每一个阶段都提供了再剔除不显著变量的机会。
8.3 偏相关分析
• 8.3.1 偏相关分析和偏相关系数
上节中的相关系数是研究两变量间线性 相关性的,若还存在其他因素影响,就相关 系数本身来讲,它未必是两变量间线性相关 强弱的真实体现,往往有夸大的趋势。 例如,在研究商品的需求量和价格、消 费者收入之间的线性关系时,需求量和价格 之间的相关关系实际还包含了消费者收入对 价格和商品需求量的影响。在这种情况下, 单纯利用相关系数来评价变量间的相关性显 然是不准确的,而需要在剔除其他相关因素 影响的条件下计算变量间的相关。偏相关的 意义就在于此。
(5)第三和第四步中确定的解释变量及变量筛选策略可放 置在不同的块(Block)中。通常在回归分析中不止一组 待进入方程的解释变量和相应的筛选策略,可以单击 Next和Previous按钮设置多组解释变量和变量筛选策 略并放置在不同的块中。 (6)选择一个变量作为条件变量放到Selection Variable框中,并单击Rule按钮给定一个判断条件。只 有变量值满足判定条件的样本才参与线性回归分析。 (7)在Case Labels框中指定哪个变量作为样本数据点 的标志变量,该变量的值将标在回归分析的输出图形中。
相关文档
最新文档