等比数列的性质及应用教案.
高中数学《等比数列的概念和通项公式》教案

高中数学《等比数列的概念和通项公式》教案一、教学目标1. 让学生理解等比数列的概念,掌握等比数列的性质。
2. 引导学生掌握等比数列的通项公式,并能运用通项公式解决实际问题。
3. 培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。
二、教学内容1. 等比数列的概念2. 等比数列的性质3. 等比数列的通项公式4. 等比数列的求和公式5. 运用通项公式解决实际问题三、教学重点与难点1. 教学重点:等比数列的概念、性质、通项公式及其应用。
2. 教学难点:等比数列通项公式的推导和运用。
四、教学方法1. 采用问题驱动法,引导学生主动探究等比数列的性质和通项公式。
2. 利用多媒体课件,生动展示等比数列的图形和性质,提高学生的直观认识。
3. 结合例题,讲解等比数列通项公式的应用,培养学生解决问题的能力。
4. 开展小组讨论,促进学生之间的交流与合作,提高学生的团队意识。
五、教学过程1. 引入新课:通过讲解现实生活中的例子,引出等比数列的概念。
2. 讲解等比数列的性质:引导学生发现等比数列的规律,总结等比数列的性质。
3. 推导等比数列的通项公式:引导学生利用已知的数列性质,推导出通项公式。
4. 讲解等比数列的求和公式:结合通项公式,讲解等比数列的求和公式。
5. 运用通项公式解决实际问题:选取典型例题,讲解等比数列通项公式的应用。
6. 课堂练习:布置适量习题,巩固所学知识。
7. 总结与反思:引导学生总结本节课所学内容,反思自己的学习过程。
8. 课后作业:布置课后作业,巩固所学知识,提高学生的应用能力。
9. 教学评价:对学生的学习情况进行评价,了解学生对等比数列知识的掌握程度。
10. 教学反思:总结本节课的教学效果,针对存在的问题,调整教学策略。
六、教学策略1. 案例分析:通过分析具体的等比数列案例,让学生深刻理解等比数列的概念和性质。
2. 互动教学:鼓励学生积极参与课堂讨论,提问引导学生思考,增强课堂的互动性。
高中数学选择性必修二 4 3 1(第2课时)等比数列的性质及应用 教案

重点
等比数列的性质、等比数列的应用
难点
等比数列的运算、等比数列的性质及应用
教学过程
教学环节
教师活动
学生活动
设计意图
导入新课
温故知新
等比数列
等差数列
定义
公比(公差)
q不可以是0
d可以是0
等比(差)中项
等比中项
等差中项 2A=a+b
等比数列的性质及应用教学设计
课题
等比数列的性质及应用
单元
第一单元
学科
数学
年级
高二
教材分析
《等比数列》是人教A版数学选择性必修第二册第四章的内容。本节是数列这一章的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中蕴涵的类比、化归、分类讨论、整体变换和方程思想方法,都是学生今后学习和工作中必备的数学素养。
分析:复利是把前一期的利息与本金之和算作本金,再计算下一期的利息,所以若原始本金为a元,每期的利率为r,则从第一期开始,各期的本利和 构成等比数列.
解:(1)设这笔钱存n个月以后的本利和组成一个数列 ,则 是等比数列,
首项 ,
公比q=1+0.400%,所以
所以,
12个月后的利息为 (元)
(2)设季度利率为r,这笔钱存n个季度以后的本金和组成一个数列 ,则 也是一个等比数列,首项 ,公比为1+r,于是
因此,以季度复利计息,存4个季度后的利息为 元.
解不等式 ,得
所以,当季度利率不小于1.206%时,按季结算的利息不少于按月结算的利息.
例5已知数列Байду номын сангаас的首项 .
数学教案:探索等比数列的性质和应用

数学教案:探索等比数列的性质和应用一、引言:等比数列在数学中的重要性和应用实际意义等比数列是数学中的重要概念之一,它在解决许多实际问题时发挥着关键作用。
本教案旨在帮助学生探索等比数列的性质和应用,培养他们对数学思维的发展和解决问题的能力。
通过深入理解等比数列的定义、性质和模式,我们将进一步巩固基础知识,并扩展应用场景。
二、了解等比数列:定义、常见形式和例题分析1. 等比数列的定义:等比数列指的是一个序列,在这个序列中,每一个数字都是前一个数字乘以相同的非零常数所得到的。
换句话说,如果我们把这个常数称为公比,那么在等比数列中任何两个连续项之间都有着相同的乘积关系。
2. 常见形式:通常以$a$作为第一项,在等比数列中第$n$项可以表示为$a \cdot r^{(n-1)}$,其中$r$代表公比。
3. 例题分析:- 已知一个等差数列前五项依次为2, 6, 18, 54, 162,求公比$r$和第十项。
- 解:我们可以观察到每一项都是前一项乘以3的关系。
通过列写方程$a_n = a \cdot r^{(n-1)}$,我们可以得到关于公比$r$的方程 2 = $a \cdot r^{(5-1)}$ 和 6 =$a \cdot r^{(10-1)}$。
通过解这两个方程组,可以求得公比$r=3$和第十项$a_{10}=1458$。
三、等比数列的性质及证明1. 等比数列的常见性质:- 第$n$项$a_n = a \cdot r^{(n-1)}$- 前$n$项和$S_n = a \times \frac{{r^n-1}}{{r-1}}$- 等差数列的乘积等于首尾两项之差的平方减一,即$a_m\cdota_n=a_{m+n}\cdot a_{m-n}-1$2. 性质证明示例:- 证明前$n$项和公式:要证明等比数列前$n$项和的公式,我们可以采用归纳法进行推导。
首先验证对于$n=1$时结论成立,然后假设对于任意$k<n$结论也成立。
等比数列性质教学教案

等比数列性质教学教案一、教学目标:1. 理解等比数列的概念。
2. 掌握等比数列的性质。
3. 学会运用等比数列的性质解决问题。
二、教学内容:1. 等比数列的概念。
2. 等比数列的性质。
3. 等比数列的通项公式。
4. 等比数列的前n项和公式。
5. 等比数列的应用。
三、教学重点:1. 等比数列的概念及性质。
2. 等比数列的通项公式和前n项和公式。
四、教学难点:1. 等比数列的性质的理解和应用。
2. 等比数列的通项公式和前n项和公式的推导。
五、教学方法:1. 讲授法:讲解等比数列的概念、性质、通项公式和前n项和公式。
2. 案例分析法:分析等比数列的应用实例。
3. 练习法:让学生通过练习题巩固所学知识。
六、教学过程:1. 引入:通过生活中的实例,引导学生思考等比数列的概念。
2. 讲解:讲解等比数列的概念、性质、通项公式和前n项和公式。
3. 案例分析:分析等比数列的应用实例,让学生理解等比数列的实际意义。
4. 练习:让学生通过练习题,巩固所学知识。
5. 总结:对本节课的内容进行总结,强调等比数列的性质和应用。
七、课后作业:1. 等比数列的概念和性质的复习。
2. 等比数列的通项公式和前n项和公式的应用。
八、教学评价:1. 课堂讲解的清晰度和准确性。
2. 学生对等比数列的概念和性质的理解程度。
3. 学生对等比数列的通项公式和前n项和公式的掌握程度。
九、教学反思:在课后,教师应反思本节课的教学效果,是否达到了教学目标,学生是否掌握了等比数列的概念和性质,以及教学过程中是否存在需要改进的地方。
十、教学拓展:1. 等比数列在实际生活中的应用。
2. 等比数列与其他数列的关系。
3. 等比数列的进一步研究。
六、教学策略:1. 采用互动式教学,鼓励学生积极参与讨论,提高学生的思维能力。
2. 通过数学软件或教具展示等比数列的性质,增强学生的直观理解。
3. 设计具有梯度的练习题,让学生在练习中不断深化对等比数列性质的理解。
七、教学准备:1. 准备等比数列的相关教学素材,如PPT、教学案例、练习题等。
等比数列的性质与应用教学备课

等比数列的性质与应用教学备课一、引言在数学中,数列是一个非常重要的概念,而等比数列是其中一种特殊的数列。
等比数列具有独特的性质和广泛的应用,因此在教学中备课时,我们需要全面了解等比数列的性质,并掌握其应用方法。
本文将针对等比数列的性质和应用进行教学备课。
二、等比数列的定义与性质1. 等比数列的定义:等比数列是指数列中任意两项的比例都相等的数列。
如果一个数列的任意两项之间的比例都相等,那么这个数列就是等比数列。
2. 等比数列的通项公式:等比数列的通项公式可以表示为:an = a1 * q^(n-1),其中an表示等比数列的第n项,a1表示首项,q表示公比。
3. 等比数列的公比和首项的关系:公比q是等比数列中任意两项之间的比值,即q = an / a(n-1) =a(n+1) / an-1。
通过公式的转换,我们可以得到公比和首项之间的关系:q = (an)^(1/n)。
4. 等比数列的前n项和:等比数列的前n项和可以表示为Sn = a1 * (1 - q^n) / (1 - q),其中Sn表示前n项和。
三、等比数列的教学应用1. 等比数列在几何图形中的应用:等比数列可以用于描述几何图形中的一些特殊性质。
例如,在正多边形中,每条边的长度可以构成一个等比数列。
在绘制正多边形的过程中,学生可以通过等比数列的概念,计算出每一条边的长度,从而完成几何图形的绘制。
2. 等比数列在利润计算中的应用:在经济学中,等比数列可以用于计算利润的增长情况。
假设某公司的利润年增长率为10%,那么每年的利润可以构成一个等比数列。
通过利用等比数列的性质,我们可以根据首年的利润和公比,计算出未来多年的利润情况,为企业的发展提供参考依据。
3. 等比数列在科学实验中的应用:在科学实验中,等比数列可以用于描述某种物质的增长或变化规律。
例如,在细胞分裂的过程中,每次分裂细胞的数量可以构成一个等比数列。
通过等比数列的性质,我们可以计算出每一次分裂后细胞的数量,从而推断出整个分裂过程的变化趋势。
等比数列教案

等比数列教案一、教学目标1.理解等比数列的概念和性质;2.掌握等比数列的通项公式和求和公式;3.能够应用等比数列解决实际问题。
二、教学重点1.等比数列的概念和性质;2.等比数列的通项公式和求和公式。
三、教学难点1.等比数列的求和公式的推导;2.应用等比数列解决实际问题。
四、教学过程1. 导入教师可以通过提问的方式引入等比数列的概念,例如:“小明在银行存款,每年利率为5%,如果他连续存5年,每年的利息都加到本金里,最后一共有多少钱?”通过这个问题,引导学生思考连续增长的情况,从而引出等比数列的概念。
2. 概念讲解等比数列是指一个数列中,从第二项开始,每一项都是前一项乘以同一个常数的结果。
这个常数称为公比,通常用字母q表示。
例如,1,2,4,8,16就是一个等比数列,公比为2。
3. 性质讲解等比数列有以下性质:1.任意一项与它的前一项的比值都相等,即an/an-1=q;2.任意一项与它的后一项的比值都相等,即an/an+1=q;3.等比数列的前n项和为a1(1-qn)/(1-q)。
4. 公式推导4.1 通项公式设等比数列的首项为a1,公比为q,第n项为an,则有:an=a1qn-1这个公式可以通过数学归纳法证明。
4.2 求和公式设等比数列的首项为a1,公比为q,前n项和为Sn,则有:Sn=a1(1-qn)/(1-q)这个公式可以通过以下方法推导:设Sn=a1+a2+…+an,则有:qSn=a1q+a2q+…+anq两式相减得:Sn-qSn=a1(1-qn)-an+1因为an+1=a1qn,所以有:Sn(1-q)=a1(1-qn)即:Sn=a1(1-qn)/(1-q)5. 应用实例教师可以通过一些实际问题,如利息计算、人口增长等,引导学生应用等比数列解决问题。
五、教学总结通过本节课的学习,学生应该掌握等比数列的概念和性质,能够使用等比数列的通项公式和求和公式解决实际问题。
同时,教师应该引导学生思考,培养学生的数学思维能力和解决问题的能力。
等比数列性质教学教案

等比数列性质教学教案第一章:等比数列的定义与性质1.1 等比数列的定义引导学生回顾数列的概念,引入等比数列的定义。
通过示例,让学生理解等比数列的特点,即相邻两项的比值相等。
1.2 等比数列的性质探讨等比数列的通项公式,引导学生理解通项公式的推导过程。
引导学生理解等比数列的求和公式,并通过示例进行解释。
第二章:等比数列的求和2.1 等比数列的前n项和公式引导学生推导等比数列的前n项和公式。
通过示例,让学生理解前n项和公式的应用,并能够熟练运用。
2.2 等比数列的求和性质引导学生探讨等比数列的求和性质,例如:等比数列的求和与项数的关系,等比数列的求和与首项和公比的关系等。
第三章:等比数列的图像与性质3.1 等比数列的图像引导学生绘制等比数列的图像,并理解图像的特点。
引导学生通过图像分析等比数列的性质,例如:增长速度,收敛性等。
3.2 等比数列的性质与应用引导学生探讨等比数列的性质,例如:等比数列的单调性,有界性等。
引导学生运用等比数列的性质解决实际问题,例如:人口增长模型,利息计算等。
第四章:等比数列的扩展4.1 等比数列的推广引导学生思考等比数列的推广,例如:等比数列的变体,广义等比数列等。
引导学生理解广义等比数列的性质与应用。
4.2 等比数列与其他数列的关系引导学生探讨等比数列与其他数列的关系,例如:等差数列与等比数列的关系,斐波那契数列与等比数列的关系等。
第五章:等比数列的综合应用5.1 等比数列在数学中的应用引导学生探讨等比数列在数学中的应用,例如:数论中的等比数列,图论中的等比数列等。
引导学生通过解决数学问题,加深对等比数列的理解。
5.2 等比数列在其他学科中的应用引导学生探讨等比数列在其他学科中的应用,例如:物理学中的等比数列,经济学中的等比数列等。
引导学生通过解决实际问题,理解等比数列的实际意义。
第六章:等比数列的练习题解析6.1 基础练习题解析选取一些基础的等比数列练习题,引导学生运用所学的知识进行解答。
高中数学等比数列教案

高中数学等比数列教案
一、教学目标:
1. 掌握等比数列的定义及判断方法;
2. 掌握等比数列的通项公式及前 n 项和公式;
3. 能够灵活应用等比数列解决实际问题。
二、教学重点:
1. 等比数列的定义及判断方法;
2. 等比数列的通项公式及前 n 项和公式。
三、教学难点:
1. 灵活运用等比数列解决复杂问题;
2. 培养学生数学思维和逻辑推理能力。
四、教学内容:
1. 等比数列的定义及性质;
2. 等比数列通项公式及前 n 项和公式的推导;
3. 等比数列的应用实例。
五、教学过程:
1. 引入:通过生活中的实例引入等比数列的概念,让学生了解等比数列的特点和应用场景。
2. 学习等比数列的性质和判断方法,让学生能够判断一个数列是否为等比数列。
3. 学习等比数列的通项公式及前 n 项和公式的推导,让学生掌握这两个公式的用法和计算
方法。
4. 练习与巩固:让学生通过练习题巩固所学知识,培养他们的解题能力和推理思维。
5. 应用实例:通过一些实际问题,让学生运用等比数列解决实际问题,培养他们的数学建
模能力。
六、作业布置:
1. 课后练习:布置一些等比数列相关的习题,巩固学生所学知识。
2. 探究性问题:布置一些拓展性问题,让学生能够进一步应用所学知识解决问题。
七、课堂反馈:
1. 通过课堂讨论和作业批改,及时纠正学生的错误,加深他们对等比数列的理解和掌握。
八、教学总结:
1. 总结本节课所学知识,梳理等比数列的性质和应用场景,巩固学生的学习成果。
2. 展望下一节课内容,引导学生进行自主学习和提前预习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、教学目标:1.知识与技能:理解并掌握等比数列的性质并且能够初步应用。
2.过程与方法:通过观察、类比、猜测等推理方法,提高我们分析、综合、抽象、概括等逻辑思维能力。
3.情感态度价值观:体会类比在研究新事物中的作用,了解知识间存在的共同规律。
二、重点:等比数列的性质及其应用。
难点:等比数列的性质应用。
三、教学过程。
同学们,我们已经学习了等差数列,又学习了等比数列的基础知识,今天我们继续学习等比数列的性质及应用。
我给大家发了导学稿,让大家做了预习,现在找同学对照下面的表格说说等差数列和等比数列的差别。
数列名称等差数列等比数列定义一个数列,若从第二项起每一项减去前一项之差都是同一个常数,则这个数列是等差数列。
一个数列,若从第二项起每一项与前一项之比都是同一个非零常数,则这个数列是等比数列。
定义表达式 an-an-1=d (n≥2(q≠0通项公式证明过程及方法an-an-1=d; an-1-an-2=d,…a2-a1=dan-an-1+ an-1-an-2+…+a2-a1=(n-1dan=a1+(n-1*d累加法 ; …….an=a1q n-1累乘法通项公式 an=a1+(n-1*d an=a1q n-1多媒体投影(总结规律数列名称等差数列等比数列定义等比数列用“比”代替了等差数列中的“差”定义表达式 an-an-1=d (n≥2通项公式证明迭加法迭乘法通项公式加-乘乘—乘方通过观察,同学们发现:? 等差数列中的减法、加法、乘法,等比数列中升级为除法、乘法、乘方.四、探究活动。
探究活动1:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习1;等差数列的性质1;猜想等比数列的性质1;性质证明。
练习 1 在等差数列{an}中,a2= -2,d=2,求a4=_____..(用一个公式计算解:a4= a2+(n-2d=-2+(4-2*2=2等差数列的性质1: 在等差数列{an}中, a n=am+(n-md.猜想等比数列的性质1 若{an}是公比为q的等比数列,则an=am*qn-m性质证明右边= am*qn-m= a1qm-1qn-m= a1qn-1=an=左边应用在等比数列{an}中,a2= -2 ,q=2,求a4=_____. 解:a4= a2q4-2=-2*22=-8探究活动2:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习2;等差数列的性质2;猜想等比数列的性质2;性质证明。
练习 2 在等差数列{an}中,a3+a4+a5+a6+a7=450,则a2+a8的值为.解:a3+a4+a5+a6+a7=(a3+ a7+(a4+ a6+ a5= 2a5+2a5+a5=5 a5=450 a5=90a2+a8=2×90=180等差数列的性质2: 在等差数列{an}中, 若m+n=p+q,则am+an=ap+aq 特别的,当m=n时,2 an=ap+aq猜想等比数列的性质 2 在等比数列{an} 中,若m+n=s+t则am*an=as*at 特别的,当m=n 时,an2=ap*aq性质证明右边=am*an= a1qm-1 a1qn-1= a12qm+n-1= a12qs+t-1=a1qs-1 a1qt-1= as*at=左边证明的方向:一般来说,由繁到简应用在等比数列{an}若an&0,a2a4+2a3a5+a4a6=36,则a3+a5=_____.解:a2a4+2a3a5+a4a6= a32+2a3a5+a52=(a3+a52=36由于an&0,a3+a5&0,a3+a5=6探究活动3:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习3;等差数列的性质3;猜想等比数列的性质3;性质证明。
练习3 在等差数列{an}中,a30=10,a45=90,a60=_____. 解:a60=2* a45-a30=2×90-10=170等差数列的性质3: 若an-k,an,an+k是等差数列{an}中的三项, 则这些项构成新的等差数列,且2an=an-k+an+kan即时an-k,an,an+k的等差中项猜想等比数列的性质3 若an-k,an,an+k是等比数列{an}中的三项,则这些项构成新的等比数列,且an2=an-k*an+k>an即时an-k,an,an+k的等比中项性质证明右边=an-k*an+k= a1qn-k-1 a1qn+k-1= a12qn-k-1+n+k-1= a12q2n-2=(a1qn-1 2t=an2左边证明的方向:由繁到简应用在等比数列 {an}中a30=10,a45=90,a60=_____.解:a60= = =810应用等比数列{an}中,a15=10, a45=90,a60=________. 解:a30= = = 30a60=探究活动4:小组根据导学稿内容研讨等比数列的性质,并派学生代表上来讲解练习4;等差数列的性质4;猜想等比数列的性质4;性质证明。
练习 4 设数列{an} 、{ bn} 都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=_____. 解:a5+b5=2(a3+b3-(a1+b1=2*21-7=35等差数列的性质4: 设数列{an} 、{ bn} 是公差分别为d1、d2的等差数列,则数列{an+bn}是公差d1+d2的等差数列两个项数相同的等差数列的和任然是等差数列猜想等比数列的性质4 设数列{an} 、{ bn} 是公比分别为q1、q2的等比数列,则数列{an*bn}是公比为q1q2的等比数列两个项数相同的等比数列的和比一定是等比数列,两个项数相同的等比数列的积任然是等比数列。
性质证明证明:设数列{an}的首项是a1,公比为q1; {bn}的首项为b1,公比为q2,设cn=an?bn那么数列{an?bn} 的第n项与第n+1项分别为:应用设数列{an} 、{ bn} 都是等比数列,若a1b1=7,a3b3=21,则a5b5=_____. 解:由题意可知{an?bn}是等比数列,a3b3是a1b1;a5b5的等比中项。
由(a3b32= a1b1* a5b5 212= 7* a5b5 a5b5=63(四个探究活动的设计充分尊重学生的主体地位,以学生的自主学习,自主探究为主题,以教师的指导为辅,开展教学活动五、等比数列具有的单调性(1q<0,等比数列为摆动数列, 不具有单调性(2q&0(举例探讨并填表a1 a1&0 a1<0q的范围 0 q=1 q&1 0 q=1 q&1{an}的单调性单调递减不具有单调性单调递增单调递增不具有单调性单调递减让学生举例说明,并查验有多少学生填对。
(真确评价六、课堂练习:1、已知各项均为正数的等比数列{an}中,a1a2a3=5,a7a8a9=10,则a4a5a6等于( .a. b.?7 c.?6 d.?解析:由已知得a32?=5,? a82=10,∴a4a5a6=a53?= = =5 ?.答案:a2、已知数列1,a1,a2,4是等比数列,则a1a2= .答案:43、 +1与 -1两数的等比中项是( .a.1b.?-1c.?d.±1?解析:根据等比中项的定义式去求。
答案:选d4、已知等比数列{an}的公比为正数,且a3a9=2 ? ,a2=1,则a1等于( .a.2b.?c.?d.?解析:∵a3a9= =2 ?,∴? =q2=2,∵q&0,∴q= ?.故a1= ?= ?= ?.答案:c5练习题:三个数成等比数列,它们的和等于14,它们的积等于64,求这三个数。
分析:若三个数成等差数列,则设这三个数为a-d,a,a+d.由类比思想的应用可得,若三个数成等比数列,则设这三个数为: 根据题意再由方程组可得:q=2 或既这三个数为2,4,8或8,4,2。
七、小结本节课通过观察、类比、猜测等推理方法,研究等比数列的性质及其应用,从而培养和提高我们综合运用分析、综合、抽象、概括,逻辑思维解决问题的能力。
八、§3.1.2 等比数列的性质及应用性质一:若{an}是公比为 q 的等比数列,则 an=am*qn-m 性质二:在等比数列{sp; c.?6 d.? 解析:由已知得a32?=5,? a82=10, ∴a4a5a6=a53?= = =5 ?. 答案:a 2、已知数列 1,a1,a2,4 是等比数列,则 a1a2= . 答案:4 3、 +1 与 -1 两数的等比中项是( . a.1 b.?-1 c.?d.±1? 解析:根据等比中项的定义式去求。
答案:选 d 4、已知等比数列{an}的公比为正数,且 a3a9=2 ? ,a2=1,则 a1 等于( . a.2 b.? c.? d.? 解析:∵a3a9==2 ?,∴? =q2=2,∵q&0,∴q= ?.故 a1= ?= ?= ?. 答案:c 5 练习题:三个数成等比数列,它们的和等于 14, 它们的积等于 64,求这三个数。
分析:若三个数成等差数列,则设这三个数为 a-d,a,a+d.由类比思想的应用可得,若三个数成等比数列,则设这三个数为: 根据题意再由方程组可得:q=2 或既这三个数为 2,4,8 或 8,4,2。
七、小结本节课通过观察、类比、猜测等推理方法,研究等比数列的性质及其应用,从而培养和提高我们综合运用分析、综合、抽象、概括,逻辑思维解决问题的能力。
八、§3.1.2 等比数列的性质及应用性质一:若{an}是公比为 q 的等比数列,则 an=am*qn-m 性质二:在等比数列{。