经济博弈论课后答案解析答案解析
博弈论教程答案

博弈论教程答案【篇一:《经济博弈论》课后答案、补充习题答案】 2345篇二:经济博弈论(谢织予)课后答案及补充习题答篇三:博弈论课后习题么是博弈?博弈论的主要研究内容是什么?2、设定一个博弈模型必须确定哪几个方面?3、举出烟草、餐饮、股市、房地产、广告、电视等行业的竞争中策略相互依存的例子。
4、“囚徒的困境”的内在根源是什么?举出现实中囚徒的困境的具体例子。
5、博弈有哪些分类方法,有哪些主要的类型?6、你正在考虑是否投资100万元开设一家饭店。
假设情况是这样的:你决定开,则0.35的概率你讲收益300万元(包括投资),而0.65的概率你将全部亏损;如果你不开,则你能保住本钱但也不会有利润,请你(a)用得益矩阵和扩展形式表示该博弈;(b)如果你是风险中性的,你会怎样选择?(c)如果你是风险规避的,且期望得益的折扣系数为0.9,你的策略选择是什么?(d)如果你是风险偏好的,期望得益折算系数为1.2,你的选择又是什么?7、一逃犯从关押他的监狱中逃走,一看守奉命追捕。
如果逃犯逃跑有两条可选择的路线,看守只要追捕方向正确就一定能抓住逃犯。
逃犯逃脱可以少坐10年牢,但一旦被抓住则要加刑10年;看守抓住逃犯能得到1000元奖金。
请分别用得益矩阵和扩展形式表示该博弈,并作简单分析。
第二章完全信息静态博弈1、上策均衡、严格下策反复消去法和纳什均衡相互之间的关系是什么?2、为什么说纳什均衡是博弈分析中最重要的概念?3、找出现实经济或生活中可以用帕累托上策均衡、风险上策均衡分析的例子。
4、多重纳什均衡是否会影响纳什均衡的一致预测性质,对博弈分析有什么不利影响?5、下面的得益矩阵表示两博弈方之间的一个静态博弈。
该博弈有没有纯策略纳什均衡?博弈的结果是什么?6、求出下图中得益矩阵所表示的博弈中的混合策略纳什均衡。
7、博弈方1和2就如何分10 000元进行讨价还价。
假设确定了以下规则:双方同时提出自己要求的数额s1和s2,,如果s1+s2≤10 000,则两博弈方的要求都得到满足,即分别得到s1和s2,但如果是s1+s2>10 000,则该笔钱就被没收。
博弈论各章节课后习题答案 (3)

E( π 2 ) = θq2( aH − q1H − q2 − c2 ) + (1−θ )q2( aL − q1L − q2 − c2 )
由此得:
1 q2 = 2 [θaH + (1−θ )aL − (θq1H + (1−θ )q1L ) − c2 ]
在均衡时,q1,q2 应满足
1
⎪⎪⎧q1
=
1 2
+ c1
− 2c2
]
企业 2 的策略为:
q*2
=
1 3
[
θaH
+ (1− θ
)aL
+ c1
− 2c2
]
因此博弈的贝叶斯纳什均衡是:当 a=aH 时,企业 1 生产 q1*H ;当 a=aL 时,企业 1 生产 q1*L ,
企业 2 生产 q*2 。
5. 在下面的静态贝叶斯博弈中,求出所有的纯策略贝叶斯纳什均衡。 (1) 自然决定收益情况是由博弈 1 给出,还是由博弈 2 给出,选择每一博弈的概率相等; (2) 局中人 1 了解到自然选择了博弈 1,还是选择了博弈 2,但局中人 2 不知道; (3) 局中人 1 选择行动 T 或 B,同时局中人 2 选择行动 L 或 R; (4) 根据自然选择的博弈,两局中人得到相应的收益。
的定价,qi是企业i的需求量。假设企业生产没有固定成本,并且边际成本为常数c,c<a.假定博弃 重复无穷多次,每次的价格都立即被观察到,企业使用触发策略。求使垄断价格可以作为完美 均衡结果出现的最低贴现因子δ,并解释δ与n的关系。
分以下几个步骤进行。
1)计算纳什均衡 当企业 i 选择价格 pi,其它企业选择价格 pj(j=1,2,…,n,j≠i)时,企业 i 的利润为: πi = (pi − c)qi = (pi − c)(a − pi + b(p1 + p2 + ⋯ + pi−1 + pi+1 + ⋯ + pn )) ,i=1,2,…,n
博弈论与信息经济学课后答案.doc

张1.55.(炸诺特博弈)假定奋个库诺特寡尖企业,好个企收具打相同的不变单位生产戎本G市场逆芮求函数足;> =“一Q,其中於是市场价格,Q= 2必足总供给呈,《是大尸岑的常数。
企业/的战略是选择产量中最大化利润%々如一C2”c),给定其他企业的产[:。
求库诺特-纳什均衡。
均衡产S和价格如何随71的变化而变化?为什么?参考答案:C1)根据问题的假设可知各厂商的利润函数为:鬌5=5—(« — *,一)^1其中i = l,…,〜将利润函数对%求导并令其为0得:* = - - r - 2仏=0*r解得各厂商对其他厂商产量妁反应函数为:•r4 = (“一2心~c)/2相据《个厂商之间的对称性,可知gf = qi =••• = ¥必然戎立。
代入上述反应函数可解祷:因此该傅弈的纳什均衡是所冇〃个厂商都生产产暈-6-(伯川德博弈)假定两个寡头企业之间进行价格竞争(而不是产量竞争),两个企业生产的产品是完全替代的,井旦单位牛产戎本相同且不变,企业1的价格为A,企业2的价格为/>2。
如果/企业1的市场窬求函数是%—广U 企业2的需求函数是0;如果外>门,企、Ik的需求函数为()• 企业2的需求函数为r/—fh= fi,布场需求在两个企ik之问f,分,即— p V2,什么是纳什均術价格?假定消费者从价格低的厂商购买产品,如果两企业价格相同,就帄分市场,如果企业i 的价格高于另一企业,则企业i的耑求量为0,反之,其它企业的耑求量为0、因此,企业i的需求函数巾下忒给出:Q (Pi ) Pi < P-i q t = \Q (Pi )/2 Pi = p_i0 Pi 〉P-i从上述需求函数的可以看出,企业i 绝不会将其价格定得高于其它企业;巾于对称性, 其它企业也不会将价格定的高于企业i ,因此,博弈的均衡结果只可能是每家企业的价格都 相同,即灼=巧。
但是如果Pi=Pj 〉c 那么每家企业的利润~-q, >0,因此,企 业i 只要将其价格略微低于其它企业就将获得整个市场的耑求,而且利润也会上升至 (£4 0)。
博弈论 课后习题答案

博弈论课后习题答案第四部分课后习题答案1. 参考答案:括号中的第一个数字代表乙的得益,第二个数字代表甲的得益,所以a表示乙的得益,而b表示甲的得益。
在第三阶段,如果,则乙会选择不打官司。
这时逆推回第二阶段,甲会选择a,0不分,因为分的得益2小于不分的得益4。
再逆推回第一阶段,乙肯定会选择不借,因为借的最终得益0比不借的最终得益1小。
在第三阶段,如果,则乙轮到选择的时候会选择打官司,此时双方得益是(a,b)。
a,0逆推回第二阶段,如果,则甲在第二阶段仍然选择不分,这时双方得益为(a,b)。
b,2在这种情况下再逆推回第一阶段,那么当时乙会选择不借,双方得益(1,0),当a,1时乙肯定会选择借,最后双方得益为(a,b)。
在第二阶段如果,则甲会选择a,1b,2分,此时双方得益为(2,2)。
再逆推回第一阶段,乙肯定会选择借,因为借的得益2大于不借的得益1,最后双方的得益(2,2)。
根据上述分析我们可以看出,该博弈比较明确可以预测的结果有这样几种情况:(1),此时本博弈的结果是乙在第一阶段不愿意借给对方,结束博弈,双方a,0得益(1,0),不管这时候b的值是多少;(2),此时博弈的结果仍然012,,,ab且是乙在第一阶段选择不借,结束博弈,双方得益(1,0);(3),此时博ab,,12且弈的结果是乙在第一阶段选择借,甲在第二阶段选择不分,乙在第三阶段选择打,最后结果是双方得益(a,b);(4),此时乙在第一阶段会选择借,甲在第二阶段会选择分,ab,,02且双方得益(2,2)。
要本博弈的“威胁”,即“打”是可信的,条件是。
要本博弈的“承诺”,即a,0“分”是可信的,条件是且。
a,0b,2注意上面的讨论中没有考虑a=0、a=1、b=2的几种情况,因为这些时候博弈方的选择很难用理论方法确定和预测。
不过最终的结果并不会超出上面给出的范围。
2. 参考答案:静态贝叶斯博弈中博弈方的一个策略是他们针对自己各种可能的类型如何作相应的完整计划。
博弈论与信息经济学部分课后习题答案

解:(1)成为先行者意味着3点:1.企业可以赚取比古诺状态下更多的利润,否则没有动机成为先行者;2.追随企业没有办法威胁先行企业,即选取产量使己方产量为正,它方产量为负3.如果另一企业成为先行者,该企业可以成功威胁另一企业先求古诺均衡:()()()(),30,805.05.05.0100,5.09555.05.0100,2122221212211121211max max 21==---=-=⇒---=q q q q q q q q q q q q q qq q q q ππ因此为满足条件1,对于任何先行动者来说,必须有30,8021≥≥q q (否则追随者可以选取产量,使价格等于古诺价格,此时先行者利润低于古诺均衡时情况)a .如果企业2成为领导者,观察企业1能否采取威胁战略使己方利益为正,对方利益为负:即:()()()()212222212121121211190220005.05.05.0100,055.05.0100,q q q q q q q q q q q q q q q -<<-⇒⎩⎨⎧<---=>---=ππ 对于企业2的任何产量先行决策 102>q ,只要企业1威胁其产量1q 将满足上式,则企业2将不敢先行动若210q ≤ ,与先行动者的302≥q 矛盾。
因此企业2不会是先行者b.考虑企业1能否成为先行者,由a 已经知道企业1可以成功在企业1先行时成功威胁企业2。
故只需考虑如果企业1先行,企业2能否威胁企业1当企业1先行动时,企业2决策()()122222121225.0505.05.05.0100,max 2q q q q q q q q q -=⇒---=π企业1决策:()()112121155.05.0100,max 1q q q qq q q ---=π()33.933380375.070111max 1==⇒-=q q q q因此企业1的产量决策范围为 33.93801≤≤q而企业2要惩罚企业1为领导者必须满足()()()()1805.0100190055.05.0100,05.05.05.0100,1121112121122221212>⇒-<<-⇒⎪⎩⎪⎨⎧<---=>---=q q q q q q q q q q q q q q q q ππ 这与 33.93801≤≤q 矛盾。
经济博弈论(谢织予)课后答案及补充习题答案汇编

送人□有实用价值□装饰□
附件(二):
动漫书籍□化“自助化”
大学生购买力有限,即决定了要求商品能价廉物美,但更注重的还是在购买过程中对精神文化爱好的追求,满足心理需求。
送人□有实用价值□装饰□
虽然调查显示我们的创意计划有很大的发展空间,但是各种如“漂亮女生”和“碧芝”等连锁饰品店在不久的将来将对我们的创意小屋会产生很大的威胁。
精明的商家不失时机地打出“自己的饰品自己做”、“DIY(Do It Yourself)饰品、真我个性”的广告,推出“自制饰品”服务,吸引了不少喜欢标新立异、走在潮流前端的年轻女孩,成为上海的时尚消费市场。其市场现状特点具体表现为:
2003年,全年商品消费价格总水平比上年上升1%。消费品市场销售平稳增长。全年完成社会消费品零售总额2220.64亿元,比上年增长9.1%。
博弈论各章节课后习题答案 (2)

(1)
( q1*, q*2,⋯, q*n )组成该博弈的纯策略纳什均衡点。
2
∑ 式(1)两边同时求和,可得:
n
q*i
=
Q*
=
n(a
−
c
−
Q* )
,于是
Q*
=
n (a n +1
−
c)
,
i =1
q*
=
a
−c
−
Q*
=
a−c n +1
,此时
p*=a-Q*=
a + nc n +1
,当
n
趋于无群大时,有
Q*=a-c,
(aij + d)x*i y j 是成 立的 , 此即 为 XA2Y* ≤ X*A2Y* ≤ X*A2Y 。所以
i =1 j=1
i =1 j=1
(X*,Y*)是矩阵博弈 G2 的纳什均衡点,并且
mn
mn
∑ ∑ ∑ ∑ v(G2) =
(a ij
+
d)x
* i
y*j
=
aijx*i y*j + d = v(G1) + d
第二章 完全信息的静态博弈和纳什均衡
1. 什么是纳什均衡? (见教材)
2. 剔除以下规范式博弈中的严格劣策略,再求出纯策略纳什均衡。
先剔除甲的严格劣策略 3,再剔除乙的严格劣策略 2,得如下矩阵博弈。然后用划线法求出该矩
阵博弈的纯策略 Nash 均衡。
乙
甲
1
3
1
2,0 4,2
2
3,4 2,3
3. 求出下面博弈的纳什均衡。
该博弈的纳什均衡为下图的线段 AB:即:s1+s2=100,s1,s2∈[0,100]。
范里安-微观经济学现代观点-第8版-第八版-ch28-博弈论(含全部习题解答)-东南大学曹乾

Intermediate Microeconomics:A Modern Approach (8th Edition)Hal R. Varian范里安中级微观经济学:现代方法(第8版)完美中文翻译版)含全部习题详细解答)第28章:博弈论(含全部习题详细解答博弈论(曹乾译(东南大学caoqianseu@)28博弈理论我们在上一章阐述的寡头理论,是企业间策略性互动的经典经济理论解释。
但这只是冰山一角。
经济行为人(agents)的策略性互动有多种方式,经济学家借助博弈理论(game theory)这个工具已研究了很多种策略性互动的行为。
博弈理论关注的是策略性互动的一般分析。
人们可使用博弈理论研究室内游戏(parlor games)、政治协商和经济行为(一)。
在本章,我们将简要分析这一迷人的学科,目的是让你感受一下它是如何运行的,以及让你初步知道如何使用博弈理论分析寡头市场中的经济行为。
28.1博弈的收益矩阵策略性互动可能涉及很多选手和很多策略,但是我们仅限于分析两个选手之间的博弈,而且限于分析策略的数量有限的情形。
这样做的好处是可以用收益矩阵(payoff matrix)描述博弈。
最好举例进行分析。
假设两人玩一种简单的游戏。
选手A在纸上写出“上”或“下”。
与此同时,选手B独立地写出“左”或“右”。
在两人写好后,经过分析,将他们的收益标记于表28.1中。
若A 选上且B选左,我们看矩阵的左上角的小方格。
在该小方格中,A的收益是第一个数,B 的收益是第二个数。
类似地,如果A选下B选右,则A得到收益为1,B得到的收益为0.表28.1:一个博弈的收益矩阵选手A有两个策略:上或下。
这些策略可以代表类似“提高价格”或“降低价格”的经济选择。
或者它们可以代表类似“宣战”或“不宣战”的政治选择。
博弈的收益矩阵表明了对于每个选定的策略组合,每个选手得到的收益。
(一)室内游戏(parlor games)是指一伙人在室内(indoors)参与的游戏。