《立方根》优质教案

合集下载

立方根教学教案5篇

立方根教学教案5篇

立方根教学教案5篇Cube root teaching plan立方根教学教案5篇前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。

便于学习和使用,本文档下载后内容可按需编辑修改及打印。

本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】1、篇章1:61立方根范文实用版2、篇章2:6.3去括号范文3、篇章3:63去括号范文4、篇章4:§11具有相反意义量范文(最新版)5、篇章5:题:52图形变化样本篇章1:61立方根范文实用版课型:新授学习目标:1.了解立方根的概念,会用根号表示一个数的立方根.2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算。

3.了解立方根的性质,区分立方根与平方根的不同。

4.体会类比,化归思想学习重点:立方根的概念.,求某些数的立方根。

学习难点;了解立方根的性质,区分立方根与平方根的不同。

学习过程:一、学习准备1、上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根。

若x3=a,则x叫a的什么呢?完成下面填空。

33 = ()()3 = 27(-3)3= ()()3 = -27()3= ()()3 =()3 =()()3 =03 =()()3 = 02、左边算式已知底数、指数求幂,右边算式已知幂、指数求底数一般地,如果一个数的立方等于a,那么这个数叫做a的立方根,也叫做a的三次方根。

即如果X3=a,那么叫做的立方根。

请按照第7页的举例你再举两个例子说明:叫做开立方,立方与互为逆运算4、观察上面两组算式,归纳一个数的立方根的性质是:正数有一个立方根,零有一个立方根;负数立方根。

交流:(1)的立方根是什么?(2)0.001的立方根是什么?(3)0的立方根是什么?(4)-729的立方根是什么?5、立方根的表示方法一个正数a有一个立方根,.正数a的立方根,记作“ ”负数a的立方根,记作“ ”吗?如果X3=a,那么X= ,其中符号“ ”读作三次根号,a 叫做被开方数这里的a表示什么样的数? a是任意数二、合作探究1、阅读课本第7页例题4,按例题格式求其立方根。

八年级数学上册《立方根》教案、教学设计

八年级数学上册《立方根》教案、教学设计
2.学生在小组内积极讨论,交流各自的想法和发现。教师巡回指导,给予提示和建议。
3.各小组汇报讨论成果,教师点评并总结,强调立方根计算的关键点和注意事项。
(四)课堂练习,500字
1.教师出示一组课堂练习题,包括计算立方根、求解立方根的整数部分和小数部分等。
2.学生独立完成练习题,教师巡回指导,及时解答学生的疑问。
2.学生回答:“一个魔方的体积是由它的棱长决定的。”教师追问:“那么,如果已知一个魔方的体积,我们如何求出它的棱长呢?”
3.学生思考后,教师引导学生回顾已学的平方根和算术平方根的概念,为新课立方根的学习做好铺垫。
(二)讲授新知,500字
1.教师正式引入立方根的概念,给出定义:“如果一个数的立方等于另一个数,那么这个数叫做另一个数的立方根。”
二、学情分析
八年级的学生已经具备了一定的数学基础,对算术平方根的概念和性质有了初步的了解。在此基础上,引入立方根的概念,学生能够更容易地理解和掌握。然而,由于立方根的计算和应用较为抽象,学生可能会在具体操作过程中遇到困难。因此,在教学过程中,教师需关注以下几点:
1.学生对立方根概念的接受程度,关注学生是否能够将新知识与已有知识体系相融合;
(三)情感态度与价值观
1.增强学生对数学学科的兴趣和热情,激发学生学习数学的积极性;
2.培养学生勇于探索、善于思考的精神,提高学生面对困难和挑战的自信心;
3.培养学生合作交流的意识,使学生学会倾听、尊重他人,形成良好的人际关系;
4.培养学生严谨、踏实的学术态度,使学生认识到数学知识在日常生活和国家发展中的重要作用,树立正确的价值观。
6.课堂小结,反思提升
在课堂结束时,教师应引导学生进行课堂小结,总结本节课所学知识,反思自己在学习过程中的优点和不足。同时,教师要对学生的学习情况进行评价,为下一节课的教学提供参考。

3.3立方根教学设计5篇范文

3.3立方根教学设计5篇范文

3.3立方根教学设计5篇范文第一篇:3.3立方根教学设计[教学设计]3.3 立方根乐清市白象镇中屠勤秧● 教材与学生的认知起点分析“立方根”是浙教版七年级上册第三章“实数”中的第三小节,它是在学生知道了无理数、算术平方根、平方根、开平方运算的概念基础上学习的。

教材从实际问题引入立方根的概念,说明学习数的立方根的意义。

通过具体数的计算,让学生体会,一个数的立方根的唯一性。

虽然这一节在实数一节之后,但仍起着加深对实数的认识的作用。

在实数范围内进行开立方的运算,无论从认知的角度,还是从表述的角度,都较为方便。

● 教学目标知识与技能:了解立方根的概念,会用根号表示一个数的立方根,并能用立方根运算求某些数的立方根教学思考:创设问题情境,学生进一步发展对数学知识的抽象概括力。

解决问题:通过学生的积极参与培养学生独立思考的能力,提高数学表达和运算能力。

情感态度与价值观:在参与数学学习活动中,不断培养合作交流的良好习惯。

● 教学重点本节重点是立方根的意义、性质。

● 教学难点本节难点是立方根的求法,立方根与平方根的联系及区别。

● 教学过程一、创设情境电脑显示一个魔方师:你们喜欢玩魔方吗?这是由8个同样大小的单位立方体组成的魔方,这8个小立方体可以重新排列,组成魔方表面的各种不同的美丽图案。

现在要做一个体积为8cm3的立方体魔方,它的棱要取多少长?你是怎么知道的?生:思考后回答。

设计意图:从熟悉的事物引入立方根概念,说明学习立方根的意义。

师:体积为27 cm3和体积为1000 cm3的立方体的棱又是要取多少长呢?生:思考、讨论后回答。

电脑演示:()3=8 ()3=27 ()3=1000 设计意图:为概念引入作准备并渗透从个别到一般的规律。

二、讲授新课师:让学生在平方根基础上试述立方根概念。

设计意图:渗透学生的类比思想和语言表达能力。

师(总结):一般地,一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做a的三次方根),记做3a。

《立方根》优质教案

《立方根》优质教案

《立方根》优质教案教案内容:一、教学内容本节课的教学内容选自人教版初中数学八年级上册第6章第3节《立方根》。

本节课主要内容包括:立方根的定义,立方根的性质,立方根的运算方法,以及立方根在实际问题中的应用。

二、教学目标1. 理解立方根的概念,掌握立方根的性质和运算方法。

2. 能够运用立方根解决实际问题。

3. 培养学生的逻辑思维能力和创新精神。

三、教学难点与重点1. 立方根的概念和性质。

2. 立方根的运算方法。

3. 立方根在实际问题中的应用。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。

2. 学具:笔记本、尺子、圆规、三角板、计算器。

五、教学过程1. 实践情景引入:教师展示一个正方体模型,引导学生观察正方体的特征,并提出问题:“正方体的体积是多少?”学生通过观察和思考,可以得出正方体的体积是边长的三次方。

2. 立方根的定义:教师引导学生思考:“如果我们知道一个数的立方是另一个数,那么我们如何求出这个数呢?”学生通过讨论和思考,可以得出这个数就是原数的立方根。

教师给出立方根的定义,并解释立方根的性质。

3. 立方根的运算方法:4. 立方根在实际问题中的应用:教师提出一个实际问题:“一个正方体的体积是27立方米,求这个正方体的边长。

”学生运用立方根的知识,解决问题并得出答案。

六、板书设计1. 立方根的定义。

2. 立方根的性质。

3. 立方根的运算方法。

4. 立方根在实际问题中的应用。

七、作业设计1. 题目:已知一个数的立方是27,求这个数。

答案:3。

2. 题目:已知一个正方体的体积是64立方米,求这个正方体的边长。

答案:4米。

八、课后反思及拓展延伸1. 课后反思:教师反思本节课的教学效果,是否达成了教学目标,学生是否掌握了立方根的知识,哪些学生需要进一步辅导。

2. 拓展延伸:教师提出一个拓展问题:“立方根在实际生活中有哪些应用?”引导学生思考和讨论,进一步巩固立方根的知识。

重点和难点解析一、立方根的概念和性质1. 立方根的定义:教师在讲解立方根的定义时,应强调“立方根”就是一个数乘以自身两次后得到的结果。

2024年《立方根》优质教案

2024年《立方根》优质教案

2024年《立方根》优质教案一、教学内容本节课选自2024年教材《数学》七年级下册第十章第一节“立方根”。

具体内容包括:1. 立方根的定义及性质;2. 立方根的计算方法;3. 立方根在实际问题中的应用。

二、教学目标1. 知识与技能:理解立方根的定义,掌握立方根的计算方法,能解决实际问题;2. 过程与方法:通过实例分析,培养学生运用立方根解决实际问题的能力;3. 情感、态度与价值观:培养学生对数学的兴趣,提高数学素养。

三、教学难点与重点教学难点:立方根的计算方法,特别是非整数的立方根;教学重点:立方根的定义,计算方法及其应用。

四、教具与学具准备教具:立方体模型,多媒体教学设备;学具:计算器,草稿纸,笔。

五、教学过程1. 实践情景引入(1)展示立方体模型,引导学生观察其特征,提出问题:如何计算立方体的体积?(2)通过计算立方体的体积,引出立方根的概念。

2. 例题讲解(1)讲解立方根的定义及性质;(2)举例讲解立方根的计算方法,如:2的立方根,8的立方根等;(3)讲解立方根在实际问题中的应用。

3. 随堂练习(2)解决实际问题,如:一个立方体的体积是64立方厘米,求它的棱长。

4. 知识拓展(1)介绍立方根在科学、生活中的应用;(2)探讨立方根与平方根的关系。

六、板书设计1. 立方根的定义及性质;2. 立方根的计算方法;3. 立方根在实际问题中的应用;4. 立方根与平方根的关系。

七、作业设计1. 作业题目:(2)一个立方体的体积是216立方厘米,求它的棱长;(3)比较两个数的大小:2的立方根与3的立方根。

2. 答案:(1)3,2,5;(2)6厘米;(3)2的立方根小于3的立方根。

八、课后反思及拓展延伸1. 反思:本节课学生对立方根的概念及计算方法掌握情况,对实际问题的解决能力;2. 拓展延伸:探讨立方根的估算方法,如:牛顿迭代法等。

重点和难点解析1. 教学难点:立方根的计算方法,特别是非整数的立方根;2. 例题讲解:立方根在实际问题中的应用;3. 知识拓展:立方根与平方根的关系;4. 作业设计:比较两个数的大小,如2的立方根与3的立方根。

《立方根》教案范文

《立方根》教案范文

《立方根》教案范文教案:《立方根》一、教材分析本节课教材是关于立方根的概念和计算方法。

立方根是一个普遍存在于数学中的概念,也是数学运算中的一个重要内容。

通过本节课的学习,可以让学生掌握立方根的概念,了解立方根的计算方法,提高解决实际问题的能力。

二、教学目标1.知识与技能目标:了解立方根的概念及其计算方法,掌握立方根的求解技巧;2.过程与方法目标:培养学生的观察、分析和推理能力,提高解决实际问题的能力;3.情感态度目标:培养学生的数学兴趣,增强学生的自学能力。

三、教学重难点1.教学重点:立方根的概念和计算方法;2.教学难点:理解立方根的概念和计算方法,能够运用立方根解决实际问题。

四、教学过程1.导入新课教师通过提问来导入新课,例如:你们知道什么是立方根吗?为什么要学习立方根?请举例说明。

2.概念讲解教师向学生讲解立方根的概念:立方根是一个数的立方的倒数。

用符号表示为³√a,读作a的立方根。

对于一个正数a,³√a是另一个正数x,使得x³=a。

3.计算方法及示例解析教师通过举例子向学生讲解立方根的计算方法。

首先讲解开平方根的求解方法,再延伸到立方根的求解方法。

A.求立方根的方法一:用连续逼近法求立方根通过逼近法求立方根的步骤:-选择一个适当的近似解;-利用近似解与原数的关系,得到更好的近似解;-不断重复以上步骤,直到找到符合精度要求的解。

B.求立方根的方法二:用公式法求立方根立方根的计算方法:设³√a=x,则x³=a。

C.示例解析-示例:求³√8解析:我们可以选择逼近法求解,从2开始逼近,逐步找到符合精度要求的解。

开始逼近时,我们先猜测³√8≈2,计算得到2³=8.由于2³=8,因此我们可以确定³√8=24.拓展应用教师设计一些实际问题,要求学生运用立方根的概念和计算方法来解决问题。

示例:街道上的一棵树高度为27米,如果每天长高1/8米,问需要多少天才能长到30米?解析:设天数为x,由题意可知每天长高1/8米,那么经过x天的时间,高度应该是27+(1/8)x米。

《立方根》教学设计优秀4篇

《立方根》教学设计优秀4篇

《立方根》教学设计优秀4篇作为一名专为他人授业解惑的人民教师,总不可避免地需要编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。

那么教学设计应该怎么写才合适呢?下面是勤劳的编辑帮家人们找到的《立方根》教学设计优秀4篇,欢迎参考阅读,希望大家能够喜欢。

《立方根》教学设计篇一一、教材分析《立方根》是义务教育课程标准实验教科书北师大版八年级(上)第二章《实数》第三节、本节内容安排了1个学时完成、主要是通过对立方根与平方根的比较与归类,探索立方根的概念、计算和简单性质、因此,除了具体的知识技能(如知道一个数的立方根的意义,会用根号表示一个数的立方根,掌握立方根运算,掌握求一个数的立方根的方法和技巧)外,还需要昂学生感受类比的思想方法,为今后的学习打下基础、二、学情分析在学习了平方根概念的基础上学习立方根的概念,学生比较容易接受,因此教学重点放在立方根具有先进性(实数范围内)的讨论上、在学生对数的立方根概念及个数的先进性有了一定理解的基础上,再提出数的立方根与数的平方根有什么区别,学生就容易解决问题、三、目标分析教学目标知识与技能目标1、了解立方根的概念,会用根号表示一个数的立方根、2、会用立方运算求一个数的立方根,了解开立方与立方互为逆运算、3、了解立方根的性质、4、区分立方根与平方根的不同、过程与方法目标1、经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略、2、在学习了平方根的基础上,学生经历用类比的方法学习立方根的有关知识,领会类比思想、3、通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识、情感与态度目标:1、在立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神、2、学生通过对实际问题的解决,体会数学的实用价值、教学重点立方根的概念及计算、教学难点立方根的求法,立方根与平方根的联系及区别、四、教法学法1、教学方法:类比法、2、课前准备:教具:教材,软件Microsoft PowerPoint 2002,电脑、学具:教材,练习本、五、教学过程本节课设计了七个教学环节:一环节:创设问题情境;第二环节:复习引入、类比学习;第三环节:初步探究;第四环节:尝试反馈,巩固练习;第五环节:深入探究;第六环节:课时小结;探究与思考;第七环节:作业布置及课外探究、一环节:创设问题情境:内容:某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐的多少倍?如果储气罐的体积是原来的4倍呢?(球的体积公式为v=R,R为球的半径)提问:怎样求出半径R?学完本节知识后,相信你会有一个满意的答案、有关体积的。

七年级数学上册《立方根》教案、教学设计

七年级数学上册《立方根》教案、教学设计
2.基本概念:讲解立方根的定义,让学生理解立方根的含义,并通过实例加深理解。
3.性质探究:引导学生观察、发现立方根的性质,如正数的立方根是正数,负数的立方根是负数,0的立方根是0等。
4.运算方法:讲解计算立方根的方法,包括手算和计算器计算,让学生熟练掌握运算技巧。
5.应用举例:结合实际问题,让学生运用立方根知识解决问题,巩固所学。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握立方根的定义及其性质,能够准确地计算立方根。
2.将立方根应用于解决实际问题,培养学生的数学建模和问题解决能力。
3.消除平方根与立方根之间的混淆,提高学生的运算准确性和速度。
(二)教学设想
1.利用生活实例和数学故事导入新课,激发学生的学习兴趣和探究欲望。例如,通过讲述“阿基米德和国王下棋”的故事,让学生了解立方根在古代数学中的应用,从而引出立方根的概念。
七年级数学上册《立方根》教案、教学设计
一、教学目标
(一)知识与技能
1.理解立方根的概念,掌握立方根的定义和性质,能够准确找出一个数的立方根。
2.学会使用计算器计算立方根,提高运算速度和准确性。
3.能够解决实际问题中涉及立方根的问题,如体积、密度等,培养将数学知识应用于实际生活中的能力。
(二)过程与方法
二、学情分析
七年级学生正处于青春期,思维活跃,好奇心强,具备一定的数学基础和逻辑思维能力。在学习《立方根》这一章节之前,他们已经掌握了实数的概念、平方根的性质等基础知识,为本章节的学习奠定了基础。然而,由于立方根的概念较为抽象,学生可能会在理解上存在困难,需要通过具体实例和形象化的教学手段帮助他们构建概念。
-教学策略:情境教学法,激发学生的好奇心和求知欲。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.2 立方根教案
一个正数有一个正的立方根 0有一个立方根,是它本身 一个负数有一个负的立方根 任何数都有唯一的立方根 因为
()
3
0=,所以8的立方根是
( )
因为()
3
8=-,所以-8的立方根是( ) 因为3
827⎛⎫
=- ⎪⎝⎭,所以827-的立方根是( )
归纳:
一个数a 的立方根,记作3a ,读作:“三次根号a ”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方。

例如:327表示
27的立方根,3273=;327-表示27-的立
方根,3
273-=-.
3.探究2: 因为338____,8____,-=-=
所以38- = 3
8- ;
因为3327____,27____-=-=,
所以327- = 327-。

学生独立完成
学生归纳总结,教
师补充.
学生阅读
让学生观察归纳,得出结论.
三.【巩固运用】: 例.求下列各式的值:
(1)364= (2) 318
-= (3)327
64
-=
你会用计算器计算(精确到0.001):
3333...,0.000216,0.216,216,216000,...你发现了什么规律? 利用以上规律探究下列问题:已知3
100≈ 4.6417…, 求3
330.1,0.0001,100000的近似值(精确到0.001) 四.【反思总结】: 1、这节课我最大的收获是:
2、我还需解决的问题有:
五.【达标测试】: 同步学习:达标测试
探究规律
让学生板演,纠错.
类比平方根进行研
究.
学生独立完成在同步学习中.教师关注
学生的完成情况并
适时指导.。

相关文档
最新文档