不动点法求数列通项公式

合集下载

斐波那契数列的通项求法不动点法

斐波那契数列的通项求法不动点法

斐波那契数列是一个非常著名的数列,它由如下的递归关系定义:F(0) = 0,F(1) = 1,F(n) = F(n-1) + F(n-2) 对于n >= 2。

对于这个数列的通项公式(即直接计算第n项的公式而不需要计算之前所有项的值),存在一个非常著名的公式,称为Binet公式:F(n) = (φ^n - ψ^n) / √5,其中,φ= (1 + √5) / 2 约等于1.618033988749895...(黄金分割比),ψ = (1 - √5) / 2 约等于-0.618033988749895...。

这两个数实际上是方程x^2 - x - 1 = 0 的两个解。

不动点法是求解具有递归关系的数列通项的一种方法,它基于的思想是寻找一个函数的不动点(这里的不动点指的是满足f(x) = x的点),这在函数迭代和分形理论中非常常见。

但是,必须说明的是,斐波那契数列的通项公式并不是通过不动点法得出的。

不动点法在斐波那契数列的直接计算中并不是标准做法。

在数学中,不动点通常是指在迭代过程中不会改变的点。

例如,对于某个函数f(x),如果存在x*使得f(x*) = x*,则称x*为f的不动点。

但是对于斐波那契数列,我们通常不使用不动点法来求取其通项公式,因为现有的递推关系和Binet公式已经非常简洁且易于计算。

为了计算斐波那契数列的项,我们通常依赖于递归计算、Binet公式或者使用动态规划这类编程技术来避免重复计算已求出的项。

这些方法在实践中更加常见和有效。

要理解不动点的概念,一个简单的例子就是函数f(x) = x^2。

假设我们想要找到满足f(x) = x 的x值,我们可以简单求解方程x^2 = x,得到两个解x=0和x=1。

其中0和1就是这个函数的不动点。

不过这个例子和斐波那契数列的求解并没有直接关联。

总的来说,斐波那契数列的通项是通过数学推导得出的Binet公式,而不是通过不动点法,后者在其他类型的问题中更为常见,特别是在分析动态系统和迭代函数时。

不动点法求数列的通项公式

不动点法求数列的通项公式

a 一1一 P a— c
a 一1一 P
a— cp

.— d+ cp


a 一1一 P a— c
又 P为方 程 cz + (d-a)x-b=0的 唯一 解 .则
将 = 代入 上式可 得
点 来求 解通 项. 定理 3 若上 述 函数 ,(z)一 ax  ̄+ b有 两 个 不 同
1 常数消去法回顾
{口 )满 足递 推 关 系 口 一厂(口 一 ),即 口 一

设平移替换an:Cn+ ,则有c 一爱
给定 初始 值 n ≠厂(n ).接 下 去 我们 就 可 以利 用 函数



厂(z)的不动 点来 求解数 列 {n )的通项公 式 . 下 面求 函数 厂(z)的不动 点.
形 数 ”①之 间的 关系.
数 学 的教 与学离 不 开 问题 和 问题 解 决.如何 充 分
发 挥 问题和 问题解 决 的功 能 ,应 该 成为 数 学教 育 研 究
第 3类 :T(8)一36.
的重要 课题 .本 文主 旨在 于为 拓 展传 统 的问题 解 决模
所 以 ,本 题 答案 为 120+84+36—240(个 ).
1万照例 1的 解 法 ,可 以 得 到 每 一 类 中三 位 数 的 个数 .
第 1类 :T(1)+ T(2)+… +丁(7)+T(8)一120; 第 2类 :T(1)+ T(2)+… +T(7)一84;
∑ k +T( )一2∑ T(忌).
k一 1
= 1
这一 等式 的意 义在 于沟通 了“三角 形 数 ”与 “正 方
证 明 :一 =

不动点法求数列通项公式

不动点法求数列通项公式

不动点法求数列通项公式 This model paper was revised by the Standardization Office on December 10, 2020不动点法求数列通项公式通常为了求出递推数列a[n+1]=(ca[n]+d)/(ea[n]+f)【c、d、e、f是不全为0的常数,c、e不同时为0】的通项,我们可以采用不动点法来解.假如数列{a[n]}满足a[n+1]=f(a[n]),我们就称x=f(x)为函数f(x)的不动点方程,其根称为函数f(x)的不动点.至于为什么用不动点法可以解得递推数列的通项,这足可以写一本书.但大致的理解可以这样认为,当n趋于无穷时,如果数列{a[n]}存在极限,a[n]和a[n+1]是没有区别的.首先,要注意,并不是所有的递推数列都有对应的不动点方程,比如:a[n+1]=a[n]+1/a[n].其次,不动点有相异不动点和重合不动点.下面结合不动点法求通项的各种方法看几个具体的例子吧.◎例1:已知a[1]=2,a[n+1]=2/(a[n]+1),求通项.【说明:这题是“相异不动点”的例子.】先求不动点∵a[n+1]=2/(a[n]+1)∴令 x=2/(x+1),解得不动点为:x=1 和 x=-2 【相异不动点】∴(a[n+1]-1)/(a[n+1]+2) 【使用不动点】=(2/(a[n]+1)-1)/(2/(a[n]+1)+2)=(2-a[n]-1)/(2+2a[n]+2)=(-a[n]+1)/(2a[n]+4)=(-1/2)(a[n]-1)/(a[n]+2)∵a[1]=2∴(a[1]-1)/(a[1]+2)=1/4∴{(a[n]-1)/(a[n]+2)}是首项为1/4,公比为-1/2的等比数列∴(a[n]-1)/(a[n]+2)=1/4(-1/2)^(n-1)解得:a[n]=3/[1-(-1/2)^(n+1)]-2◎例2:已知数列{a[n]}满足a[1]=3,a[n]a[n-1]=2a[n-1]-1,求通项.【说明:这题是“重合不动点”的例子.“重合不动点”往往采用取倒数的方法.】∵a[n]=2-1/a[n-1]∴采用不动点法,令:x=2-1/x即:x^2-2x+1=0∴x=1 【重合不动点】∵a[n]=2-1/a[n-1]∴a[n]-1=2-1/a[n-1]-1 【使用不动点】a[n]-1=(a[n-1]-1)/a[n-1]两边取倒数,得:1/(a[n]-1)=a[n-1]/(a[n-1]-1)即:1/(a[n]-1)-1/(a[n-1]-1)=1∵a[1]=3∴{1/(a[n]-1)}是首项为1/(a[1]-1)=1/2,公差为1的等差数列即:1/(a[n]-1)=1/2+(n-1)=(2n-1)/2∴a[n]=2/(2n-1)+1=(2n+1)/(2n-1)例3:已知数列{a[n]}满足a[1]=1/2,S[n]=a[n]n^2-n(n-1),求通项.【说明:上面两个例子中获得的不动点方程系数都是常数,现在看个不动点方程系数包含n的例子.】∵S[n]=a[n]n^2-n(n-1)∴S[n+1]=a[n+1](n+1)^2-(n+1)n将上面两式相减,得:a[n+1]=a[n+1](n+1)^2-a[n]n^2-(n+1)n+n(n-1)(n^2+2n)a[n+1]=a[n]n^2+2n(n+2)a[n+1]=na[n]+2a[n+1]=a[n]n/(n+2)+2/(n+2) 【1】采用不动点法,令:x=xn/(n+2)+2/(n+2)解得:x=1 【重合不动点】设:a[n]-1=b[n],则:a[n]=b[n]+1 【使用不动点】代入【1】式,得:b[n+1]+1=(b[n]+1)n/(n+2)+2/(n+2) b[n+1]=b[n]n/(n+2)即:b[n+1]/b[n]=n/(n+2)于是:【由于右边隔行约分,多写几行看得清楚点】b[n]/b[n-1]=(n-1)/(n+1) 【这里保留分母】b[n-1]/b[n-2]=(n-2)/n 【这里保留分母】b[n-2]/b[n-3]=(n-3)/(n-1)b[n-3]/b[n-4]=(n-4)/(n-2).b[5]/b[4]=4/6b[4]/b[3]=3/5b[3]/b[2]=2/4 【这里保留分子】b[2]/b[1]=1/3 【这里保留分子】将上述各项左右各自累乘,得:b[n]/b[1]=(1*2)/[n(n+1)]∵a[1]=1/2∴b[1]=a[1]-1=-1/2∴b[n]=-1/[n(n+1)]∴通项a[n]=b[n]+1=1-1/[n(n+1)]◎例4:已知数列{a[n]}满足a[1]=2,a[n+1]=(2a[n]+1)/3,求通项.【说明:这个例子说明有些题目可以采用不动点法,也可以采用其他解法.】∵a[n+1]=(2a[n]+1)/3求不动点:x=(2x+1)/3,得:x=1 【重合不动点】∴a[n+1]-1=(2a[n]+1)/3-1 【使用不动点】即:a[n+1]-1=(2/3)(a[n]-1)∴{a[n]-1}是首项为a[1]-1=1,公比为2/3的等比数列即:a[n]-1=(2/3)^(n-1)∴a[n]=1+(2/3)^(n-1)【又】∵a[n+1]=(2a[n]+1)/3∴3a[n+1]=2a[n]+1这时也可以用待定系数法,甚至直接用观察法,即可得到:3a[n+1]-3=2a[n]-2∴a[n+1]-1=(2/3)(a[n]-1)【下面同上】◎例5:已知数列{x[n]}满足x[1]=2,x[n+1]=(x[n]^2+2)/(2x[n]),求通项.【说明:现在举个不动点是无理数的例子,其中还要采用对数的方法.】∵x[n+1]=(x[n]^2+2)/(2x[n])∴采用不动点法,设:y=(y^2+2)/(2y)y^2=2解得不动点是:y=±√2 【相异不动点为无理数】∴(x[n+1]-√2)/(x[n+1]+√2) 【使用不动点】={(x[n]^2+2)/2x[n]-√2}/{(x[n]^2+2)/2x[n]+√2}=(x[n]^2-2√2x[n]+2)/(x[n]^2+2√2x[n]+2)={(x[n]-√2)/(x[n]+√2)}^2∵x[n+1]=(x[n]^2+2)/2x[n]=x[n]/2+1/x[n]≥2/√2=√2∴ln{(x[n+1]-√2)/(x[n+1]+√2)}=2ln{(x[n]-√2)/(x[n]+√2)} 【取对数】∵x[1]=2>√2∴(x[1]-√2)/(x[1]+√2)=3-2√2∴{ln((x[n]-√2)/(x[n]+√2))}是首项为ln(3-2√2),公比为2的等比数列即:ln{(x[n]-√2)/(x[n]+√2)}=2^(n-1)ln(3-2√2)(x[n]-√2)/(x[n]+√2)=(3-2√2)^[2^(n-1)]x[n]-√2=(3-2√2)^[2^(n-1)](x[n]+√2)x[n]-x[n](3-2√2)^[2^(n-1)]=√2(3-2√2)^[2^(n-1)]+√2∴x[n]=√2{1+(3-2√2)^[2^(n-1)]}/{1-(3-2√2)^[2^(n-1)]}◎例6:已知数列{a[n]}满足a[1]=2,a[n+1]=(1+a[n])/(1-a[n]),求通项.【说明:现在举个不动点是虚数的例子,说明有些题目可以采用不动点法,但采用其他解法可能更方便.】求不动点:x=(1+x)/(1-x),即:x^2=-1,得:x[1]=i,x[2]=-i 【相异不动点为虚数,i为虚数单位】∴(a[n+1]-i)/(a[n+1]+i) 【使用不动点】={(1+a[n])/(1-a[n]-i}/{(1+a[n])/(1-a[n]+i}=(1+a[n]-i+a[n]i)/(1+a[n]+i-a[n]i)={(1+i)/(1-i)}{(a[n]-i)/(a[n]+i)}=i(a[n]-i)/(a[n]+i)∵a[1]=2∴{(a[n]-i)/(a[n]+i)}是首项为(a[1]-i)/(a[1]+i)=(2-i)/(2+i),公比为i的等比数列即:(a[n]-i)/(a[n]+i)=[(2-i)/(2+i)]i^(n-1)(a[n]-i)(2+i)=(a[n]+i)(2-i)i^(n-1)2a[n]-2i+ia[n]+1=(2a[n]+2i-ia[n]+1)i^(n-1){2+i-(2-i)(i)^(n-1)}a[n]=2i-1+(2i+1)i^(n-1)a[n]=[2i-1+(2i+1)i^(n-1)]/[2+i-(2-i)i^(n-1)]∴a[n]=[2i-1+(2-i)i^n]/[2+i-(2-i)i^(n-1)]【下面用“三角代换”,看看是否更巧妙一些.】∵a[n+1]=(1+a[n])/(1-a[n])∴令a[n]=tanθ,则a[n+1]=[tan(π/4)+tanθ]/[1-tan(π/4)tan θ]=tan(π/4+θ)∵θ=arctan(a[n]),π/4+θ=arctan(a[n+1])∴上面两式相减,得:arctan(a[n+1])-arctan(a[n])=π/4∵a[1]=2∴{arctan(a[n])}是首项为arctan(a[1])=arctan2,公差为π/4的等差数列即:arctan(a[n])=arctan2+(n-1)π/4∴a[n]=tan[(n-1)π/4+arctan2]。

巧用不动点法求数列的通项公式

巧用不动点法求数列的通项公式

巧用不动点法求数列的通项公式作者:孟兆福来源:《数理化学习·高一二版》2011年第07期在学习了数列之后,大家会经常遇到已知a1及递推公式a n+1=f(a n),求数列{a n}的通项公式的问题,很多题目令人感到非常棘手.本文将就此问题给出一个“公式”性的方法——不动点法,应用此法可巧妙地处理此类问题,供大家参考.若数列{a n}的递推公式为a n+1=f(a n),把此式中的a n+1、a n均换成x得方程x=f(x).我们把方程x=f(x)的实数根x称为数列{a n}的不动点.利用数列的非零不动点,即可简便快捷地求出数列{a n}的通项公式.一、若f(a n)为整式,而{a n}又只有一个非零不动点x0,则可考虑用化简a n+1-x0=f(a n)-x0的方法求解.例1 若a1=-1,a n=2a n-1+3(n∈N*,且n≥2),求数列{a n}的通项公式.分析:由x=2x+3知{a n}仅有一个非零不动点-3,则a n-(-3)=2a n-1+3-(-3)=2a n-1+6.所以a n+3=2(a n-1+3)所以{a n+3}是以a1+3=2首项、2为公比的等比数列,则当n≥2时,有a n+3=2n,故a n=2n-3.又a1=-1也满足上式.所以{a n}的通项公式为a n=2n-3.例2 若a1=0,a n+1=n+2na n+1n(n∈N*),求数列{a n}的通项公式.分析:由x=n+2nx+1n知{a n}仅有一个非零不动点-12,则a n+1-(-12)=n+2na n+1n-(-12).所以a n+1+12=n+2n(a n+12),则a n+1+12n+2=a n+12n.所以a n+1+12(n+1)(n+2)=a n+12n(n+1),故{a n+12n(n+1)}是一个常数列.所以a n+12n(n+1)=a1+121×(1+1)=122=14.所以a n=n2+n-24.又a1=0也满足上式.所以{a n}的通项公式为a n=n2+n-24.二、若f(a n)为分式,而{a n}有两个相同的非零不动点x0,则可考虑用化简a n+1-x0=f(a n)-x0的方法求解例3 若a1=-1,a n=12-a n-1(n∈N*,且n≥2),求数列{a n}的通项公式.分析:由x=12-x得{a n}有两个相同的非零不动点1,则a n-1=12-a n-1-1=a n-1-12-a n-1.两边取倒数得1a n-1=2-a n-1a n-1-1=1a n-1-1-1.所以{1a n-1}是以1a1-1=-12为首项、-1为公差的等差数列,故当n≥2时, 1a n-1=-12+(n-1)•(-1)=12-n.所以a n=3-2n1-2n.又a1=-1也满足上式.所以{a n}的通项公式为a n=3-2n1-2n.黑龙江省大庆一中(163100)。

数列特征根和不动点法解题原理

数列特征根和不动点法解题原理

数列特征根和不动点法解题原理一、数列特征根法。

1. 原理。

- 对于二阶线性递推数列a_n + 2=pa_n+1+qa_n(p,q为常数,n∈ N^*),其特征方程为x^2=px + q。

- 设特征方程的两个根为x_1,x_2。

- 当x_1≠ x_2时,数列a_n的通项公式为a_n=C_1x_1^n+C_2x_2^n,其中C_1,C_2由初始条件a_1,a_2确定。

- 当x_1 = x_2时,数列a_n的通项公式为a_n=(C_1+C_2n)x_1^n,同样C_1,C_2由初始条件确定。

2. 例题。

- 例1:已知数列{a_n}满足a_n + 2=3a_n+1-2a_n,且a_1=1,a_2=3,求数列{a_n}的通项公式。

- 解:特征方程为x^2=3x - 2,即x^2-3x + 2=0。

- 分解因式得(x - 1)(x - 2)=0,解得x_1=1,x_2=2。

- 所以a_n=C_1×1^n+C_2×2^n=C_1+C_2×2^n。

- 由a_1=1,a_2=3可得C_1+2C_2=1 C_1+4C_2=3。

- 用第二个方程减去第一个方程得2C_2=2,解得C_2 = 1。

- 把C_2=1代入C_1+2C_2=1得C_1=-1。

- 所以a_n=-1 + 2^n。

- 例2:已知数列{a_n}满足a_n + 2=2a_n+1-a_n,a_1=1,a_2=2,求a_n。

- 解:特征方程为x^2=2x - 1,即x^2-2x + 1 = 0。

- 解得x_1=x_2=1。

- 所以a_n=(C_1+C_2n)×1^n=C_1+C_2n。

- 由a_1=1,a_2=2可得C_1+C_2=1 C_1+2C_2=2。

- 用第二个方程减去第一个方程得C_2=1。

- 把C_2=1代入C_1+C_2=1得C_1=0。

- 所以a_n=n。

二、数列不动点法。

1. 原理。

- 对于一阶分式递推数列a_n + 1=frac{pa_n+q}{ra_n+s}(p,q,r,s为常数,r≠0),令x=(px + q)/(rx + s),这个方程称为不动点方程。

数列不动点

数列不动点

用不动点法求数列的通项定义:方程x x f =)(的根称为函数)(x f 的不动点.利用递推数列)(x f 的不动点,可将某些递推关系)(1-=n n a f a 所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法.定理1:若),1,0()(≠≠+=a a b ax x f p 是)(x f 的不动点,n a 满足递推关系)1(),(1>=-n a f a n n ,则)(1p a a p a n n -=--,即}{p a n -是公比为a 的等比数列.证明:因为 p 是)(x f 的不动点p b ap =+∴ap p b -=-∴由b a a a n n +⋅=-1得)(11p a a p b a a p a n n n -=-+⋅=---所以}{p a n -是公比为a 的等比数列. 定理2:设)0,0()(≠-≠++=bc ad c dcx bax x f ,}{n a 满足递推关系1),(1>=-n a f a n n ,初值条件)(11a f a ≠(1):若)(x f 有两个相异的不动点q p ,,则q a p a k q a p a n n n n --⋅=----11 (这里qca pca k --=)(2):若)(x f 只有唯一不动点p ,则k p a p a n n +-=--111 (这里da c k +=2)证明:由x x f =)(得x dcx bax x f =++=)(,所以0)(2=--+b x a d cx(1)因为q p ,是不动点,所以⎪⎩⎪⎨⎧=--+=--+0)(0)(22b q a d cq b p a d cp ⇒⎪⎪⎩⎪⎪⎨⎧--=--=qc a b qd q pc a b pd p ,所以 q a pa qc a pc a qc ab qd a pc a bpd a qca pc a qdb a qc a pd b a pc a qdca b aa p d ca b aa q a p a n n n n n n n n n n n n --⋅--=------⋅--=-+--+-=-++-++=------------1111111111)()(令qc a pca k --=,则q a p a k q a p a n n n n --=----11(2)因为p 是方程0)(2=--+b x a d cx 的唯一解,所以0)(2=--+b p a d cp 所以ap cp pd b -=-2,cda p 2-=所以 dca p a cp a d ca ap cp a cp a d ca pd b a cp a p d ca b aa p a n n n n n n n n n +--=+-+-=+-+-=-++=---------111211111))(()()(所以da c p a p a cp a cp d cp a c p a cp d p a c cp a p a d ca cp a p a n n n n n n n ++-=-⋅-++-=-++-⋅-=-+⋅-=-------211)(111111111令da ck +=2,则k p a p a n n +-=--111 例1:设}{n a 满足*11,2,1N n a a a a nn n ∈+==+,求数列}{n a 的通项公式 解:作函数xx x f 2)(+=,解方程x x f =)(求出不动点1,2-==q p ,于是 12212221211+-⋅-=++-+=+-++n n n n n n n n a a a a a a a a ,逐次迭代得n n n na a a a )21(12)21(12111-=+-⋅-=+-- 由此解得nn n n n a )1(2)1(21---+=+ 例2:数列}{n a 满足下列关系:0,2,2211≠-==+a a a a a a a nn ,求数列}{n a 的通项公式解:作函数xa a x f 22)(-=,解方程x x f =)(求出不动点a p =,于是a a a a a a a a aa a a a a aa n n n nn n 11)(1211221+-=-=-=--=-+ 所以}1{a a n -是以a a a 111=-为首项,公差为a1的等差数列 所以a n a n a a n a a a a n =⋅-+=⋅-+-=-1)1(11)1(111,所以naa a n +=定理3:设函数)0,0()(2≠≠+++=e a fex cbx ax x f 有两个不同的不动点21,x x ,且由)(1n n u f u =+确定着数列}{n u ,那么当且仅当a e b 2,0==时,2212111)(x u x u x u x u n n n n --=--++证明: Θk x 是)(x f 的两个不动点∴fex c bx ax x k k k k +++=2即k k k bx x a e f x c --=-2)()2,1(=k∴222221211222211222122111)()()()()()()()(bx x a e u ex b au bx x a e u ex b au f x c u ex b au f x c u ex b au f eu x c bu au f eu x c bu au x u x u n n n n n n n n n n n n n n n n --+-+--+-+=-+-+-+-+=+-+++-++=--++于是,2212111)(x u x u x u x u n n n n --=--++⇔22222112222221211222)()()()(x u x u x u x u bx x a e u ex b au bx x a e u ex b au n n n n n n n n +-+-=--+-+--+-+ ⇔22222112222221211222)()(x u x u x u x u abx x a e u a ex b u a bx x a e u a ex b u n n n n n n n n +-+-=--+-+--+-+ ⇔⎪⎪⎩⎪⎪⎨⎧-=--=-221122x aex b x aex b ⇔⎩⎨⎧=-+=-+0)2(0)2(21x e a b x e a b Θ11 21x x0≠ ∴方程组有唯一解a e b 2,0== 例3:已知数列}{n a 中,*211,22,2N n a a a a nn n ∈+==+,求数列}{n a 的通项.解:作函数为xx x f 22)(2+=,解方程x x f =)(得)(x f 的两个不动点为2±2222211)22(22222222222222+-=++-+=++-+=+-++n n nn n n nn n n n n a a a a a a a a a a a a再经过反复迭代,得1122211222211)2222()22()22()22(22--+-=+-=⋅⋅⋅⋅⋅⋅=+-=+-=+-----n n a a a a a a a a n n n n n n由此解得11112222)22()22()22()22(2------+-++⋅=n n n n n a其实不动点法除了解决上面所考虑的求数列通项的几种情形,还可以解决如下问题: 例4:已知1,011≠>a a 且)1(4162241+++=+n n n n n a a a a a ,求数列}{n a 的通项.解: 作函数为)1(416)(224+++=x x x x x f ,解方程x x f =)(得)(x f 的不动点为 i x i x x x 33,33,1,14321=-==-=.取1,1-==q p ,作如下代换: 423423422422411)11(146414641)1(4161)1(41611-+=+-+-++++=-+++++++=-+++n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a a a a 逐次迭代后,得:111141414141)1()1()1()1(------+-++=n n n n a a a a a n。

不动点法求数列通项


ca + d
(n——c口)Ⅱ + 6一

一 2
a n - + l


a n

fn + d
+T

c一 ·

一 d ·

n— d
nn一 — -
1 口 一 2



2 a+ d
Ca + d
a- d



n— d

...数列{ }是以 着一一专为首项,一专 c . (a,, - ̄-c- d)
 ̄盯ax+
b —
则 , cX2+ ( —
1_ &
n)-丁一 一O.显 然 ,它 的根 有 两种 情 况 .
(1)若 啊 + (d-a)x- b=0有 两 个 不 等 实 根 口,
则 , b= ca + (d-a)a
aa + b

d 十 1一



‰+1邓
Ⅱ一


一 一 印
个。等 寸
比数 列 ,从 而 可 以 求 出 的 表 达 式 ,进 而 解 出 nn,
n 一(一 )一 Pn 一 + q+ ,即 n +
得 到 数 列 {n )的通 项 公 式 ; (2)若 有 CX + (d-a)z一6— 0两 个 相 等 实 根 a,
一p(a 一 + ),故 {1 2.+ )是 以 n + 为 首 则 。一 ;
的 解 为 函 数 Y一_厂( )的 不 动 点 .本 文 通 过 两 例 归 纳 出两类 递 推 公 式 通 过不 动点 求 通 项 的 方 法
【例 1】 已 知数 列 {口 )满 足 a 一 1,n + 一 2a + 1,求 通 项 公 式 .

不动点法求数列的通项公式


)
8(an
1 7
)
an
1 7
8 7
8n1

an
8n 1 7
2.递推式形如
an1
Aan Can
B D
的数列
①当特征值 ,
是实数且不等时,
an an
为等比数列
②当特征值 ,
是实数且相等时,
an
1
为等差数列
③当特征值 , 是复数时,个别数列 an 具有周期性
练习2.
附录22 不动点法求数列的通项公式
一、有关概念
1.不动点 2.特征方程与特征值
二、常见题型
1.递推式形如 Aan1 Ban C 0 的数列
2.递推式形如
an1
Aan Can
B D
的数列
3.递推式形如 Aan2 Ban1 Can 0 的数列
1.不动点:方程 f (x) x 的根称为函数 f (x) 的不动点 例1:函数 f (x) x2 2x 的不动点是__x___0__或__x___3_
x x 3 3x 1
其特征值为虚根,故 {an}为周期数列
a1 0
, a2
a1 3 3a1 1
3
, a3
a2 3a2
3 1
3
a4
a3 3 0 3a3 1
周期为3也,故 a20 a2 3
3.递推式形如 Aan2 Ban1 Can 0 的数列
①当特征值 , 是实数且不等时,
能否找到一个图形,当它的面积无限减小时,它的周长则无限增大
解:因 an1 3an 1

(an1
1 2
)
3(an
1 2
)

an

2023年高考数学考前冲刺:用“不动点法”求数列的通项公式

第18讲用“不动点法”求数列的通项公式设已知数列}{n a 的项满足其中,1,0 c c 求这个数列的通项公式.采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x 称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理1.设上述递推关系式的特征方程的根为0x ,则当10a x 时,n a 为常数列,即0101,;x b a a x a a n n n 时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n .证明:因为,1,0 c 由特征方程得.10c dx 作换元,0x a b n n 则.)(110011n n n n n n cb x a c ccdca c d d ca x a b 当10a x 时,01 b ,数列}{n b 是以c 为公比的等比数列,故;11 n n c b b 当10a x 时,01 b ,}{n b 为0数列,故.N ,1 n a a n (证毕)下面列举两例,说明定理1的应用.【解析】解:作方程.2,230 x x x 则当41 a 时,.21123,1101 a b x a 数列}{n b 是以31为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111 n b a b b n n n n n n 【典例2】已知数列}{n a 满足递推关系:,N ,)32(1 n i a a n n 其中i 为虚数单位.当1a 取何值时,数列}{n a 是常数数列?【解析】解:作方程,)32(i x x则.5360ix要使n a 为常数,即则必须.53601ix a现在考虑一个分式递推问题(*).定理2.如果数列}{n a 满足下列条件:已知1a 的值且对于N n ,都有hra qpa a n n n 1(其中p 、q 、r 、h 均为常数,且r h a r qr ph1,0,),那么,可作特征方程hrx q px x .(1)当特征方程有两个相同的根 (称作特征根)时,若,1 a 则;N , n a n 若 1a ,则,N ,1n b a n n 其中.N ,)1(11 n r p rn a b n特别地,当存在,N 0 n 使00 n b 时,无穷数列}{n a 不存在.(2)当特征方程有两个相异的根1 、2 (称作特征根)时,则112n n n c c a ,,N n 其中).(,N ,(211212111a n rp r p a a c n n 其中证明:先证明定理的第(1)部分.作交换N , n a d n n 则hra qpa a d n n n n 11h ra hq r p a n n)(hd r hq r p d n n)())((r h rd q p h r r p d n n])([)(2①∵ 是特征方程的根,∴ .0)(2 q p h r hr qp 将该式代入①式得.N ,)(1 n rh rd r p d d n n n ②将rpx代入特征方程可整理得,qr ph 这与已知条件qr ph 矛盾.故特征方程的根,rp于是.0 r p ③当01 d ,即 11d a = 时,由②式得,N ,0 n b n 故.N , n d a n n 当01 d 即 1a 时,由②、③两式可得.N ,0 n d n 此时可对②式作如下变化:.1)(11rp rd r p r h r p d r h rd d n n n n④由 是方程h rx q px x的两个相同的根可以求得.2r hp ∴,122 h p p h rrh p p rr h p h r p r h 将此式代入④式得.N ,111n rp r d d n n 令.N ,1n d b nn 则.N ,1n r p r b b n n 故数列}{n b 是以r p r 为公差的等差数列.∴.N ,)1(1 n rp rn b b n 其中.11111a db 当0,N n b n 时,.N ,1n b d a nn n 当存在,N 0 n 使00 n b 时,001n n n b d a 无意义.故此时,无穷数列}{n a 是不存在的.再证明定理的第(2)部分如下:∵特征方程有两个相异的根1 、2 ,∴其中必有一个特征根不等于1a ,不妨令.12a 于是可作变换.N ,21n a a c n n n故21111n n n a a c ,将hra qpa a n n n 1代入再整理得N,)()(22111n hq r p a hq r p a c n n n ⑤由第(1)部分的证明过程知r p x不是特征方程的根,故.,21rp r p 故.0,021 r p r p 所以由⑤式可得:N,2211211n rp h q a r p hq a rp r p c n n n ⑥∵特征方程hrx q px x有两个相异根1 、2 方程0)(2q p h x rx 有两个相异根1 、2 ,而方程xrp xh q x与方程0)(2q p h x rx 又是同解方程.∴222111, rp hq r p h q 将上两式代入⑥式得N,2121211n c rp rp a a r p r p c n n n n 当,01 c 即11 a 时,数列}{n c 是等比数列,公比为rp rp 21 .此时对于N n 都有.)(((12121111211 n n n rp r p a a r p r p c c 当01 c 即11 a 时,上式也成立.由21n n n a a c 且21 可知.N ,1 n c n 所以.N ,112n c c a n n n (证毕)注:当qr ph 时,h ra q pa n n 会退化为常数;当0 r 时,hra qpa a n n n 1可化归为较易解的递推关系,在此不再赘述.将这问题一般化,应用特征方程法求解,有下述结果.【解析】解:依定理作特征方程,324x x x变形得,04222 x x 其根为.2,121 故特征方程有两个相异的根,使用定理2的第(2)部分,则有.N ,221211(2313(11212111n r p r p a a c n n n ∴.N ,51(521n c n n∴.N ,1)51(521)51(52211112n c c a n n n n n 即.N ,)5(24)5( n a nn n 【解析】解:作特征方程.32513x x 变形得,025102x x特征方程有两个相同的特征根.5 依定理2的第(1)部分解答.(1)∵ .,511 a a 对于,N n 都有;5 n a (2)∵.,311 a a ∴r p rn a b n)1(1151131)1(531n ,8121 n 令0 n b ,得5 n .故数列}{n a 从第5项开始都不存在,当n ≤4,N n 时,51751n n b a n n.(3)∵,5,61 a ∴.1 a ∴.,811)1(11N n n r p r n a b n令,0 n b 则.7n n ∴对于.0b N,n n ∴.N ,7435581111n n n n b a nn(4)显然当31 a 时,数列从第2项开始便不存在.由本题的第(1)小题的解答过程知,51 a 时,数列}{n a 是存在的,当51 a 时,则有.N ,8151)1(111 n n a r p r n a b n 令,0 n b 则得N ,11351n n n a 且n ≥2.∴当11351n n a (其中N n 且N≥2)时,数列}{n a 从第n 项开始便不存在.于是知:当1a 在集合3{ 或,:1135N n n n 且n ≥2}上取值时,无穷数列}{n a 都不存在.下面分两种情况给出递推数列dt c bt a t n n n 1通项的求解通法.(1)当c=0,时,由d t c b t a t n n n1dbt d a t n n 1,记k d a ,c db,则有c t k t n n 1(k≠0),∴数列{n t }的特征函数为)(x f =kx+c,由kx+c=x x=k c 1,则c t k t n n 1 )1(11k c t k k c t n n ∴数列}1{k ct n 是公比为k 的等比数列,∴11)1(1 n n k k c t k c t 11)1(1 n n k kct k c t .(2)当c≠0时,数列{n t }的特征函数为:)(x f =dx c bx a 由x dx c bx a 0)(2 b x a d cx 设方程0)(2b x a d cx 的两根为x 1,x 2,则有:0)(121 b x a d cx ,0)(222b x a d cx ∴12)(1x a d cx b (1)222)(x a d cx b (2)又设212111x t x t k x t x t n nn n (其中,n ∈N *,k 为待定常数).由212111x t x t k x t x t n nn n2121x t x t k x dt c b t a x d t c bt a n n n n n n212211x t x t k dx t cx b at dx t cx b at n nn n n n (3)将(1)、(2)式代入(3)式得:2122221121x t x t k ax t cx cx at ax t cx cx at n n n n n n212211))(())((x t x t k x t cx a x t cx a n nn n 21cx a cx a k∴数列{21x t x t n n }是公比为21cx a cx a (易证021cx a cx a )的等比数列.∴21x t x t n n =1212111n cxa cx a x t x t 12121111212111211n n n cxa cx a x t x t cxa cx a x t x t x x t .【解析】解:因为{a n }的特征函数为:312)(x f ,由1312)( x x x x f ,∴3121n n a a )1(3211 n n a a ∴数列{a n -1}是公比为32的等比数列,∴a n -1=1132)(1( n a a n =1+1)32( n .【解析】解:因为{a n }的特征函数为:1)( x x f ,由2,1023124)(212x x x x x x x x f 设212111 n nn n a a k a a 2121241124 n n n n n n a a k a a a a214233 n n n n a a k a a 21)2()1(23 n nn n a a k a a 23k 即21232111n n n n a a a a ,∴数列21n n a a 是公比为23的等比数列.∴111232121n n na a a a ∵a 1=3,∴123221n n na a 121232322 n n n n n a .【解析】解:因为{a n }的特征函数为:xx f 1)(,由x xxx f11)( i x i x x 212,01设ia ia k i a i a n n n n11 i a i a k i a a i a a n n n n n n1111i a i a k i a i a i a i a n n n n n n 11 i a i a k i a i a i i n nn n )()(11i i k11即i a ia i i i a i a n n n n1111,∴数列i a i a n n 是公比为i i11的等比数列.∴11111n n n i i i a i a i a i a ∵a 1=2,∴11122n n n i i i i i a i a122 n n n i ii i a i a 1)2(221)2(n n n i i i ii i a .【解析】解:∵)1(2n n a n S n n ……①∴n n a n S n n )1()1(121 ……②②-①得:)1()1()1(2121 n n n n a n a n a n n n2)2(1 n n na a n 2221n a n n a n n ……③因为{a n }的特征函数为:222)(n x n n x f ,由x n x n n x f 222)( x=1.设n n b a 1 1 n n b a ,111 n n b a ……④将④代入③得:22)1(211n b n n b n n n n b n n b 2121 n nb b n n ∴13423121n n n b b b b b b b b b b ,∵21111a b ∴)1(11153423121n n n n b n ∴)1(111 n n b a n n 。

教材一道例题引发的思考——函数不动点法求数列的通项公式

教材一道例题 引发 的思考
函数 不 动 点 法 求数 列 的通 项公 式
临汾 五 中 邰鲜 鲜
一 、 问 题 的 引 入
而利用等 比数列求的数列 { 通项公式 。
人教版 必修五第二章第一节 “数列的概
2.当 特 征 函 数 为 函 数 f(x)= +b)/f +d)
所 以 ,a1:1,a2— 3/16,a3=2/21,a4=1 则数列 {an)为周期数列,周期为 3,
(2)若 b≠ 0,即 数 列 f )满 足递 推 关 系
定 义 2:方 程 x)-x称 为 函 数 f(x)的不 动 an¨:(a·an+b)/(caⅡ+d)时 ,先 求特 征 方程 的根 。
解:因为,特征函数为/( )=妻
点 方 程 ,它 的实 数根 称 为 函数 ffx)的不 动点 。
设 6 :
,所 以数列 【b )是等 比数
; a n 一
列 ,首项 bl=3,公 比 q=5,
_ 3.5

解 得 :

5 + 1

作 者简 介 : 邰鲜 鲜 ,l980年 ,女 , 山西 临 汾人 ,本 科 学 历 . 中二 职称 ,临 汾 五 中教 师。
信任学生 ,和学生打成一片。师生关系融洽 , 感情融合也使教与学配合默契 ,实现 良好 的师 生 互 动 和 产 生 良好 的教 学 效 果 。 所 谓 “亲 其 师 ,信其道”就是这个道理。由此看出,平等 和谐 的师生关系是使学生快乐学习的保证。
项 求解很容易求 出数列 的前五项 。怎样求 出
f(x)=( +b)/(cx+d)=x的实数根 ,再根据 特征方
数列的通 鎏 … …… 。…… 。 满足6 :_ ab +三,利用3.1的方法先求出 程实数根构造辅助数列求解 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不动点法求数列通项公式
通常为了求出递推数列a[n+1]=(ca[n]+d)/(ea[n]+f)【c、d、e、f是不全为0的常数,c、e不同时为0】的通项,我们可以采用不动点法来解.假如数列{a[n]}满足a[n+1]=f(a[n]),我们就称x=f(x)为函数f(x)的不动点方程,其根称为函数f(x)的不动点.至于为什么用不动点法可以解得递推数列的通项,这足可以写一本书.但大致的理解可以这样认为,当n趋于无穷时,如果数列{a[n]}存在极限,a[n]和a[n+1]是没有区别的.
首先,要注意,并不是所有的递推数列都有对应的不动点方程,比如:a[n+1]=a[n]+1/a[n].其次,不动点有相异不动点和重合不动点.
下面结合不动点法求通项的各种方法看几个具体的例子吧.
◎例1:已知a[1]=2,a[n+1]=2/(a[n]+1),求通项.
【说明:这题是“相异不动点”的例子.】
先求不动点
∵a[n+1]=2/(a[n]+1)
∴令x=2/(x+1),解得不动点为:x=1 和x=-2 【相异不动点】
∴(a[n+1]-1)/(a[n+1]+2) 【使用不动点】
=(2/(a[n]+1)-1)/(2/(a[n]+1)+2)
=(2-a[n]-1)/(2+2a[n]+2)
=(-a[n]+1)/(2a[n]+4)
=(-1/2)(a[n]-1)/(a[n]+2)
∵a[1]=2
∴(a[1]-1)/(a[1]+2)=1/4
∴{(a[n]-1)/(a[n]+2)}是首项为1/4,公比为-1/2的等比数列
∴(a[n]-1)/(a[n]+2)=1/4(-1/2)^(n-1)
解得:a[n]=3/[1-(-1/2)^(n+1)]-2
◎例2:已知数列{a[n]}满足a[1]=3,a[n]a[n-1]=2a[n-1]-1,求通项. 【说明:这题是“重合不动点”的例子.“重合不动点”往往采用取倒数的方法.】
∵a[n]=2-1/a[n-1]
∴采用不动点法,令:x=2-1/x
即:x^2-2x+1=0
∴x=1 【重合不动点】
∵a[n]=2-1/a[n-1]
∴a[n]-1=2-1/a[n-1]-1 【使用不动点】
a[n]-1=(a[n-1]-1)/a[n-1]
两边取倒数,得:1/(a[n]-1)=a[n-1]/(a[n-1]-1)
即:1/(a[n]-1)-1/(a[n-1]-1)=1
∵a[1]=3
∴{1/(a[n]-1)}是首项为1/(a[1]-1)=1/2,公差为1的等差数列
即:1/(a[n]-1)=1/2+(n-1)=(2n-1)/2
∴a[n]=2/(2n-1)+1=(2n+1)/(2n-1)
例3:已知数列{a[n]}满足a[1]=1/2,S[n]=a[n]n^2-n(n-1),求通项.
【说明:上面两个例子中获得的不动点方程系数都是常数,现在看个不动点方程系数包含n的例子.】
∵S[n]=a[n]n^2-n(n-1)
∴S[n+1]=a[n+1](n+1)^2-(n+1)n
将上面两式相减,得:
a[n+1]=a[n+1](n+1)^2-a[n]n^2-(n+1)n+n(n-1)
(n^2+2n)a[n+1]=a[n]n^2+2n
(n+2)a[n+1]=na[n]+2
a[n+1]=a[n]n/(n+2)+2/(n+2) 【1】
采用不动点法,令:x=xn/(n+2)+2/(n+2)
解得:x=1 【重合不动点】
设:a[n]-1=b[n],则:a[n]=b[n]+1 【使用不动点】
代入【1】式,得:b[n+1]+1=(b[n]+1)n/(n+2)+2/(n+2)
b[n+1]=b[n]n/(n+2)
即:b[n+1]/b[n]=n/(n+2)
于是:【由于右边隔行约分,多写几行看得清楚点】
b[n]/b[n-1]=(n-1)/(n+1) 【这里保留分母】
b[n-1]/b[n-2]=(n-2)/n 【这里保留分母】
b[n-2]/b[n-3]=(n-3)/(n-1)
b[n-3]/b[n-4]=(n-4)/(n-2)
.
b[5]/b[4]=4/6
b[4]/b[3]=3/5
b[3]/b[2]=2/4 【这里保留分子】
b[2]/b[1]=1/3 【这里保留分子】
将上述各项左右各自累乘,得:
b[n]/b[1]=(1*2)/[n(n+1)]
∵a[1]=1/2
∴b[1]=a[1]-1=-1/2
∴b[n]=-1/[n(n+1)]
∴通项a[n]=b[n]+1=1-1/[n(n+1)]
◎例4:已知数列{a[n]}满足a[1]=2,a[n+1]=(2a[n]+1)/3,求通项. 【说明:这个例子说明有些题目可以采用不动点法,也可以采用其他解法.】
∵a[n+1]=(2a[n]+1)/3
求不动点:x=(2x+1)/3,得:x=1 【重合不动点】
∴a[n+1]-1=(2a[n]+1)/3-1 【使用不动点】
即:a[n+1]-1=(2/3)(a[n]-1)
∴{a[n]-1}是首项为a[1]-1=1,公比为2/3的等比数列
即:a[n]-1=(2/3)^(n-1)
∴a[n]=1+(2/3)^(n-1)
【又】∵a[n+1]=(2a[n]+1)/3
∴3a[n+1]=2a[n]+1
这时也可以用待定系数法,甚至直接用观察法,即可得到:
3a[n+1]-3=2a[n]-2
∴a[n+1]-1=(2/3)(a[n]-1)
【下面同上】
◎例5:已知数列{x[n]}满足x[1]=2,x[n+1]=(x[n]^2+2)/(2x[n]),求通项.
【说明:现在举个不动点是无理数的例子,其中还要采用对数的方法.】∵x[n+1]=(x[n]^2+2)/(2x[n])
∴采用不动点法,设:y=(y^2+2)/(2y)
y^2=2
解得不动点是:y=±√2 【相异不动点为无理数】
∴(x[n+1]-√2)/(x[n+1]+√2) 【使用不动点】
={(x[n]^2+2)/2x[n]-√2}/{(x[n]^2+2)/2x[n]+√2}
=(x[n]^2-2√2x[n]+2)/(x[n]^2+2√2x[n]+2)
={(x[n]-√2)/(x[n]+√2)}^2
∵x[n+1]=(x[n]^2+2)/2x[n]=x[n]/2+1/x[n]≥2/√2=√2
∴ln{(x[n+1]-√2)/(x[n+1]+√2)}=2ln{(x[n]-√2)/(x[n]+√2)} 【取对数】
∵x[1]=2>√2
∴(x[1]-√2)/(x[1]+√2)=3-2√2
∴{ln((x[n]-√2)/(x[n]+√2))}是首项为ln(3-2√2),公比为2的等比数

即:ln{(x[n]-√2)/(x[n]+√2)}=2^(n-1)ln(3-2√2)
(x[n]-√2)/(x[n]+√2)=(3-2√2)^[2^(n-1)]
x[n]-√2=(3-2√2)^[2^(n-1)](x[n]+√2)
x[n]-x[n](3-2√2)^[2^(n-1)]=√2(3-2√2)^[2^(n-1)]+√2
∴x[n]=√2{1+(3-2√2)^[2^(n-1)]}/{1-(3-2√2)^[2^(n-1)]}
◎例6:已知数列{a[n]}满足a[1]=2,a[n+1]=(1+a[n])/(1-a[n]),求通项.
【说明:现在举个不动点是虚数的例子,说明有些题目可以采用不动点法,但采用其他解法可能更方便.】
求不动点:x=(1+x)/(1-x),即:x^2=-1,得:
x[1]=i,x[2]=-i 【相异不动点为虚数,i为虚数单位】
∴(a[n+1]-i)/(a[n+1]+i) 【使用不动点】
={(1+a[n])/(1-a[n]-i}/{(1+a[n])/(1-a[n]+i}
=(1+a[n]-i+a[n]i)/(1+a[n]+i-a[n]i)
={(1+i)/(1-i)}{(a[n]-i)/(a[n]+i)}
=i(a[n]-i)/(a[n]+i)
∵a[1]=2
∴{(a[n]-i)/(a[n]+i)}是首项为(a[1]-i)/(a[1]+i)=(2-i)/(2+i),公比为i的等比数列
即:(a[n]-i)/(a[n]+i)=[(2-i)/(2+i)]i^(n-1)
(a[n]-i)(2+i)=(a[n]+i)(2-i)i^(n-1)
2a[n]-2i+ia[n]+1=(2a[n]+2i-ia[n]+1)i^(n-1)
{2+i-(2-i)(i)^(n-1)}a[n]=2i-1+(2i+1)i^(n-1)
a[n]=[2i-1+(2i+1)i^(n-1)]/[2+i-(2-i)i^(n-1)]
∴a[n]=[2i-1+(2-i)i^n]/[2+i-(2-i)i^(n-1)]
【下面用“三角代换”,看看是否更巧妙一些.】
∵a[n+1]=(1+a[n])/(1-a[n])
∴令a[n]=tanθ,则a[n+1]=[tan(π/4)+tanθ]/[1-tan(π/4)tan θ]=tan(π/4+θ)
∵θ=arctan(a[n]),π/4+θ=arctan(a[n+1])
∴上面两式相减,得:arctan(a[n+1])-arctan(a[n])=π/4
∵a[1]=2
∴{arctan(a[n])}是首项为arctan(a[1])=arctan2,公差为π/4的等差数列
即:arctan(a[n])=arctan2+(n-1)π/4
∴a[n]=tan[(n-1)π/4+arctan2]。

相关文档
最新文档