高考数学一轮复习方案 滚动基础训练卷(6) 理 (含解析) 北师大版
高考数学(北师大版理)一轮复习文档:第六章+数列+第1节

第1节 数列的概念及简单表示法最新考纲 1.了解数列的概念和几种简单的表示方法(列表、图像、通项公式); 2.了解数列是自变量为正整数的一类特殊函数.知 识 梳 理1.数列的概念(1)数列的定义:按照一定次序排列的一列数叫作数列,数列中的每一个数叫作这个数列的项.(2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N + (或它的有限子集)为定义域的函数a n =f (n ),当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是列表法、图像法和通项公式法. 2.数列的分类3.数列的通项公式(1)通项公式:如果数列{a n }的第n 项a n 与n 之间的关系可以用一个式子a n =f (n )来表示,那么这个公式叫作这个数列的通项公式.(2)递推公式:如果已知数列{a n }的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫作这个数列的递推公式. [常用结论与微点提醒]1.若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.2.在数列{a n }中,若a n 最大,则⎩⎨⎧a n ≥a n -1,a n ≥a n +1.若a n 最小,则⎩⎨⎧a n ≤a n -1,a n ≤a n +1.诊 断 自 测1.思考辨析(在括号内打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)一个数列中的数是不可以重复的.( ) (3)所有数列的第n 项都能使用公式表达.( )(4)根据数列的前几项归纳出的数列的通项公式可能不止一个.( ) 解析 (1)数列:1,2,3和数列:3,2,1是不同的数列. (2)数列中的数是可以重复的. (3)不是所有的数列都有通项公式. 答案 (1)× (2)× (3)× (4)√ 2.已知数列11×2,12×3,13×4,…,1n (n +1),…,下列各数中是此数列中的项的是( ) A.135B.142C.148D.154解析 n =6时,16×(6+1)=142为数列中的第6项.答案 B3.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A.15B.16C.49D.64解析 当n =8时,a 8=S 8-S 7=82-72=15. 答案 A4.(教材习题改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n=________.解析由a1=1=5×1-4,a2=6=5×2-4,a3=11=5×3-4,…,归纳a n=5n-4.答案5n-45.(2017·福州八中质检)已知数列{a n}满足a1=1,a n+1=a2n-2a n+1(n∈N+),则a2 018=________.解析∵a1=1,∴a2=(a1-1)2=0,a3=(a2-1)2=1,a4=(a3-1)2=0,…,可知数列{a n}是以2为周期的数列,∴a2 018=a2=0.答案0考点一由数列的前几项求数列的通项【例1】根据下面各数列前几项的值,写出数列的一个通项公式:(1)23,415,635,863,1099,…;(2)-1,7,-13,19,…;(3)12,2,92,8,252,…;(4)5,55,555,5 555,….解(1)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积,分子依次为2,4,6,…,相邻的偶数.故所求数列的一个通项公式为a n=2n(2n-1)(2n+1). (2)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为a n=(-1)n(6n-5).(3)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即12,42,92,162,252,…,分子为项数的平方,从而可得数列的一个通项公式为a n =n 22.(4)将原数列改写为59×9,59×99,59×999,…,易知数列9,99,999,…的通项为10n-1,故所求的数列的一个通项公式为a n =59(10n-1).规律方法 根据所给数列的前几项求其通项时,需仔细观察分析,抓住以下几方面的特征:(1)分式中分子、分母的各自特征; (2)相邻项的联系特征; (3)拆项后的各部分特征;(4)符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想. 【训练1】 (1)(2018·长沙模拟)已知数列的前4项为2,0,2,0,则依此归纳该数列的通项不可能是( ) A.a n =(-1)n -1+1B.a n =⎩⎨⎧2,n 为奇数,0,n 为偶数C.a n =2sin n π2D.a n =cos(n -1)π+1(2)(2018·青岛模拟)数列1,3,6,10,15,…的一个通项公式是( ) A.a n =n 2-(n -1) B.a n =n 2-1C.a n =n (n +1)2D.a n =n (n -1)2解析 (1)对n =1,2,3,4进行验证,a n =2sin n π2不合题意. (2)设此数列为{a n },则由题意可得a 1=1,a 2=3,a 3=6, a 4=10,a 5=15,…仔细观察数列1,3,6,10,15,…可以发现: 1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4, …所以第n 项为1+2+3+4+5+…+n =n (n +1)2,所以数列1,3,6,10,15,…的通项公式为a n =n (n +1)2.答案 (1)C (2)C考点二 由S n 与a n 的关系求a n (易错警示)【例2】 (1)(教材习题改编)已知数列{a n }的前n 项和为S n =14n 2+23n +3,则数列{a n }的通项公式a n =________.(2)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________. 解析 (1)当n =1时,a 1=S 1=4712, 当n ≥2时,a n =S n -S n -1=14n 2+23n +3-⎣⎢⎡⎦⎥⎤14(n -1)2+23(n -1)+3=12n +512,经检验a 1=4712不满足上式所以这个数列的通项公式为a n =⎩⎪⎨⎪⎧4712,n =1,12n +512,n ≥2.(2)由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13, 两式相减,得a n =23a n -23a n -1,∴当n ≥2时,a n =-2a n -1,即a na n -1=-2.又n =1时,S 1=a 1=23a 1+13,a 1=1, ∴a n =(-2)n -1.答案(1)⎩⎪⎨⎪⎧4712,n =1,12n +512,n ≥2(2)(-2)n -1规律方法 数列的通项a n 与前n 项和S n 的关系是a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.①当n =1时,a 1若适合S n -S n -1,则n =1的情况可并入n ≥2时的通项a n ;②当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示.易错警示 在利用数列的前n 项和求通项时,往往容易忽略先求出a 1,而是直接把数列的通项公式写成a n =S n -S n -1的形式,但它只适用于n ≥2的情形. 【训练2】 (1)已知数列{a n }的前n 项和S n =2n 2-3n ,则数列{a n }的通项公式a n =________.(2)已知数列{a n }的前n 项和S n =3n +1,则数列的通项公式a n =________. 解析 (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合上式,∴a n =4n -5. (2)当n =1时,a 1=S 1=3+1=4,当n ≥2时,a n =S n -S n -1=3n +1-3n -1-1=2·3n -1. 显然当n =1时,不满足上式. ∴a n =⎩⎨⎧4,n =1,2·3n -1,n ≥2.答案 (1)4n -5 (2)⎩⎨⎧4,n =1,2·3n -1,n ≥2 考点三 由数列的递推关系求通项公式 【例3】 在数列{a n }中,(1)若a 1=2,a n +1=a n +3n +2,则数列{a n }的通项公式a n =________. (2)若a 1=1,na n -1=(n +1)a n (n ≥2),则数列{a n }的通项公式a n =________. (3)若a 1=1,a n +1=2a n +3,则通项公式a n =________. 解析 (1)由题意,得a n +1-a n =3n +2,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =(3n -1)+(3n -4)+…+5+2 =n (3n +1)2.即a n =32n 2+n2.(2)由na n -1=(n +1)a n (n ≥2),得a n a n -1=n n +1(n ≥2). 所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n n +1·n -1n ·n -2n -1·…·34·23·1 =2n +1,又a 1也满足上式. 所以a n =2n +1.(3)设递推公式a n +1=2a n +3可以转化为a n +1+t =2(a n +t ),即a n +1=2a n +t ,解得t =3.故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2.所以{b n }是以4为首项,2为公比的等比数列. ∴b n =4·2n -1=2n +1,∴a n =2n +1-3. 答案 (1)32n 2+n 2 (2)2n +1(3)2n +1-3规律方法 1.形如a n +1=a n +f (n )的递推关系式利用累加法求通项公式,特别注意能消去多少项,保留多少项.2.形如a n +1=a n ·f (n )的递推关系式可化为a n +1a n=f (n )的形式,可用累乘法,也可用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1代入求出通项.3.形如a n +1=pa n +q 的递推关系式可以化为(a n +1+x )=p (a n +x )的形式,构成新的等比数列,求出通项公式,求变量x 是关键. 【训练3】 在数列{a n }中, (1)若a 1=3,a n +1=a n +1n (n +1),则通项公式a n =________.(2)若a 1=1,a n +1=2n a n ,则通项公式a n =________.(3)若a 1=1,a n +1=2a na n +2,则数列{a n }的通项公式a n =________.解析 (1)原递推公式可化为a n +1=a n +1n -1n +1,则a 2=a 1+11-12,a 3=a 2+12-13,a 4=a 3+13-14,…,a n -1=a n -2+1n -2-1n -1,a n =a n -1+1n -1-1n ,以上(n -1)个式子的等号两端分别相加得,a n =a 1+1-1n ,故a n =4-1n . (2)由a n +1=2n a n ,得a na n -1=2n -1(n ≥2),所以a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=2n (n -1)2.又a 1=1适合上式,故a n =2n (n -1)2.(3)因为a n +1=2a na n +2,a 1=1,所以a n ≠0,所以1a n +1=1a n +12,即1a n +1-1a n=12.又a 1=1,则1a 1=1,所以⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.所以1a n =1a 1+(n -1)×12=n 2+12.所以a n =2n +1(n ∈N +).答案 (1)4-1n (2)2n (n -1)2 (3)2n +1基础巩固题组 (建议用时:40分钟)一、选择题1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n 等于( ) A.(-1)n +12B.cos n π2C.cosn +12πD.cos n +22π解析 令n =1,2,3,…,逐一验证四个选项,易得D 正确. 答案 D2.(2018·湘潭一中、长沙一中联考)已知数列{a n }满足:任意m ,n ∈N +,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( )A.132B.116C.14D.12解析 由题意,得a 2=a 1a 1=14,a 3=a 1·a 2=18,则a 5=a 3·a 2=132. 答案 A3.(2017·黄山二模)已知数列{a n }的前n 项和为S n ,且a 1=2,a n +1=S n +1(n ∈N +),则S 5=( ) A.31B.42C.37D.47解析 由题意,得S n +1-S n =S n +1(n ∈N +),∴S n +1+1=2(S n +1)(n ∈N +),故数列{S n +1}为等比数列,其首项为3,公比为2,则S 5+1=3×24,所以S 5=47. 答案 D4.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n 等于( ) A.2n -1 B.n 2 C.(n +1)2n 2D.n 2(n -1)2解析 设数列{a n }的前n 项积为T n ,则T n =n 2, 当n ≥2时,a n =T n T n -1=n 2(n -1)2.答案 D5.数列{a n }满足a n +1+a n =2n -3,若a 1=2,则a 8-a 4=( ) A.7B.6C.5D.4解析 依题意得(a n +2+a n +1)-(a n +1+a n )=[2(n +1)-3]-(2n -3),即a n +2-a n =2,所以a 8-a 4=(a 8-a 6)+(a 6-a 4)=2+2=4. 答案 D 二、填空题6.若数列{a n }的前n 项和S n =3n 2-2n +1,则数列{a n }的通项公式a n =________. 解析 当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎨⎧2,n =1,6n -5,n ≥2.答案 ⎩⎨⎧2,n =1,6n -5,n ≥27.(2018·西安调研改编)已知数列{a n }中,a 1=1,a n +1=a n +2n +1,则a 5=________. 解析 依题意得a n +1-a n =2n +1,a 5=a 1+(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+(a 5-a 4)=1+3+5+7+9=25. 答案 258.已知a n =n 2+λn ,且对于任意的n ∈N +,数列{a n }是递增数列,则实数λ的取值范围是________.解析 因为{a n }是递增数列,所以对任意的n ∈N +,都有a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1).(*)因为n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3. 答案 (-3,+∞) 三、解答题9.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n+12a n (n ∈N +). (1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式. 解 (1)由S n =12a 2n+12a n (n ∈N +)可得 a 1=12a 21+12a 1,解得a 1=1, S 2=a 1+a 2=12a 22+12a 2,解得a 2=2, 同理,a 3=3,a 4=4. (2)S n =a n 2+12a 2n ,①当n ≥2时,S n -1=a n -12+12a 2n -1,② ①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }为首项为1,公差为1的等差数列,故a n =n .10.已知数列{a n }中,a 1=3,a n +1·a n =2n ,求a n .解 因为a n +1·a n =2n ,所以a n +2·a n +1=2n +1,a 2=23,故a n +2a n=2,所以数列{a n }的奇数项构成以3为首项,以2为公比的等比数列;偶数项构成以23为首项,以2为公比的等比数列.当n 为偶数时,a n =a 2·2n 2-1=23·2n 2-1,即a n =13·2n 2;当n 为奇数时,a n =3·2n -12.综上所述,a n =⎩⎪⎨⎪⎧3·2n -12,n 为奇数,13·2n 2,n 为偶数(n ≥1,n ∈N +). 能力提升题组(建议用时:20分钟)11.数列{a n }的通项a n =n n 2+90,则数列{a n }中的最大项是( ) A.310 B.19 C.119 D.1060解析 令f (x )=x +90x (x >0),得f (x )≥290,当且仅当x =310时等号成立.因为a n =1n +90n ,所以1n +90n ≤1290,由于n ∈N +,不难发现当n =9或n =10时,a n =119最大.答案 C12.(2017·湘中名校联考)对于数列{a n },定义H n =a 1+2a 2+…+2n -1a n n为{a n }的“优值”,现在已知某数列{a n }的“优值”H n =2n +1,记数列{a n -kn }的前n 项和为S n ,若S n ≤S 5对任意的n ∈N +恒成立,则实数k 的取值范围为________. 解析 由H n =2n +1,得n ·2n +1=a 1+2a 2+…+2n -1a n ①,(n -1)·2n =a 1+2a 2+…+2n -2a n -1②,①-②,得2n -1a n =n ·2n +1-(n -1)·2n ,所以a n =2n +2,a n -kn=(2-k )n +2,又S n ≤S 5对任意的n ∈N +恒成立,所以⎩⎨⎧a 5≥0,a 6≤0,即⎩⎨⎧5(2-k )+2≥0,6(2-k )+2≤0,解得73≤k ≤125. 答案 ⎣⎢⎡⎦⎥⎤73,125 13.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N +,a ∈R 且a ≠0). (1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N +,都有a n ≤a 6成立,求a 的取值范围.解 (1)∵a n =1+1a +2(n -1)(n ∈N +,a ∈R ,且a ≠0), 又a =-7,∴a n =1+12n -9(n ∈N +). 结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N +).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2, 已知对任意的n ∈N +,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 可知5<2-a 2<6,即-10<a <-8.即a 的取值范围是(-10,-8).精美句子1、善思则能“从无字句处读书”。
【走向高考】高三数学一轮复习 6-5同步练习 北师大版

第6章 第5节一、选择题1.如果数列{a n }的前n 项和S n =14(9n -4n )(n ∈N *),那么这个数列( )A .是等差数列而不是等比数列B .是等比数列而不是等差数列C .既是等差数列又是等比数列D .既不是等差数列又不是等比数列 [答案] B[解析] S n =⎝ ⎛⎭⎪⎫94n -1符合S n =Aq n-A 的特征,故该数列为等比数列.2.数列{a n }的前n 项和S n =n 2-2n -1,则a 3+a 17等于( ) A .15 B .17 C .34 D .398 [答案] C[解析] a 3=S 3-S 2=(32-2×3-1)-(22-2×2-1)=3.a 17=S 17-S 16=(172-2×17-1)-(162-2×16-1)=31,∴a 3+a 17=34.3.某种细胞开始时有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按照此规律,6小时后细胞存活数是( )A .33B .64C .65D .127 [答案] B[解析] 每一小时后细胞变为前一小时细胞数的2倍减1,4小时后为17个,5小时后为33个,6小时后为65个.4.(2011·黄冈模拟)小正方形按照如图的规律排列:每个图中的小正方形的个数就构成一个数列{a n },有以下结论: ①a 5=15;②数列{a n }是一个等差数列; ③数列{a n }是一个等比数列;④数列的递推公式为:a n +1=a n +n +1(n ∈N *). 其中正确的命题序号为( ) A .①② B .①③ C .①④ D .① [答案] C[解析] 当n =1时,a 1=1;当n =2时,a 2=3;当n =3时,a 3=6;当n =4时,a 4=10,…,观察图中规律,有a n +1=a n +n +1,a 5=15.故①④正确.5.△ABC 中,tan A 是以-4为第三项,-1为第七项的等差数列的公差,tan B 是以12为第三项,4为第六项的等比数列的公比,则该三角形的形状是( )A .钝角三角形B .锐角三角形C .等腰直角三角形D .以上均错 [答案] B[解析] 由题意知:tan A =-1--7-3=34>0. tan 3B =412=8,∴tan B =2>0,∴A 、B 均为锐角.又∵tan(A +B )=34+21-34×2=-112<0,∴A +B 为钝角,即C 为锐角, ∴△ABC 为锐角三角形.6.在正项数列{a n }中,a 1=2,点(a n ,a n -1)(n ≥2)在直线x -2y =0上,则数列{a n }的通项公式a n为( )A.2n-1B.2n-1+1C.2nD.2n+1[答案] C[解析] 据题意得a n-2a n-1=0,即a n=2a n-1,所以a n=2×2n-1=2n.7.编辑一个运算程序:1&1=2,m&n=k,m&(n+1)=k+3(m、n、k∈N*),1&2004的输出结果为( )A.2004B.2006C.4008D.6011[答案] D[解析] 由已知m&(n+1)-m&n=3可得,数列{1&n}是首项为1&1=2,公差为3的等差数列,∴1&2004=2+(2004-1)×3=6011.应选D.8.下表给出一个“直角三角形数阵”141 2,143 4,38,316……满足每一列成等差数列,从第三行起,每一行的数成等比数列,且诸行的公比都相等,记第i行,第j列的数列为a ij(i≥j,i,j∈N),则a83等于( )A.1 8B.1 4C.1 2D.1[答案] C[解析] 由已知在第一列构成的等差数列中,首项为14,公差为14,∴a81=14+(8-1)·14=2在每行构成的等比数列中公比q =12,∴a 83=2·(12)2=12.二、填空题9.已知m 、n 、m +n 成等差数列,m 、n 、mn 成等比数列,则椭圆x 2m +y 2n=1的离心率为________.[答案]22[解析] 由2n =2m +n 和n 2=m 2n 可得m =2,n =4, ∴e =n -m n=22. 10.已知α∈(0,π2)∪(π2,π),且sin α,sin2α,sin4α成等比数列,则α的值为________.[答案]2π3[解析] 由题意,sin 22α=sin α·sin4α, ∴sin 22α=2sin α·sin2α·cos2α, 即sin2α=2sin α·cos2α,∴2sin αcos α=2sin α·cos2α,即cos α=cos2α, ∴2cos 2α-1=cos α,∴(2cos α+1)(cos α-1)=0. 解得cos α=1(舍去)或cos α=-12,∴α=2π3.11.(文)(2010·江苏卷)函数y =x 2(x >0)的图像在点(a k ,a k 2)处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *,若a 1=16,则a 1+a 3+a 5的值是________.[答案] 21[解析] 本题主要考查了导数的几何意义及等比数列的知识,要求数列的和,关键在于确定a k 与a k +1之间的关系,再利用数列的相关知识求解.∵y ′=2x ,∴过点(a k ,a k 2)的切线方程为y -a k 2=2a k (x -a k ),又该切线与x 轴的交点为(a k +1,0),所以a k +1=12a k ,即数列{a k }是等比数列,首项a 1=16,其公比q =12,∴a 3=4,a 5=1,∴a 1+a 3+a 5=21.(理)如图,“杨辉三角”中从上往下数共有n (n >7,n ∈N )行,设其第k (k ≤n ,k ∈N *)行中不是1的数字之和为a k ,由a 1,a 2,a 3,…组成的数列{a n }的前n 项和是S n .现在下面四个结论:①a 8=254;②a n =a n -1+2n ;③S 3=22;④S n =2n +1-2-2n .1 1 12 1 13 3 1 14 6 4 1 … … … …其中正确结论的序号为________.(写出所有你认为正确的结论的序号) [答案] ①④[解析] 由已知得a n =C n 0+C n 1+C n 2+…+C n n-2 =(1+1)n -2=2n-2,∴a 8=28-2=256-2=254,①正确;a n -a n -1=2n -2-2n -1+2=2n -1≠2n ,②不正确;∵S n =2-2+22-2+ (2)-2=-2n1-2-2n =2n +1-2n -2,∴S 3=24-6-2=8≠22,③不正确,④正确. ∴①④正确. 三、解答题12.已知数列{a n }是公差d ≠0的等差数列,记S n 为其前n 项和. (1)若a 2、a 3、a 6依次成等比数列,求其公比q .(2)若a 1=1,证明点P 1⎝ ⎛⎭⎪⎫1,S 11,P 2⎝ ⎛⎭⎪⎫2,S 22,…,P n ⎝ ⎛⎭⎪⎫n ,S n n (n ∈N *)在同一条直线上,并写出此直线方程.[解析] (1)∵a 2、a 3、a 6依次成等比数列, ∴q =a 3a 2=a 6a 3=a 6-a 3a 3-a 2=3dd=3,即公比q =3.(2)证明:∵S n =na 1+n n -2d ,∴S n n=a 1+n -12d =1+n -12d .∴点P n ⎝⎛⎭⎪⎫n ,S n n 在直线y =1+x -12d 上.∴点P 1,P 2,…,P n (n ∈N *)都在过点(1,1)且斜率为d2的直线上.此直线方程为y -1=d2(x -1).13.(2010·福建文)数列{a n }中,a 1=13.前n 项和S n 满足S n +1-S n =(13)n +1(n ∈N *).(1)求数列{a n }的通项公式a n 以及前n 项和S n ;(2)若S 1,t (S 1+S 2),3(S 2+S 3)成等差数列,求实数t 的值.[解析] 本小题主要考查数列,等差数列,等比数列等基础知识,考查运算求解能力,考查函数与方程思想,化归与转化思想.(1)由S n +1-S n =(13)n +1得a n +1=(13)n +1(n ∈N *)又a 1=13,故a n =(13)n (n ∈N *)从而S n =13×[1-13n]1-13=12[1-(13)n ](n ∈N *) (2)由(1)可得S 1=13,S 2=49,S 3=1327从而由S 1,t (S 1+S 2),3(S 2+S 3)成等差数列可得 13+3×(49+1327)=2×(13+49)t ,解得t =2. 14.(2010·湖北文)已知某地今年年初拥有居民住房的总面积为a (单位:m 2),其中有部分旧住房需要拆除.当地有关部门决定每年以当年年初住房面积的10%建设新住房,同时也拆除面积为b (单位:m 2)的旧住房.(1)分别写出第一年末和第二年末的实际住房面积的表达式;(2)如果第五年末该地的住房面积正好比今年年初的住房面积增加了30%,则每年拆除的旧住房面积b 是多少?(计算时取1.15=1.6)[解析] 本小题主要考查阅读资料,提取信息,建立数学模型的能力,同时考查运用所学知识分析和解决实际问题的能力.(1)第1年末的住房面积a ·1110-b =(1.1a -b )(m 2) 第2年末的住房面积(a ·1110-b )1110-b =a (1110)2-b (1+1110)=(1.21a -2.1b )(m 2)(2)第3年末的住房面积⎣⎢⎡⎦⎥⎤a 11102-b+1110·1110-b =a ·⎝ ⎛⎭⎪⎫11103-b ⎣⎢⎡ 1+1110+⎦⎥⎤11102第4年末住房面积为:a (1110)4-b ⎣⎢⎡⎦⎥⎤1+1110+11102+11103.第5年末住房面积为:a ·(1110)5-b ⎣⎢⎡ 1+1110+11102+11103⎦⎥⎤+11104=1.6a -6b 依题意可得,1.6a -6b =1.3a ,解得b =a20,所以每年拆除的旧房面积为a20(m 2).15.某企业投资1000万元于一个高科技项目,每年可获利25%.由于企业间竞争激烈,每年年底需要从利润中取出资金200万元进行科研、技术改造与广告投入,方能保持原有的利润增长率,问经过多少年后,该项目资金可以达到或超过翻两番(4倍)的目标?(取lg2=0.3)[解析] 设该企业逐年的项目资金依次为a 1,a 2,a 3,…,a n ,则由已知a n +1=a n (1+25%)-200(n ∈N *),即a n +1=54a n -200,令a n +1-x =54(a n -x ),即a n +1=54a n -14x ,由x4=200,得x =800, ∴a n +1-800=54(a n -800)(n ∈N *),故{a n -800}是以a 1-800为首项,54为公比的等比数列.∵a 1=1000(1+25%)-200=1050, ∴a 1-800=250∴a n -800=250⎝ ⎛⎭⎪⎫54n -1,∴a n =800+250⎝ ⎛⎭⎪⎫54n -1(n ∈N *).由题意a n ≥4000,∴800+250⎝ ⎛⎭⎪⎫54n -1≥4000,即⎝ ⎛⎭⎪⎫54n≥16, ∴n ln 54≥lg16,即n (1-3lg2)≥4lg2,∵lg2=0.3,∴0.1n ≥1.2,故n ≥12. 答:经过12年后,该项目资金可以翻两番.教师备课平台一、函数与方程的思想在数列中的应用在数列中,数列本身就是一种函数.这种函数的定义域是N +(或其子集),从而表现在图像上就是孤立的点.数列具有单调性,如等差数列(除去公差为0的情况),等比数列(如a 1>0,q >1).因此研究数列问题,可以类比函数的一些性质来研究,用运动变化的观点来研究,例如数列中求某项的范围问题,某个字母的范围问题、最值问题等就可以利用函数思想,转化成求函数值域问题,或解不等式.在等差、等比数列问题中,已知五个基本量中的几个,求另几个时,往往是设出基本量,建立方程或方程组来解决问题.但需注意数列看作函数时的定义域与一般函数定义域的区别.[例1] 已知数列{a n }的前n 项和为S n ,点(n ,S n )在函数f (x )=2x-1的图像上,数列{b n }满足b n =log 2a n -12(n ∈N *).(1)求数列{a n }的通项公式a n ;(2)当数列{b n }的前n 项和最小时,求n 的值;(3)设数列{b n }的前n 项和为T n ,求不等式T n <b n 的解集.[分析] 先利用函数关系求出S n 的表达式,再依a n 与S n 关系求出a n .进而求出b n 、T n ,使问题解决.[解析] 由题意得S n =2n-1. (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=(2n -1)-(2n -1-1)=2n -1.又∵a 1=1=21-1,∴a n =2n -1.(2)b n =log 2a n -12=log 22n -1-12=(n -1)-12=n -13,∴b n =n -13,令b n ≥0得n ≥13,∴数列{b n }的前12项均为负数,第13项为0,从第14项起均为正数,∴当n =12或13时,数列{b n }的前n 项和最小.(3)∵b n +1-b n =1,∴数列{b n }为等差数列. ∴T n =n n -2<n -13,整理得n 2-27n +26<0,解得1<n <26. ∴T n <b n 的解集为{n |1<n <26,n ∈N *}.[例2] 设S n 为等差数列{a n }的前n 项和,已知S 7=21,S 15=-75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n项和,求T n 的最大值.[分析] 列方程组可求得S n ,继而求得T n ,把T n 看成关于自变量n 的函数来求最大值即可.[解析] 设等差数列{a n }公差为d ,则S n =na 1+12n (n -1)d .∵S 7=21,S 15=-75,∴⎩⎪⎨⎪⎧7a 1+21d =21,15a 1+105d =-75,即⎩⎪⎨⎪⎧a 1+3d =3,a 1+7d =-5,解得⎩⎪⎨⎪⎧a 1=9,d =-2.∴S n =na 1+n n -2d =9n -(n 2-n )=10n -n 2,则S nn=10-n , ∵S n +1n +1-S nn=-1, ∴数列⎩⎨⎧⎭⎬⎫S n n 是以9为首项,公差为-1的等差数列.则T n =n ·[9+-n2=-12n 2+192n=-12⎝ ⎛⎭⎪⎫n -1922+3618.∵n ∈N *,∴当n =9或n =10时,T n 有最大值45. 二、分类整合思想在数列中的应用分类整合思想在数列中的体现,主要是表现在对字母范围的讨论上.例如,涉及到等比数列前n 项和问题时,需要对公比q 进行讨论,在对公比q 进行讨论时,除去q =1,q ≠1两种情况外,有时还需对0<q <1及q >1进行讨论,这需认真审题弄清题意,切实做到分类讨论时不漏不重,合情合理.已知S n 求a n 时,需对n =1与n ≥2两种情况进行讨论.最后需进行验证,能否将通项公式写为一个通式.若能,则写为一个通式;若不能,则需写成分段函数的形式.[例3] 设等比数列{a n }的公比为q ,前n 项和S n >0(n =1,2,…). (1)求q 的取值范围;(2)设b n =a n +2-32a n +1,记{b n }的前n 项和为T n ,试比较S n 和T n 的大小.[解析] (1)因为{a n }是等比数列,S n >0, 可得a 1=S 1>0,q ≠0. 当q =1时,S n =na 1>0; 当q ≠1时,S n =a 1-q n1-q>0,∴1-q n1-q>0.∴⎩⎪⎨⎪⎧1-q <01-q n<0或⎩⎪⎨⎪⎧1-q >01-q n>0.∴-1<q <0或0<q <1或q >1. 综上所述,q >-1且q ≠0.(2)由b n =a n +2-32a n +1得b n =a n ⎝⎛⎭⎪⎫q 2-32q ,∴T n =⎝⎛⎭⎪⎫q 2-32q S n∴T n -S n =S n ⎝ ⎛⎭⎪⎫q 2-32q -1=S n ⎝ ⎛⎭⎪⎫q +12(q -2),∴当-1<q <-12或q >2时,T n >S n ;当-12<q <2且q ≠0时,T n <S n ;当q =-12或q =2时,T n =S n .三、转化思想在数列中的运用在数列中,处处体现转化与化归的思想.例如,求a 1、a n 、n 、S n 、d 、q 时,往往是设出基本量,转化为解方程(组)问题;等差数列的单调性、前n 项和最值问题可转化为解不等式组、二次函数或利用图像来解决;数列的求和问题往往转化为等差、等比数列的求和问题;求数列的通项公式、解数列应用题等都要进行相应的转化.[例4] (2011·哈尔滨模拟)数列{a n }中,a 1=57,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *). (1)求证:数列{b n }是等差数列; (2)求a n ;(3)求数列{a n }中的最大项与最小项.[分析] (1)根据已知a n 与b n 的关系式利用等差数列的定义证明.(2)利用(1)的结论,数列{b n }是等差数列,确定其通项公式,根据已知a n 与b n 的关系求解.(3)利用(2)的结论,即求出的a n 的表达式,利用函数的单调性求解即可. [解析] (1)证明:∵b n -b n -1=1a n -1-1a n -1-1=12-1a n -1-1-1a n -1-1=1(n ≥2).∴{b n }是等差数列.(2)∵{b n }是等差数列,首项b 1=1a 1-1=-72且公差为1, ∴b n =-72+(n -1)×1,即b n =n -92, ∴1a n -1=n -92,a n =1n -92+1=2n -72n -9. (3)∵a n =1n -92+1, 而函数f (x )=1x -92+1在⎝ ⎛⎭⎪⎫-∞,92,⎝ ⎛⎭⎪⎫92,+∞上都是减函数, ∴a 1>a 2>a 3>a 4,a 5>a 6>a 7>…,且当n ≤4时,a n <1;当n >4时,a n >1,∴最大项为a 5=3,最小项为a n =-1.四、定义的应用深刻理解等差、等比数列的定义,能正确运用定义和等差、等比数列的性质,是学好本板块的关键.在正确理解定义的基础上,要认真分析等差数列、等比数列定义中所蕴含的各自的特点,不要被某些问题的表面现象所迷惑,特别是一些与定义有关的题目,可能会在关键词部位做手脚,使人产生错觉而出错.[例5] 已知数列{a n }的前n 项和为S n ,又有数列{b n },它们满足关系b 1=a 1,对n ∈N +,有a n +S n =n ,b n +1=a n +1-a n .求证:数列{b n }是等比数列,并写出它的通项公式.[解析] 当n =1时,a 1=S 1,故a 1=b 1=12. 当n ≥2时,a n +S n =n ,a n +1+S n +1=n +1,两式相减得2a n +1-a n =1①将①中的n 换为n -1,有2a n -a n -1=1②由①-②得2(a n +1-a n )-(a n -a n -1)=0(n ≥2),即2b n +1=b n (n ≥2),于是b n +1b n =12(n ≥2). 又由a 2+S 2=2,得a 2=34,b 2=a 2-a 1=14,于是b 2b 1=12.所以 b n +1b n =12(n ∈N +). 因此,数列{b n }是等比数列,公比q =12,通项公式为b n =12n (n ∈N +).。
高考数学一轮复习方案 滚动基础训练卷(5)(含解析)理 北师大版

45分钟滚动基础训练卷(五)(考查范围:第17讲~第24讲,以第21讲~第24讲内容为主 分值:100分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.[2013·开封模拟] 设sin π4+θ=13,则sin2θ=( )A .-79B .-19C.19D.792.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则ba=( )A .2 3B .2 2 C. 3 D. 23.若△ABC 的内角A ,B ,C 满足6sin A =4sin B =3sin C ,则cos B =( )A.154B.34C.31516 D.11164.[2013·长春模拟] 已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=255.则cos(α-β)的值为( )A.13B.23C.35D.455.已知sin β=m sin(2α+β),且tan(α+β)=3tan α,则实数m 的值为( )A .2 B.12C .3 D.136.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,已知b 2=c (b +2c ),若a =6,cos A =78,则△ABC 的面积等于( )A.17B.15C.152 D .37.已知函数f (x )=2sin 2⎝⎛⎭⎪⎫π4+x -3cos2x -1,x ∈R ,若函数h (x )=f (x +α)的图像关于点⎝ ⎛⎭⎪⎫-π3,0对称,且α∈(0,π),则α=( )A.π3B.π4C.π2D.π68.将函数y =sin ωx (ω>0)的图像向左平移π6个单位长度,平移后的部分图像如图G5-1所示,则平移后的图像图G5-1所对应函数的解析式是( )A .y =sin ⎝⎛⎭⎪⎫x +π6B .y =sin ⎝⎛⎭⎪⎫x -π6C .y =sin ⎝⎛⎭⎪⎫2x +π3 D .y =sin ⎝⎛⎭⎪⎫2x -π3 二、填空题(本大题共3小题,每小题6分,共18分)9.已知sin α=12+cos α,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos2αsin ⎝ ⎛⎭⎪⎫α-π4的值为________.10.在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________. 11.若函数f (x )=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2与函数g (x )=cos ⎝⎛⎭⎪⎫ωx -π6(ω>0)的图像具有相同的对称中心,则φ=________.三、解答题(本大题共3小题,每小题14分,共42分,解答应写出文字说明,证明过程或演算步骤)12.[2013·江西百所重点中学联考] 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2cos(A +2C )=1-4sin B sin C .(1)求A ;(2)若a =3,sin B 2=13,求b .13.[2013·安徽江南十校联考] 已知向量m =(3sin x +cos x ,1),n =(cos x ,-f (x )),m⊥n .(1)求f (x )的单调区间;(2)已知A 为△ABC 的内角,若f A 2=12+32,a =1,b =2,求△ABC 的面积.14.如图G5-2,A ,B 是海面上位于东西方向相距5(3+3) n mile 的两个观测点.现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距20 3 n mile 的C 点的救援船立即前往营救,其航行速度为30 n mile/h ,该救援船到达D 点需要多长时间?45分钟滚动基础训练卷(五)1.A [解析] 将sin π4+θ=13展开得22(cos θ+sin θ)=13,两边平方得12(1+sin2θ)=19,所以sin2θ=-79. 2.D [解析] 由正弦定理,得sin 2A sinB +sin B cos 2A =2sin A ,即sinB ·(sin 2A +cos 2A )=2sin A ,所以sin B =2sin A ,∴b a =sin Bsin A= 2.3.D [解析] 依题意,结合正弦定理得6a =4b =3c ,设3c =12k (k >0),则有a =2k ,b=3k ,c =4k ;由余弦定理得cos B =a 2+c 2-b 22ac =(2k )2+(4k )2-(3k )22×2k ×4k =1116.4.C [解析] ∵|a -b |=255,∴a 2-2a ·b +b 2=45,又a =(cos α,sin α),b =(cos β,sin β),∴a 2=b 2=1,a ·b =cos αcos β+sin αsin β=cos(α-β).∴cos(α-β)=2-452=35.5.B [解析] 因为sin β=m sin(2α+β),所以sin[(α+β)-α]=m sin[(α+β)+α],即sin(α+β)cos α-cos(α+β)sin α=m [sin(α+β)cos α+cos(α+β)sinα],也即(1-m )sin(α+β)cos α=(1+m )·cos(α+β)sin α,所以tan (α+β)tan α=1+m1-m=3,所以m =12.6.C [解析] ∵b 2=c (b +2c ),∴b 2-bc -2c 2=0. 即(b +c )·(b -2c )=0.∴b =2c .又a =6,cos A =b 2+c 2-a 22bc =78,解得c =2,b =4.∴S △ABC =12bc sin A =12×4×2×1-⎝ ⎛⎭⎪⎫782=152.7.C [解析] ∵f (x )=2sin 2⎝ ⎛⎭⎪⎫π4+x -3cos2x -1=2sin ⎝⎛⎭⎪⎫2x -π3,∴h (x )=f (x +α)=2sin ⎝⎛⎭⎪⎫2x +2α-π3. 因为函数h (x )的图像的对称中心为⎝ ⎛⎭⎪⎫-π3,0, ∴-2π3+2α-π3=k π,k ∈Z .∴α=(k +1)π2.又α∈(0,π).∴α=π2.8.C [解析] 将函数y =sin ωx (ω>0)的图像向左平移π6个单位长度,平移后的图像所对应的解析式为y =sin ω⎝ ⎛⎭⎪⎫x +π6,由图像知,ω⎝ ⎛⎭⎪⎫7π12+π6=3π2,所以ω=2.9.-142 [解析] 依题意得sin α-cos α=12,又(sin α+cos α)2+(sin α-cos α)2=2,即(sin α+cos α)2+⎝ ⎛⎭⎪⎫122=2,故(sin α+cos α)2=74;又α∈⎝⎛⎭⎪⎫0,π2,因此有sin α+cos α=72,所以cos2αsin ⎝⎛⎭⎪⎫α-π4=cos 2α-sin 2α22(sin α-cos α)=-2(sin α+cos α)=-142.10.27 [解析] 在△ABC 中,根据AB sin C =AC sin B =BC sin A ,得AB =AC sin B ·sin C =332sin C =2sin C ,同理BC =2sin A ,因此AB +2BC =2sin C +4sin A =2sin C +4sin ⎝ ⎛⎭⎪⎫23π-C =4sin C +23cos C =27sin(C +φ)⎝ ⎛⎭⎪⎫tan φ=32,因此AB +2BC 的最大值为27. 11.π3[解析] ∵两函数具有相同的对称中心,则它们的周期相同,∴ω=2.函数y =sin(2x +φ)的图像可由函数y =cos ⎝ ⎛⎭⎪⎫2x -π6的图像平移得到,cos ⎝⎛⎭⎪⎫2x -π6=sin ⎣⎢⎡⎦⎥⎤π2+⎝⎛⎭⎪⎫2x -π6=sin2x +π3,∴φ=π3. 12.解:(1)因为2cos(A +2C )=2cos(π-B +C )=-2cos(B -C ), 所以2(cos B cos C +sin B sin C )-4sin B sin C =-1,即2(cos B cos C -sin B sin C )=-1⇒cos(B +C )=-12.因为0<B ,C <π,所以B +C =2π3⇒A =π3.(2)由0<B <π,所以sin B 2=13⇒cos B2=1-19=223, 所以sin B =2sin B 2cos B 2=429,所以b sin B =a sin A ⇒b =a sin B sin A =869.13.解:(1)∵向量m =(3sin x +cos x ,1),n =(cos x ,-f (x )),m ⊥n ,∴f (x )=3sin x cos x +cos 2x =32sin2x +12cos2x +12=sin2x +π6+12.∴f (x )的单调递增区间为k π-π3,k π+π6(k ∈Z ),单调递减区间为k π+π6,k π+2π3(k ∈Z ).(2)f A 2=sin A +π6+12=12+32⇒sin A +π6=32,∵A ∈(0,π),∴A +π6∈π6,7π6,∴A =π6或A =π2.又a =1,b =2,∴A <B ,∴A =π6.由正弦定理a sin A =b sin B ⇒sin B =22⇒B =π4或3π4,∴C =π-π6+π4或C =π-π6+3π4,∴△ABC 的面积为S =12ab sin C =22sin π4+π6=1+34或S =12ab sin C =22sin π4-π6=3-14. 14.解:由题意知AB =5(3+3) n mile , ∠DBA =90°-60°=30°, ∠DAB =90°-45°=45°,∴∠ADB =180°-(45°+30°)=105°. 在△DAB 中,由正弦定理得 DB sin ∠DAB =AB sin ∠ADB ,∴DB =AB ·sin ∠DABsin ∠ADB=5(3+3)·sin45°sin105°=5(3+3)·sin45°sin45°cos60°+cos45°sin60°=53(3+1)3+12=103(n mile).又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°, BC =203(n mile),在△DBC 中,由余弦定理得CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC=300+1 200-2×103×203×12=900,∴CD =30(n mile),则需要的时间t =3030=1(h).答:救援船到达D 点需要1 h.。
高考数学一轮专项复习练习卷-北师大版-对数运算与对数函数(含解析)

一、单项选择题1.(2023·哈尔滨模拟)函数y =log 0.5(4x -3)的定义域为()A .[1,+∞)B.34,1C.34,1 D.0,342.若函数f (x )=log a x (a >0,且a ≠1)的反函数的图象过点(1,3),则f (log 28)等于()A .-1B .1C .2D .33.若12log 0.8log 0.8x x <<0,则x 1与x 2的关系正确的是()A .0<x 2<x 1<1B .0<x 1<x 2<1C .1<x 1<x 2D .1<x 2<x 14.已知函数f (x )=log a (x -b )(a >0,且a ≠1,a ,b 为常数)的图象如图,则下列结论正确的是()A .a >0,b <-1B .a >0,-1<b <0C .0<a <1,b <-1D .0<a <1,-1<b <05.(2024·通化模拟)设a =log 0.14,b =log 504,则()A .2ab <2(a +b )<abB .2ab <a +b <4abC .ab <a +b <2abD .2ab <a +b <ab6.(2023·本溪模拟)若不等式(x -1)2<log a x (a >0且a ≠1)在x ∈(1,2]内恒成立,则实数a 的取值范围为()A .(1,2]B .(1,2)C .(1,2]D .(2,2)二、多项选择题7.(2024·永州模拟)若10a =5,10b =20,则()A .a +b =4B .b -a =lg 4C .ab <2(lg 5)2D .b -a >lg 58.(2023·吕梁模拟)已知函数f (x )x 2-4x ,x ≤0,2x |,x >0,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则下列结论正确的是()A .x 1+x 2=-4B .x 3x 4=1C .1<x 4<4D .0<x 1x 2x 3x 4≤2三、填空题9.计算:lg 25+23lg 8-log 227×log 32+2log 32=.10.(2023·绍兴模拟)已知函数f (x )满足f (xy )=f (x )+f (y ),且当x >y 时,f (x )<f (y ),请你写出一个符合上述条件的函数f (x )=.11.设p >0,q >0,若log 4p =log 6q =log 9(2p +q ),则p q =.12.(2023·龙岩模拟)已知函数y =f (x ),若在定义域内存在实数x ,使得f (-x )=-f (x ),则称函数y =f (x )为定义域上的局部奇函数.若函数f (x )=log 3(x +m )是[-2,2]上的局部奇函数,则实数m 的取值范围是.四、解答题13.已知f (x )=213log (5)x ax a -+.(1)若a =2,求f (x )的值域;(2)若f (x )在(1,+∞)上单调递减,求a 的取值范围.14.(2024·株洲模拟)已知函数f (x )=log 9(9x +1)-kx (k ∈R )是偶函数.(1)求k 的值;(2)若方程f (x )=log 9m 的取值范围.15.已知正实数x,y,z满足log2x=log3y=log5z≠0,则()A.x>y>zB.x<y<zC.x,y,z可能构成等比数列D.关于x,y,z的方程x+y=z有且只有一组解16.(2023·潍坊模拟)已知函数f(x)=log a x-(a)x-log a2(a>1)有两个零点,则实数a的取值范围是.§2.8对数运算与对数函数1.C 2.B 3.C 4.D 5.D 6.B [若0<a <1,此时x ∈(1,2],log a x <0,而(x -1)2>0,故(x -1)2<log a x 无解;若a >1,此时x ∈(1,2],log a x >0,而(x -1)2>0,令f (x )=log a x ,g (x )=(x -1)2,画出函数f (x )与g (x )的图象,如图,若不等式(x -1)2<log a x 在x ∈(1,2]内恒成立,则log a 2>1,解得a ∈(1,2).]7.BC [由10a =5,10b =20,得a =lg 5,b =lg 20,则a +b =lg 5+lg 20=lg(5×20)=lg 100=2,故A 错误;b -a =lg 20-lg 5=lg 205=lg 4<lg 5,故B 正确,D 错误;ab =lg 5×lg 20=lg 5×(lg 4+lg 5)=lg 5×lg 4+(lg 5)2,∵lg 4<lg 5,∴lg 5×lg 4+(lg 5)2<lg 5×lg 5+(lg 5)2=2(lg 5)2,∴ab <2(lg 5)2,故C 正确.]8.AB [函数f (x )x 2-4x ,x ≤0,2x |,x >0的图象如图所示,设f (x 1)=f (x 2)=f (x 3)=f (x 4)=t ,则0<t <4,则直线y =t 与函数y =f (x )图象的4个交点横坐标分别为x 1,x 2,x 3,x 4.对于A ,函数y =-x 2-4x 的图象关于直线x =-2对称,则x 1+x 2=-4,故A 正确;对于B ,由图象可知|log 2x 3|=|log 2x 4|,且0<x 3<1<x 4,所以-log 2x 3=log 2x 4,即log 2(x 3x 4)=0,所以x 3x 4=1,故B 正确;对于C ,由图象可知log 2x 4∈(0,4),则1<x 4<16,故C 错误;对于D ,由图象可知-4<x 1<-2,当x ≤0时,f (x )=-x 2-4x =-(x +2)2+4,所以x 1x 2x 3x 4=x 1(-4-x 1)=-x 21-4x 1=-(x 1+2)2+4=f (x 1)∈(0,4),故D 错误.]9.210.12log x (答案不唯一)11.1212.(2,5]解析因为f (x )=log 3(x +m )是[-2,2]上的局部奇函数,所以x +m >0在[-2,2]上恒成立,所以m -2>0,即m >2,由局部奇函数的定义,存在x ∈[-2,2],使得log 3(-x +m )=-log 3(x +m ),即log 3(-x +m )+log 3(x +m )=log 3(m 2-x 2)=0,所以存在x ∈[-2,2],使得m 2-x 2=1,即m 2=x 2+1,又因为x ∈[-2,2],所以x 2+1∈[1,5],所以m 2∈[1,5],即m ∈[-5,-1]∪[1,5],综上,m ∈(2,5].13.解(1)当a =2时,f (x )=213log (-210)x x ,令t =x 2-2x +10=(x -1)2+9,∴t ≥9,f (x )≤13log 9=-2,∴f (x )的值域为(-∞,-2].(2)令u =x 2-ax +5a ,∵y =13log u 为减函数,f (x )在(1,+∞)上单调递减,∴u =x 2-ax +5a 在(1,+∞)上单调递增,1,4a ≥0,解得-14≤a ≤2,∴a 的取值范围是-14,2.14.解(1)因为9x +1>0,所以f (x )的定义域为R ,又因为f (x )是偶函数,所以∀x ∈R ,有f (-x )=f (x ),即log 9(9-x +1)+kx =log 9(9x +1)-kx 对∀x ∈R 恒成立,则2kx =log 9(9x +1)-log 9(9-x+1)=log 99x +19-x +1=log 99x =x 对∀x ∈R 恒成立,即x (2k -1)=0对∀x ∈R 恒成立,因为x 不恒为0,所以k =12.(2)由(1)得f (x )=log 9(9x +1)-12x =log 9(9x +1)-129log 9x =log 99x +13x =log x则方程f (x )=log log x log 不相等的实数解,所以方程3x +13x =m 3x +1有两个不相等的实数解,令t =3x ,且t >0,方程化为t +1t =m t+1,即方程m =t 2-t +1在(0,+∞)上有两个不相等的实数解,令g (t )=t 2-t +1,则y =m 与y =g (t )在(0,+∞)上有两个交点,如图所示,又g (t )所以g (t )≥=34,且g (0)=1,所以m 15.D [令log 2x =log 3y =log 5z =t ≠0,则x =2t ,y =3t ,z =5t ,令g(k)=k t,由幂函数图象的性质可知,当t>0时,g(k)=k t在(0,+∞)上单调递增,故2t<3t<5t,即x<y<z,当t<0时,g(k)=k t在(0,+∞)上单调递减,故2t>3t>5t,即x>y>z,故A,B不一定正确;假设x,y,z成等比数列,则y2=xz⇒(3t)2=2t·5t⇒9t=10t,则t=0,与已知矛盾,故C错误;因为x+y=z,则2t+3t=5t,即1,令f(t)1,由指数函数的性质可知f(t)为减函数,注意到f(1)=0,故f(t)只有一个零点,即1只有一个解t=1,所以x+y=z只有一组解x=2,y=3,z=5,故D正确.]16.(1,1 e e)解析由题知,x>0,f(x)=log a x-(a)x-log a2=log a x2-2x a,令t=x2,t>0,则y=log at与y=a t的图象在(0,+∞)上有两个交点,又y=log a t与y=a t互为反函数,所以交点在直线y=t上,设y=log a t,y=a t的图象与直线y=t相切时,切点坐标为(m,n),m>0,a m ln a=1,a m,解得m=e,又1m ln a=1,所以a=1e e>1,所以当a=1e e时,y=log a t和y=a t只有一个交点,如图1;当a>1e e时,y=log a t和y=a t无交点,如图2;当1<a<1e e时,y=log a t和y=a t有两个交点,如图3.综上,a的取值范围为(1,1e e).。
【走向高考】高三数学一轮总复习 6-5数列的综合应用同步练习 北师大版

6-5数列的综合应用基 础 巩 固一、选择题1.一套共7册的书计划每两年出一册,若出完全部各册书公元年代之和为14 028,则出齐这套书的年份是( )A .2004B .2006C .2008D .2010[答案] D[解析] 设出齐这套书的年份数是x , 则有7x -7×62×2=14 028.解得x =2010.2.一个三角形的三内角成等差数列,对应的三边成等比数列,则三内角所成等数列的公差等于( )A .0 B.π12 C.π6D.π4 [答案] A[解析] 因A ,B ,C 成等差数列,a ,b ,c 成等比数列, 则B =π3,b 2=ac ,∴cos B =a 2+c 2-b 22ac =12,可推得a =c =b .∴A =B =C ,即公差为0.3.设函数f (x )=x m+ax 的导函数f ′(x )=2x +1,则数列{1f n}(n ∈N +)的前n 项和是( )A.n n +1B.n +2n +1 C.nn -1D.n +1n[答案] A[解析] f ′(x )=mx m -1+a =2x +1,∴a =1,m =2, ∴f (x )=x (x +1),1f n =1nn +=1n -1n +1,∴S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=n n +1. 4.(2013·浙江金华一中12月月考)已知等差数列{a n }的前n 项和为S n ,a 2=4,S 10=110,则S n +64a n的最小值为( ) A .7 B .8 C.152D.172[答案] D[解析] 由题意知⎩⎪⎨⎪⎧a 1+d =4,10a 1+45d =110.∴⎩⎪⎨⎪⎧a 1=2,d =2.∴S n =n 2+n ,a n =2n .∴S n +64a n =n 2+n +642n =n 2+12+32n ≥12+2n 2·32n =172.等号成立时,n 2=32n,∴n =8,故选D.5.某种细胞开始时有2个,1h 后分裂成4个并死去1个,2h 后分裂成6个并死去1个,3h 后分裂成10个并死去1个,…,按照此规律,6h 后细胞存活数是( )A .33B .64C .65D .127[答案] B[解析] 每一小时后细胞变为前一小时细胞数的2倍减1,4小时后为17个,5小时后为33个,6小时后为65个.6.小正方形按照如图的规律排列:每个图中的小正方形的个数就构成一个数列{a n },有以下结论: ①a 5=15;②数列{a n }是一个等差数列; ③数列{a n }是一个等比数列;④数列的递推公式为:a n +1=a n +n +1(n ∈N +). 其中正确的命题序号为( )A .①②B .①③C .①④D .①[答案] C[解析] 当n =1时,a 1=1;当n =2时,a 2=3;当n =3时,a 3=6;当n =4时,a 4=10,…,观察图中规律,有a n +1=a n +n +1,a 5=15.故①④正确.二、填空题7.已知m 、n 、m +n 成等差数列,m 、n 、mn 成等比数列,则椭圆x 2m +y 2n=1的离心率为________.[答案]22[解析] 由2n =2m +n 和n 2=m 2n 可得m =2,n =4, ∴e =n -m n=22. 8.已知α∈(0,π2)∪(π2,π),且sin α,sin2α,sin4α成等比数列,则α的值为________.[答案]2π3[解析] 由题意,sin 22α=sin α·sin4α, ∴sin 22α=2sin α·sin2α·cos2α, 即sin2α=2sin α·cos2α,∴2sin αcos α=2sin α·cos2α,即cos α=cos2α, ∴2cos 2α-1=cos α,∴(2cos α+1)(cos α-1)=0. 解得cos α=1(舍去)或cos α=-12,∴α=2π3.三、解答题9.(2012·湖南文,20)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为a n 万元.(1)用d 表示a 1,a 2,并写出a n +1与a n 的关系式;(2)若公司希望经过m (m ≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d 的值(用m 表示).[解析] (1)由题意得a 1=2000(1+50%)-d =3000-d ,a 2=a 1(1+50%)-d =32a 1-d =4500-52d . a n +1=a n (1+50%)-d =32a n -d .(2)由(1)得a n =32a n -1-d =32(32a n -2-d )-d=(32)2a n -2-32d -d =… =(32)n -1a 1-d [1+32+(32)2+…+(32)n -2]. 整理得a n =(32)n -1(3 000-d )-2d [(32)n -1-1]=(32)n -1(3 000-3d )+2d . 令a m =4 000得(32)m -1(3 000-3d )+2d =4 000.解之得d =m-2m +13m -2m .所以该企业每年上缴资金d 的值为m-2m +13m -2m 时,经过m (m ≥3)年企业的剩余资金为4 000万元.能 力 提 升一、选择题1.(文)一个凸多边形,它的各内角度数成等差数列,最小角为60°,公差为20°,则这个多边形的边数是( )A .3B .4C .5或9D .4或9[答案] B[解析] 设边数为n ,则60°n +n n -2·20°=(n -2)·180°,解得n =4或9.当n =9时,最大内角度数为60°+(9-1)×20°=220°>180°,故舍去. (理)下表给出一个“直角三角形数阵” 14 12,14 34,38,316……满足每一列成等差数列,从第三行起,每一行的数成等比数列,且诸行的公比都相等,记第i 行,第j 列的数列为a ij (i ≥j ,i ,j ∈N ),则a 83等于( )A.18B.14 C.12 D .1[答案] C[解析] 由已知在第一列构成的等差数列中,首项为14,公差为14,∴a 81=14+(8-1)·14=2,在每行构成的等比数列中公比q =12,∴a 83=2·(12)2=12.2.(2012·北京理,8)某棵果树前n 年的总产量S n 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 值为( )A .5B .7C .9D .11[答案] C[解析] 本题考查了读图、识图的能力及分析问题、解决问题的能力.由于目的是使平均产量最高,就需要随着n 增大,变化超过平均值的加入,随着n 的增大,变化不足值就舍去.由图可知6、7、8、9这几年增长最快,超出平均值,所以应该加入,故选C.二、填空题3.等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m =________. [答案] 10[解析] 由等差数列的性质可知2a m =a m +1+a m -1, 又∵a m -1+a m +1-a 2m =0,∴a 2m =2a m ,∴a m =2(a m =0不合题意,舍去), 又S 2m -1=2m -12(a 1+a 2m -1)=2m -12×2a m =(2m -1)·a m =38,∴2m -1=19. ∴m =10.4.设f (x )是定义域为R 且恒不为0的函数,对任意x ,y ∈R ,都有f (x )f (y )=f (x +y ),若a 1=12,a n =f (n )(n 为常数),则数列{a n }的前n 项和S n 的取值范围是________.[答案] [12,1)[解析] 因a n +1=f (n +1)=f (n )·f (1)=12a n ,故S n =12[1-12n]1-12=1-(12)n,∵n ≥1,n ∈N ,∴S n ∈[12,1).三、解答题5.已知数列{a n }中,a 1=3,点(a n ,a n +1)在直线y =x +2上. (1)求数列{a n }的通项公式;(2)若b n =a n ·3n,求数列{a n }的前n 项和T n . [解析] (1)∵点(a n ,a n +1)在直线y =x +2上, ∴a n +1=a n +2,即a n +1-a n =2.∴数列{a n }是以3为首项,2为公差的等差数列, ∴a n =3+2(n -1)=2n +1.(2)∵b n =a n ·3n ,∴b n =(2n +1)·3n. ∴T n =3×3+5×32+7×33+…+(2n -1)·3n -1+(2n +1)·3n,①∴3T n =3×32+5×33+…+(2n -1)·3n+(2n +1)·3n +1.②①-②得-2T n =3×3+2(32+33+ (3))-(2n +1)·3n +1=9+2×-3n -11-3-(2n+1)·3n +1=-2n ·3n +1∴T n =n ·3n +1.6.(文)数列{a n }中,a 1=13.前n 项和S n 满足S n +1-S n =(13)n +1(n ∈N +).(1)求数列{a n }的通项公式a n 以及前n 项和S n ;(2)若S 1,t (S 1+S 2),3(S 2+S 3)成等差数列,求实数t 的值.[解析] 本小题主要考查数列,等差数列,等比数列等基础知识,考查运算求解能力,考查函数与方程思想,化归与转化思想.(1)由S n +1-S n =(13)n +1得a n +1=(13)n +1(n ∈N +)又a 1=13,故a n =(13)n(n ∈N +)从而S n =13×[1-13n]1-13=12[1-(13)n](n ∈N +) (2)由(1)可得S 1=13,S 2=49,S 3=1327,从而由S 1,t (S 1+S 2),3(S 2+S 3)成等差数列可得 13+3×(49+1327)=2×(13+49)t ,解得t =2. (理)已知数列{a n }是公差d ≠0的等差数列,记S n 为其前n 项和. (1)若a 2、a 3、a 6依次成等比数列,求其公比q .(2)若a 1=1,证明点P 1⎝ ⎛⎭⎪⎫1,S 11,P 2⎝ ⎛⎭⎪⎫2,S 22,…,P n ⎝ ⎛⎭⎪⎫n ,S n n (n ∈N +)在同一条直线上,并写出此直线方程.[解析] (1)∵a 2、a 3、a 6依次成等比数列, ∴q =a 3a 2=a 6a 3=a 6-a 3a 3-a 2=3dd=3,即公比q =3.(2)证明:∵S n =na 1+n n -2d ,∴S n n=a 1+n -12d =1+n -12d .∴点P n ⎝⎛⎭⎪⎫n ,S n n 在直线y =1+x -12d 上.∴点P 1,P 2,…,P n (n ∈N +)都在过点(1,1)且斜率为d2的直线上.此直线方程为y -1=d2(x -1).7.某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(1)求第n 年初M 的价值a n 的表达式; (2)设A n =a 1+a 2+…+a nn,若A n 大于80万元,则M 继续使用,否则须在第n 年初对M更新.证明:须在第9年初对M 更新.[解析] (1)当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列,a n =120-10(n -1)=130-10n ;当n ≥6时,数列{a n }是以a 6为首项,公比为34的等比数列,又a 6=70,所以a n =70×(34)n-6.因此,第n 年初,M 的价值a n 的表达式为 a n =⎩⎪⎨⎪⎧130-10n ,n ≤6,34n -6,n ≥7.(2)设S n 表示数列{a n }的前n 项和,由等差及等比数列的求和公式得 当1≤n ≤6时,S n =120n -5n (n -1),A n =120-5(n -1)=125-5n ; 当n ≥7时,由于S 6=570,故S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×[1-(34)n -6]=780-210×(34)n -6.A n =780-34n -6n因为{a n }是递减数列,所以{A n }是递减数列.又 A 8=780-3428=824764>80,A 9=780-3439=767996<80,所以须在第9年初对M 更新.。
高考数学理一轮复习方案(人教B版):滚动基础训练卷(74页15套)(附详细解析)

45分钟滚动基础训练卷(一)(考查范围:第1讲~第3讲分值:100分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.[2012·肇庆模拟] 已知集合M={0,1,2},集合N满足N⊆M,则集合N的个数是() A.6 B.7C.8 D.92.[2012·延吉质检] 设非空集合A,B满足A⊆B,则()A.∃x0∈A,使得x0∉BB.∀x∈A,有x∈BC.∃x0∈B,使得x0∉AD.∀x∈B,有x∈A3.命题:“∀x∈R,cos2x≤cos2x”的否定为()A.∀x∈R,cos2x>cos2xB.∃x∈R,cos2x>cos2xC.∀x∈R,cos2x<cos2xD.∃x∈R,cos2x≤cos2x4.[2012·沈阳、大连联合模拟] 已知A={x|x2-3x+2=0},B={x|log x4=2},则A∪B =()A.{-2,1,2} B.{1,2}C.{-2,2} D.{2}5.[2012·鹰潭一模] 关于x的不等式ax2-2x+1<0的解集非空的一个必要不充分条件是()A.a<1 B.a≤1C.0<a<1 D.a<06.[2012·威海模拟] 设集合A={-1,p,2},B={2,3},则“p=3”是“A∩B=B”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件7.[2012·泉州四校联考] 命题p:∀x∈R,函数f(x)=2cos2x+3sin2x≤3,则() A.p是假命题;綈p:∃x∈R,f(x)=2cos2x+3sin2x≤3B.p是假命题;綈p:∃x∈R,f(x)=2cos2x+3sin2x>3C.p是真命题;綈p:∃x∈R,f(x)=2cos2x+3sin2x≤3D.p是真命题;綈p:∃x∈R,f(x)=2cos2x+3sin2x>38.[2013·邯郸模拟] 给出以下命题:①∃x∈R,sin x+cos x>1;②∀x∈R,x2-x+1>0;③“x>1”是“|x|>1”的充分不必要条件,其中正确命题的个数是()A.0 B.1C.2 D.3二、填空题(本大题共3小题,每小题6分,共18分)9.已知a,b都是实数,命题“若a+b>0,则a,b不全为0”的逆否命题是________.10.[2012·淄博模拟] 由命题“存在x∈R,使x2+2x+m≤0”是假命题,求得m的取值范围是(a,+∞),则实数a的值是________.11.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2 011∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中正确命题的序号是________.三、解答题(本大题共3小题,每小题14分,共42分,解答应写出文字说明,证明过程或演算步骤)12.已知关于x的一元二次方程①mx2-4x+4=0;②x2-4mx+4m2-4m-5=0,m∈Z,试求方程①和②的根都是整数的充要条件.13.命题p:-2<m<0,0<n<1;命题q:关于x的方程x2+mx+n=0有两个小于1的正根,试分析p是q的什么条件.14.[2013·徐水模拟] 已知命题p:方程a2x2+ax-2=0在[-1,1]上有解;命题q:只有一个实数满足不等式x2+2ax+2a≤0.若p,q都是假命题,求a的取值范围.45分钟滚动基础训练卷(二)(考查范围:第4讲~第12讲 分值:100分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.[2012·江西师大附中] 已知函数f (x )=⎩⎪⎨⎪⎧1-x ,x ≤0,a x ,x >0.若f (1)=f (-1),则实数a 的值等于( )A .1B .2C .3D .42.已知函数f (x )=⎩⎪⎨⎪⎧4x -4,x ≤1,x 2-4x +3,x >1.函数h (x )=f (x )-log 2x 零点的个数是( )A .4B .3C .2D .13.[2012·湖北黄冈] 设n ∈⎩⎨⎧⎭⎬⎫-1,12,1,2,3,则使得f (x )=x n 为奇函数,且在(0,+∞)上单调递减的n 的个数为( ) A .1 B .2 C .3 D .44.a 是f (x )=2x -log 12x 的零点,若0<x 0<a ,则f (x 0)的值满足( )A .f (x 0)=0B .f (x 0)<0C .f (x 0)>0D .f (x 0)的符号不确定5.设函数y =f (x )是定义在R 上以1为周期的函数,若g (x )=f (x )-2x 在区间[2,3]上的值域为[-2,6],则函数g (x )在[-12,12]上的值域为( )A .[-2,6]B .[-20,34]C .[-22,32]D .[-24,28]6.[2012·郑州质检] 定义在(-1,1)上的函数f (x )-f (y )=f ⎝ ⎛⎭⎪⎫x -y 1-xy ;当x ∈(-1,0)时f (x )>0.若P =f ⎝⎛⎭⎫15+f ⎝⎛⎭⎫111,Q =f ⎝⎛⎭⎫12,R =f (0),则P ,Q ,R 的大小关系为( ) A .R >Q >P B .R >P >Q C .P >R >Q D .Q >P >R7.[2012·石家庄教学质检] 设集合A =⎣⎡⎭⎫0,12,B =⎣⎡⎦⎤12,1,函数f (x )=⎩⎪⎨⎪⎧x +12(x ∈A ),2(1-x )(x ∈B ),x 0∈A ,且f [f (x 0)]∈A ,则x 0的取值范围是( ) A.⎝⎛⎦⎤0,14 B.⎝⎛⎦⎤14,12 C.⎝⎛⎭⎫14,12 D.⎣⎡⎦⎤0,388.[2012·哈三中等四校三模] 已知函数f (x )=⎩⎪⎨⎪⎧kx +1,x ≤0,ln x ,x >0.则下列关于函数y =f [f (x )]+1的零点个数的判断正确的是( )A .当k >0时,有3个零点;当k <0时,有2个零点B .当k >0时,有4个零点;当k <0时,有1个零点C .无论k 为何值,均有2个零点D .无论k 为何值,均有4个零点二、填空题(本大题共3小题,每小题6分,共18分) 9.如果实数x 满足方程9x -6·3x -7=0,则x =________.10.已知函数y =f (x )为奇函数,若f (3)-f (2)=1,则f (-2)-f (-3)=________.11.若函数f (x )=a x -x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是________. 三、解答题(本大题共3小题,每小题14分,共42分,解答应写出文字说明,证明过程或演算步骤)12.[2012·山西四校联考] 已知函数f (x )=⎩⎪⎨⎪⎧-x 2+12x ,x <0,ln (x +1),x ≥0,若函数y =f (x )-kx 有三个零点,求实数k 的取值范围.13.[2013·山西忻州一中月考] 已知函数f (x )=log 12ax -2x -1(a 为常数).(1)若常数a <2且a ≠0,求f (x )的定义域;(2)若f (x )在区间(2,4)上是减函数,求a 的取值范围.14.[2012·福建德化一中模拟] 某公司有价值a万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,从而提高产品附加值,改造需要投入,假设附加值y(万元)与技术改造投入x(万元)之间的关系满足:①y与a-x和x的乘积成正比;②x=a2时,y=a2;③0≤x2(a-x)≤t,其中t为常数,且t∈[0,1].(1)设y=f(x),求f(x)的表达式,并求y=f(x)的定义域;(2)求出附加值y的最大值,并求出此时的技术改造投入.45分钟滚动基础训练卷(三)(考查范围:第4讲~第16讲,以第13讲~第16讲内容为主 分值:100分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.[2012·济南一中模拟] 如果方程x 2+(m -1)x +m 2-2=0的两个实根一个小于1,另一个大于1,那么实数m 的取值范围是( )A .(-2,2)B .(-2,0)C .(-2,1)D .(0,1) 2.若0<x <y <1,则( ) A .3y <3x B .log x 3<log y 3C .log 4x <log 4y D.⎝⎛⎭⎫14x <⎝⎛⎭⎫14y3.[2012·山西四校联考] 曲线y =x ln x 在点(e ,e)处的切线与直线x +ay =1垂直,则实数a 的值为( )A .2B .-2 C.12 D .-124.设a =log 3π,b =log 23,c =log 32,则( ) A .a >b >c B .a >c >b C .b >a >c D .b >c >a5.[2012·济宁检测] 函数y =ln 1|x +1|的大致图象为( )图G3-16.[2012·金华十校联考] 设函数y =x sin x +cos x 的图象上的点(x 0,y 0)处的切线的斜率为k ,若k =g (x 0),则函数k =g (x 0)的图象大致为( )图G3-27.[2012·哈尔滨六中一模] 曲线y =2x与直线y =x -1及x =4所围成的封闭图形的面积为( )A .4-2ln2B .2-ln2C .4-ln2D .2ln2 8.[2012·宁夏二模] 抛物线y =x 2在A (1,1)处的切线与y 轴及该抛物线所围成的图形面积为( )A.13B.12C .1D .2 二、填空题(本大题共3小题,每小题6分,共18分)9.曲线y =x 3和y = x 13所围成的封闭图形的面积是________.10.[2012·威海一模] 已知f (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,则不等式x +x ·f (x )≤2的解集是________.11.[2013·山西诊断] 已知函数f (x )=e x +x 2-x ,若对任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤k恒成立,则k 的取值范围为________.三、解答题(本大题共3小题,每小题14分,共42分,解答应写出文字说明,证明过程或演算步骤)12.某食品厂进行蘑菇的深加工,每公斤蘑菇的成本为20元,并且每公斤蘑菇的加工费为t 元(t 为常数,且2≤t ≤5),设该食品厂每公斤蘑菇的出厂价为x 元(25≤x ≤40),根据市场调查,销售量q 与e x 成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.(1)求该工厂的每日利润y (元)与每公斤蘑菇的出厂价x (元)的函数关系式;(2)若t =5,当每公斤蘑菇的出厂价x 为多少元时,该工厂的利润y 最大,并求最大值.13.设函数f (x )=1x ln x(x >0且x ≠1).(1)求函数f (x )的单调区间;(2)已知21x>x a 对任意x ∈(0,1)恒成立,求实数a 的取值范围.14.[2012·景德镇质检] 设f (x )=a x -ln x (a >0). (1)若f (x )在[1,+∞)上递增,求a 的取值范围; (2)求f (x )在[1,4]上的最小值.45分钟滚动基础训练卷(四)(考查范围:第17讲~第20讲 分值:100分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =|sin x |-2sin x 的值域是( ) A .[-3,-1] B .[-1,3] C .[0,3] D .[-3,0]2.函数f (x )=tan ωx (ω>0)图象的相邻两支截直线y =π4所得线段长为π4,则f ⎝⎛⎭⎫π4的值是( )A .0B .1C .-1 D.π43.[2013·南阳模拟] sin 220°+cos 280°+3sin20°cos80°的值为( ) A.23 B.12 C.14 D.134.设点P 是函数f (x )=sin ωx 的图象C 的一个对称中心,若点P 到图象C 的对称轴的距离的最小值是π8,则f (x )的最小正周期是( )A.π2B .πC .2π D.π45.已知函数y =2sin 2⎝⎛⎭⎫x +π4-cos2x ,则它的周期T 和图象的一条对称轴方程是( )A .T =2π,x =π8B .T =2π,x =3π8C .T =π,x =π8D .T =π,x =3π86.若将函数y =tan ⎝⎛⎭⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ⎝⎛⎭⎫ωx +π6的图象重合,则ω的最小值为( )A.16B.14C.13D.127.函数y =sin ⎝⎛⎭⎫2x -π3在区间⎣⎡⎦⎤-π2,π上的简图是( )图G4-18.如图G4-2,单摆从某点开始来回摆动,离开平衡位置O 的距离s cm 和时间t s 的函数关系式为s =6sin2πt +π6,那么单摆来回摆动一次所需的时间为( )图G4-2A .2π sB .π sC .0.5 sD .1 s二、填空题(本大题共3小题,每小题6分,共18分)9.函数y =lgsin x +cos x -12的定义域为________.10.已知函数f (x )=2sin ωx (ω>0)在区间-π3,π4上的最小值是-2,则ω的最小值等于________.11.对于函数f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≤cos x ,cos x ,sin x >cos x ,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x =π+k π(k ∈Z )时,该函数取得最小值-1;③该函数的图象关于x =5π4+2k π(k ∈Z )对称;④当且仅当2k π<x <π2+2k π(k ∈Z )时,0<f (x )≤22.其中正确命题的序号是________.(请将所有正确命题的序号都填上)三、解答题(本大题共3小题,每小题14分,共42分,解答应写出文字说明,证明过程或演算步骤)12.据市场调查,某种商品一年内每件出厂价在6千元的基础上,按月呈f (x )=A sin(ωx +φ)+B 的模型波动(x 为月份),已知3月份达到最高价8千元,7月份价格最低为4千元;该商品每件的售价为g (x )(x 为月份),且满足g (x )=f (x -2)+2.(1)分别写出该商品每件的出厂价函数f (x )、售价函数g (x )的解析式; (2)问哪几个月能盈利?13.已知函数f (x )=sin 2ωx +3sin ωx sin ⎝⎛⎭⎫ωx +π2(ω>0)的最小正周期为π.(1)求ω的值;(2)求函数f (x )在区间⎣⎡⎦⎤0,2π3上的取值范围.14.已知a >0,函数f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,当x ∈⎣⎡⎦⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎫x +π2且lg g (x )>0,求g (x )的单调区间.45分钟滚动基础训练卷(五)(考查范围:第17讲~第24讲,以第21讲~第24讲内容为主 分值:100分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.[2013·开封模拟] 设sin π4+θ=13,则sin2θ=( )A .-79B .-19C.19D.792.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则ba=( ) A .2 3 B .2 2 C. 3 D. 23.若△ABC 的内角A ,B ,C 满足6sin A =4sin B =3sin C ,则cos B =( )A.154B.34C.31516D.11164.[2013·长春模拟] 已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=255.则cos(α-β)的值为( )A.13B.23C.35D.455.已知sin β=m sin(2α+β),且tan(α+β)=3tan α,则实数m 的值为( )A .2 B.12C .3 D.136.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,已知b 2=c (b +2c ),若a =6,cos A =78,则△ABC 的面积等于( )A.17B.15C.152D .37.已知函数f (x )=2sin 2⎝⎛⎭⎫π4+x -3cos2x -1,x ∈R ,若函数h (x )=f (x +α)的图象关于点⎝⎛⎭⎫-π3,0对称,且α∈(0,π),则α=( ) A.π3 B.π4 C.π2 D.π68.将函数y =sin ωx (ω>0)的图象向左平移π6个单位长度,平移后的部分图象如图G5-1所示,则平移后的图象图G5-1所对应函数的解析式是( )A .y =sin ⎝⎛⎭⎫x +π6B .y =sin ⎝⎛⎭⎫x -π6C .y =sin ⎝⎛⎭⎫2x +π3D .y =sin ⎝⎛⎭⎫2x -π3二、填空题(本大题共3小题,每小题6分,共18分)9.已知sin α=12+cos α,且α∈⎝⎛⎭⎫0,π2,则cos2αsin ⎝⎛⎭⎫α-π4的值为________.10.在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________.11.若函数f (x )=2sin(2x +φ)⎝⎛⎭⎫|φ|<π2与函数g (x )=cos ⎝⎛⎭⎫ωx -π6(ω>0)的图象具有相同的对称中心,则φ=________.三、解答题(本大题共3小题,每小题14分,共42分,解答应写出文字说明,证明过程或演算步骤)12.已知向量a =⎝⎛⎭⎫12,32,b =(cos x ,sin x ),x ∈⎝⎛⎭⎫0,π2.(1)若a ∥b ,求sin x 和cos2x 的值;(2)若a ·b =2cos ⎝⎛⎭⎫12k π+13π6+x (k ∈Z ),求tan ⎝⎛⎭⎫x +5π12的值.13.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足c sin A =a cos C . (1)求角C 的大小;(2)求3sin A -cos ⎝⎛⎭⎫B +π4的最大值,并求取得最大值时角A ,B 的大小.14.如图G5-2,A ,B 是海面上位于东西方向相距5(3+3) n mile 的两个观测点.现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距20 3 n mile 的C 点的救援船立即前往营救,其航行速度为30 n mile/h ,该救援船到达D 点需要多长时间?图G5-245分钟滚动基础训练卷(六)(考查范围:第25讲~第27讲 分值:100分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.△ABC 中,点D 在边AB 上,CD 平分∠ACB .若CB →=a ,CA →=b ,|a |=1,|b |=2,则CD →=( )A.13a +23bB.23a +13bC.35a +45bD.45a +35b 2.若向量a =(cos α,sin α),b =(cos β,sin β),a ≠±b ,则a 与b 一定满足( ) A .a 与b 的夹角等于α-β B .a ⊥b C .a ∥bD .(a +b )⊥(a -b )3.设a ,b 是非零向量,若函数f (x )=(x a +b )·(a -x b )的图象是一条直线,则必有( ) A .a ⊥b B .a ∥b C .|a|=|b| D .|a|≠|b|4.已知下列命题:①若k ∈R ,且k b =0,则k =0或b =0;②若a·b =0,则a =0或b =0;③若不平行的两个非零向量a ,b ,满足|a |=|b |,则(a +b )·(a -b )=0;④若a 与b 平行,则a·b =|a |·|b |.其中真命题的个数是( )A .0B .1C .2D .35.已知向量a ,e 满足:a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则( ) A .a ⊥e B .a ⊥(a -e )C .e ⊥(a -e )D .(a +e )⊥(a -e )6.如图G6-1,在△ABC 中,AB =BC =4,∠ABC =30°,AD 是边BC 上的高,则AD →·AC →的值等于( )图G6-1A .0B .4C .8D .-47.等腰直角三角形ABC 中,A =π2,AB =AC =2,M 是BC 的中点,P 点在△ABC 内部或其边界上运动,则BP →·AM →的取值范围是( )A .[-1,0]B .[1,2]C .[-2,-1]D .[-2,0]8.已知两点M (-3,0),N (3,0),点P 为坐标平面内一动点,且|MN →|·|MP →|+MN →·NP →=0,则动点P (x ,y )到点M (-3,0)的距离d 的最小值为( )A .2B .3C .4D .6 二、填空题(本大题共3小题,每小题6分,共18分)9.在长江南岸渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25 km/h.渡船要垂直地渡过长江,则航向为________.10.△ABC 的外接圆的圆心为O ,两条边上的高的交点为H ,OH →=m (OA →+OB →+OC →),则实数m =________.11.在面积为2的△ABC 中,E ,F 分别是AB ,AC 的中点,点P 在直线EF 上,则PC →·PB →+BC →2的最小值是________.三、解答题(本大题共3小题,每小题14分,共42分,解答应写出文字说明,证明过程或演算步骤)12.已知向量a ,b 满足|a |=|b |=1,且|a -k b |=3|k a +b |,其中k >0. (1)试用k 表示a·b ,并求出a·b 的最大值及此时a 与b 的夹角θ的值; (2)当a·b 取得最大值时,求实数λ,使|a +λb |的值最小,并对这一结果作出几何解释.13.[2013·郑州模拟] 已知二次函数f (x )对任意x ∈R ,都有f (1-x )=f (1+x )成立,设向量a =(sin x ,2) ,b =⎝⎛⎭⎫2sin x ,12,c =(cos2x ,1),d =(1,2),当x ∈[0,π]时,求不等式f (a ·b )>f (c ·d )的解集.14.如图G6-2,平面上定点F 到定直线l 的距离|FM |=2,P 为该平面上的动点,过P作直线l 的垂线,垂足为Q ,且(PF →+PQ →)·(PF →-PQ →)=0.(1)试建立适当的平面直角坐标系,求动点P 的轨迹C 的方程;(2)过点F 的直线交轨迹C 于A ,B 两点,交直线l 于点N ,已知NA →=λ1AF →,NB →=λ2BF →,求证:λ1+λ2为定值.图G6-245分钟滚动基础训练卷(七) (考查范围:第28讲~第32讲分值:100分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在等差数列{a n }中,a 2=4,a 6=12,则数列{a n }的前10项的和为( ) A .100 B .110 C .120 D .1302.已知等比数列{a n }中,a 1=2,且有a 4a 6=4a 27,则a 3=( ) A .1 B .2 C.14 D.123.在等差数列{a n }中,已知a 6=5,S n 是数列{a n }的前n 项和,则S 11=( ) A .45 B .50 C .55 D .604.已知数列{a n }为等比数列,S n 是它的前n 项和.若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .35B .33C .31D .29 5.设等比数列的公比为q ,前n 项和为S n ,若S n ,S n +1,S n +2成等差数列,则公比q ( ) A .等于-2 B .等于1C .等于1或-2D .不存在6.已知等比数列{a n }中,公比q >1,且a 1+a 6=8,a 3a 4=12,则a 2 012a 2 007=( )A .2B .3C .6D .3或67.若等比数列{a n }的前n 项和S n =a ·3n -2,则a 2=( ) A .4 B .12 C .24 D .368.数列{a n }的前n 项和为S n ,若S n =2a n -1(n ∈N *),则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( )A .1-14nB .1-12nC.23⎝⎛⎭⎫1-14nD.23⎝⎛⎭⎫1-12n 二、填空题(本大题共3小题,每小题6分,共18分) 9.[2012·江西卷] 设数列{a n },{b n }都是等差数列.若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________.10.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n =________.11.某数表中的数按一定规律排列,如下表所示,从左至右以及从上到下都是无限的.此表中,主对角线上数列1,2,5,10,17,…的通项公式a n =________.1 1 1 1 1 1 … 123456 … 1 3 57 9 11 … 1 4 7 10 13 16 … 1 5 9 13 17 21 … … … … … … … …三、解答题(本大题共3小题,每小题14分,共42分,解答应写出文字说明,证明过程或演算步骤)12.已知等差数列{a n},S n为其前n项的和,a5=6,S6=18,n∈N*.(1)求数列{a n}的通项公式;(2)若b n=3a n,求数列{b n}的前n项的和.13.等差数列{a n}的公差为-2,且a1,a3,a4成等比数列.(1)求数列{a n}的通项公式;(2)设b n=2n(12-a n)(n∈N*),求数列{b n}的前n项和S n.14.已知等差数列{a n}的公差大于0,且a3,a5是方程x2-14x+45=0的两个根,数列{b n}的前n项和为S n,且S n=1-b n2(n∈N*).(1)求数列{a n},{b n}的通项公式;(2)若c n=a n·b n,求数列{c n}的前n项和T n.45分钟滚动基础训练卷(八)(考查范围:第33讲~第36讲 分值:100分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a 、b ∈R ,则“a >1且0<b <1”是“a -b >0且ab>1”成立的( )A .充分而不必要条件B .必要而不充分条件C .充分且必要条件D .既不充分也不必要条件2.不等式1x≤1的解集是( )A .(1,+∞)B .[1,+∞)C .(-∞,0)∪[1,+∞)D .(-∞,0)∪(1,+∞)3.[2012·山东卷] 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( )A.⎣⎡⎦⎤-32,6B.⎣⎡⎦⎤-32,-1 C .[-1,6] D.⎣⎡⎦⎤-6,32 4.设a ,b ,c ,d ∈R ,若a ,1,b 成等比数列,且c ,1,d 成等差数列,则下列不等式恒成立的是( )A .a +b ≤2cdB .a +b ≥2cdC .|a +b |≤2cdD .|a +b |≥2cd5.已知x >0,y >0,lg2x +lg8y =lg2,则1x +1y的最小值是( )A .2 3B .4 3C .2+ 3D .4+2 3 6.爬山是一种简单有趣的野外运动,有益于身心健康,但要注意安全,准备好必需物品,控制好速度.现有甲、乙两人相约爬山,若甲上山的速度为v 1,下山的速度为v 2(v 1≠v 2),乙上下山的速度都是v 1+v 22(甲、乙两人中途不停歇),则甲、乙两人上下山所用的时间t 1,t 2的关系为( )A .t 1>t 2B .t 1<t 2C .t 1=t 2D .不能确定7.实数对(x ,y )满足不等式组⎩⎪⎨⎪⎧x -y -2≤0,x +2y -5≥0,y -2≤0,若目标函数z =kx -y 在x =3,y =1时取最大值,则k 的取值范围是( )A.⎝⎛⎭⎫-∞,-12∪[1,+∞) B.⎣⎡⎦⎤-12,1 C.⎣⎡⎭⎫-12,+∞ D .(-∞,-1]8.设a >b >0,则a 2+1ab +1a (a -b )的最小值是( )A .1B .2C .3D .4二、填空题(本大题共3小题,每小题6分,共18分) 9.[2012·天津卷] 已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.图G8-110.如果一个二元一次不等式组表示的平面区域是图G8-1中的阴影部分(包括边界),则这个不等式组是________.11.某公司一年需购买某种货物200吨,平均分成若干次进行购买,每次购买的运费为2万元,一年的总存储费用(单位:万元)恰好为每次的购买吨数,要使一年的总运费与总存储费用之和最小,则每次购买该种货物________吨.三、解答题(本大题共3小题,每小题14分,共42分,解答应写出文字说明,证明过程或演算步骤)12.已知关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集是空集,求实数a的取值范围.13.某小型工厂安排甲、乙两种产品的生产,已知工厂生产甲乙两种产品每吨所需要的原材料A、B、C的数量和一周内可用资源数量如下表所示:原材料甲(吨)乙(吨)资源数量(吨)A 1150B 40160C 25200如果甲产品每吨的利润为300元,乙产品每吨的利润为200元,那么应如何安排生产,工厂每周才可获得最大利润?14.某开发商用9 000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2 000平方米.已知该写字楼第一层的建筑费用为每平方米4 000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元.(1)若该写字楼共x层,总开发费用为y万元,求函数y=f(x)的表达式;(总开发费用=总建筑费用+购地费用)(2)要使整幢写字楼每平方米的平均开发费用最低,该写字楼应建为多少层?45分钟滚动基础训练卷(九)(考查范围:第37讲~第41讲分值:100分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.[2012·兰州一模] 直线l不垂直于平面α,则α内与l垂直的直线有()A.0条B.1条C.无数条D.α内所有直线2.如图G9-1是正方体或四面体,P、Q、R、S分别是所在棱的中点,则这四个点不共面的一个图是()图G9-13.对两条不相交的空间直线a与b,必存在平面α,使得()A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α4.[2012·广州模拟] 若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件5.已知正方体的外接球的体积是4π3,则这个正方体的棱长是( )A.23B.33C.223D.2336.过平面α外的直线l ,作一组平面与α相交,如果所得的交线为a ,b ,c ,…,则这些交线的位置关系为( )A .都平行B .都相交且一定交于同一点C .都相交但不一定交于同一点D .都平行或都交于同一点7.设m ,l 表示直线,α表示平面,若m ⊂α,则l ∥α是l ∥m 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 8.[2012·西安一模] 已知m ,n 表示两条不同直线,α,β,γ表示不同平面,给出下列三个命题:(1)⎩⎪⎨⎪⎧m ⊥αn ⊥α⇒ m ∥n ; (2)⎩⎪⎨⎪⎧m ⊥αm ⊥n ⇒n ∥α; (3)⎩⎪⎨⎪⎧m ⊥αn ∥α⇒m ⊥n . 其中真命题的个数为( ) A .0 B .1 C .2 D .3 二、填空题(本大题共3个小题,每小题6分,共18分)9.在空间中, ①若四点不共面,则这四点中任何三点都不共线; ②若两条直线没有公共点,则这两条直线是异面直线. 以上两个命题中,逆命题为真命题的是________.(把符合要求的命题序号都填上)10.[2012·济南一模] 一个几何体的三视图如图G9-2所示(单位:m),则该几何体的体积为________ m 3.图G9-211.[2013·哈尔滨期中测试] 在半径为R的半球内有一内接圆柱,则这个圆柱的体积的最大值是________.图G9-3三、解答题(本大题共3小题,每小题14分,共42分,解答应写出文字说明,证明过程或演算步骤)12.[2012·合肥一模] 定线段AB所在的直线与定平面α相交,P为直线AB外的一点,且P不在α内,若直线AP、BP与α分别交于C、D点,求证:不论P在什么位置,直线CD必过一定点.13.[2012·太原二模] 直棱柱ABCD-A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.(1)求证:AC⊥平面BB1C1C;(2)若P为A1B1的中点,求证:DP∥平面BCB1,且DP∥平面ACB1.14. 如图G9-4,已知AB⊥平面BCE,CD∥AB,△BCE是正三角形,AB=BC=2CD.(1)在线段BE上是否存在一点F,使CF∥平面ADE?(2)求证:平面ADE⊥平面ABE.图G9-445分钟滚动基础训练卷(十)(考查范围:第37讲~第44讲,以第42讲~第44讲为主 分值:100分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.[2012·长沙二模] 已知平面α内有一个点M (1,-1,2),平面α的一个法向量是n =(6,-3,6),则下列点P 中在平面α内的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)2.若向量a =(1,λ,2),b =(2,-1,2),且a 与b 的夹角的余弦值为89,则λ等于 ( )A .2B .-2C .-2或255D .2或-2553.[2012·杭州二模] 已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( )A .2,12B .-13,12C .-3,2D .2,24.已知正方体ABCD -A 1B 1C 1D 1中,E 为侧面BCC 1B 1的中心.若AE →=zAA 1→+xAB →+yAD →,则x +y +z 的值为( )A .1 B.32C .2 D.345.[2012·银川二模] 已知二面角α-l -β的大小为120°,点B 、C 在棱l 上,A ∈α,D ∈β,AB ⊥l ,CD ⊥l ,AB =2,BC =1,CD =3,则AD 的长为( )A.14B.13 C .2 2 D .2 5 6.[2012·哈尔滨三模] 已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三个向量共面,则实数λ等于( )A.627B.637C.647D.657 7.[2013·济南期中] 已知△ABC 的三个顶点分别是A (1,-1,2),B (5,-6,2),C (1,3,-1),则AC 边上的高BD 长为( )A .5 B.41 C .4 D .2 5 8.[2012·石家庄三模] 正四棱锥P -ABCD 的所有棱长相等,E 为PC 的中点,那么异面直线BE 与P A 所成角的余弦值等于( )A.12B.22C.23D.33二、填空题(本大题共3个小题,每小题6分,共18分)9.若向量a =(1,1,x ),b =(1,2,1),c =(1,1,1),满足条件(c -a )·(2b )=-2,则x =________.10.如图G10-1,在正三棱柱ABC -A 1B 1C 1中,所有棱长均为1,则点B 1到平面ABC 1的距离为________.图G10-111.如图G10-2,正方体ABCD -A 1B 1C 1D 1的棱长为2,M ,N 分别是C 1D 1,CC 1的中点,则直线B 1N 与平面BDM 所成角的正弦值为________.图G10-2三、解答题(本大题共3小题,每小题14分,共42分,解答应写出文字说明,证明过程或演算步骤)12.[2012·沈阳、大连联考] 如图G10-3,在底面为长方形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,AP =AD =2AB ,其中E ,F 分别是PD ,PC 的中点.(1)证明:EF ∥平面P AB ;(2)在线段AD 上是否存在一点O ,使得BO ⊥平面P AC ?若存在,请指出点O 的位置并证明BO ⊥平面P AC ;若不存在,请说明理由.图G10-313.[2013·武汉期中] 如图G10-4所示,在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB ,AD 的夹角都等于60°,M 是PC 的中点.设AB→=a ,AD →=b ,AP →=c .(1)试用a ,b ,c 表示出向量BM →; (2)求BM 的长.图G10-414.[2012·长春三模] 如图G10-5所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点.(1)求直线BE 和平面ABB 1A 1所成的角的正弦值;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论.图G10-545分钟滚动基础训练卷(十一)(考查范围:第45讲~第48讲 分值:100分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.[2012·青岛一模] 已知圆(x -a )2+(y -b )2=r 2的圆心为抛物线y 2=4x 的焦点,且与直线3x +4y +2=0相切,则该圆的方程为( )A .(x -1)2+y 2=6425B .x 2+(y -1)2=6425C .(x -1)2+y 2=1D .x 2+(y -1)2=1 2.[2012·陕西卷] 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( ) A .l 与C 相交 B .l 与C 相切 C .l 与C 相离D .以上三个选项均有可能3.以双曲线x 29-y 216=1的右焦点为圆心,且与其渐近线相切的圆的方程是( )A .x 2+y 2-10x +9=0B .x 2+y 2-10x +16=0C .x 2+y 2+10x +16=0D .x 2+y 2+10x +9=0 4.[2012·广东卷] 在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长等于( )A .3 3B .2 3 C. 3 D .15.若点P 在直线l 1:x +y +3=0上,过点P 的直线l 2与曲线C :(x -5)2+y 2=16相切于点M ,则|PM |的最小值为( )A. 2 B .2 C .2 2 D .46.如图G11-1,已知A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )图G11-1A.210 B.6C.3 3 D.2 57.若直线y=x+b与曲线y=3-4x-x2有公共点,则b的取值范围是()A.[-1,1+22] B.[1-22,1+22]C.[1-22,3] D.[1-2,3]8.[2012·天津卷] 设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围是()A.[1-3,1+3]B.(-∞,1-3]∪[1+3,+∞)C.[2-22,2+22]D.(-∞,2-22]∪[2+22,+∞)二、填空题(本大题共3小题,每小题6分,共18分)9.[2012·金华十校联考] 已知点A(-2,0),B(1,3)是圆x2+y2=4上的定点,经过点B的直线与该圆交于另一点C,当△ABC面积最大时,直线BC的方程是________.10.若圆x2+y2-4x-4y-10=0上恰有三个不同的点到直线l:y=kx的距离为22,则k=________.11.[2012·江苏卷] 在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是________.三、解答题(本大题共3小题,每小题14分,共42分,解答应写出文字说明,证明过程或演算步骤)12.已知直线l:y=kx+1,圆C:(x-1)2+(y+1)2=12.(1)试证明:不论k为何实数,直线l和圆C总有两个交点;(2)求直线l被圆C截得的最短弦长.13.设点C 为曲线y =2x(x >0)上任一点,以点C 为圆心的圆与x 轴交于点E ,A ,与y 轴交于点E ,B .(1)证明:多边形EACB 的面积是定值,并求这个定值;(2)设直线y =-2x +4与圆C 交于点M ,N ,若|EM |=|EN |,求圆C 的方程.14.已知O 为平面直角坐标系的原点,过点M (-2,0)的直线l 与圆x 2+y 2=1交于P ,Q 两点.(1)若OP →·OQ →=-12,求直线l 的方程;(2)若△OMP 与△OPQ 的面积相等,求直线l 的斜率.45分钟滚动基础训练卷(十二)(考查范围:第45讲~第53讲,以第49讲~第53讲为主 分值:100分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.[2012·茂名二模] 双曲线y 29-x 24=1的焦距为( )A.13 B .26 C .213 D .2 52.设双曲线以椭圆x 225+y 29=1长轴的两个端点为焦点,实轴长为45,则双曲线的渐近线的斜率为( )A .±2B .±43C .±12D .±343.若椭圆x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx的焦点分成5∶3的两段,则此椭圆的离心率为( )A.1617B.41717C.45D.2554.[2013·山西大学附中月考] 双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点为F 1,F 2,若双曲线上存在一点P ,满足|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )A .(1,3]B .(1,3)C .(3,+∞)D .[3,+∞)5.定义:离心率e =5-12的椭圆为“黄金椭圆”,已知E :x 2a 2+y 2b2=1(a >b >0)的一个焦点为F (c ,0)(c >0),则E 为“黄金椭圆”是a ,b ,c 成等比数列的( )A .既不充分也不必要条件B .充要条件C .充分不必要条件D .必要不充分条件6.[2012·山东卷] 已知双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( )A .x 2=83yB .x 2=163yC .x 2=8yD .x 2=16y7.设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上三点,若F A →+FB →+FC →=0,则|F A →|+|FB →|+|FC →|=( )A .9B .6C .4D .38.设F 1,F 2是双曲线x 2-y 24=1的左,右两个焦点,若双曲线右支上存在一点P ,使(OP→+OF 2→)·F 2P →=0(O 为坐标原点)且|PF 1|=λ|PF 2|,则λ的值为( )A .2 B.12 C .3 D.13二、填空题(本大题共3小题,每小题6分,共18分)9.已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是________.10.F 是抛物线x 2=2y 的焦点,A ,B 是抛物线上的两点,|AF |+|BF |=6,则线段AB 的中点到y 轴的距离为________.11.[2012·辽宁卷] 已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________.三、解答题(本大题共3小题,每小题14分,共42分,解答应写出文字说明,证明过程或演算步骤)12.过椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点F 作直线交y 轴于点P ,交椭圆于点M 和N ,若PM→=λ1MF →,PN →=λ2NF →,则λ1+λ2=-2a 2b 2.在双曲线x 2a 2-y 2b2=1中,λ1+λ2的值是什么,并证明你的结论.13.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (2,0),M 为椭圆的上顶点,O 为坐标原点,且△OMF 是等腰直角三角形.(1)求椭圆的方程;(2)过点M 分别作直线MA ,MB 交椭圆于A ,B 两点,设两直线的斜率分别为k 1,k 2,且k 1+k 2=8,证明:直线AB 过定点⎝⎛⎭⎫-12,-2.14.[2012·陕西师大附中等五校联考] 到定点F ⎝⎛⎭⎫12,0的距离比到y 轴的距离大12.记点P 的轨迹为曲线C .(1)求点P 的轨迹方程;(2)设圆M 过A (1,0),且圆心M 在P 的轨迹上,BD 是圆M 在y 轴上截得的弦,当M 运动时弦长BD 是否为定值?说明理由;(3)过F ⎝⎛⎭⎫12,0作互相垂直的两直线交曲线C 于G ,H ,R ,S ,求四边形GRHS 面积的最小值.。
高考数学一轮专项复习练习卷(ppt版)北师大版必刷小题-基本初等函数(含解析)
10.若0<a<1,则下列关系成立的是
√A.loga(1-a)>loga(1+a)
√B.loga(1+a)<0
1
1
C. (1 a)3 (1 a)2
√D.a1-a<1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
因为0<a<1,所以0<1-a<1+a,
因此loga(1-a)>loga(1+a),故A正确; 因为0<a<1,所以1<1+a<2,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
6.若实数
m,n,p
满足
m
4
e
3 5
,
n
5
e
2 3
,p=1e82 ,则
√A.p<m<n
C.m<p<n
B.p<n<m D.n<p<m
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
∵实数
m,n,p
设过滤后水中大颗粒杂质含量为y mg/L, 则经过 x 层过滤后,满足 y=25×1-13x=25×23x,x∈N+, 若要满足过滤后水中大颗粒杂质含量不超过2.5 mg/L, 则 25×23x≤2.5,即23x≤110, ∵y=lg x在区间(0,+∞)上单调递增, ∴lg23x≤lg 110,∴xlg 23≤-1,
12.(2023·郴州质检)已知正实数x,y,z满足2x=3y=6z,则
√A.1x+1y=1z
B.2x>3y>6z
C.xy<4z2
√D.x+y>4z
2019届高考数学北师大版理一轮复习文档:第六章 数列
第4节 数列求和最新考纲 1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法.知 识 梳 理1.求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式 S n =n (a 1+a n ) 2 =na 1+n (n -1)2d .②等比数列的前n 项和公式 (ⅰ)当q =1时,S n =na 1;(ⅱ)当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q .(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.2.常见的裂项公式(1)1n (n +1)=1n -1n +1.(2)1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1. (3)1n +n +1=n +1-n .[常用结论与微点提醒]1.1+2+3+4+…+n =n (n +1)2. 2.12+22+…+n 2=n (n +1)(2n +1)6.3.应用裂项相消法时,应注意消项的规律具有对称性,即前面剩第几项则后面剩倒数第几项.诊 断 自 测1.思考辨析(在括号内打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q .( )(2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( )(3)求S n =a +2a 2+3a 3+…+na n 时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.( )解析 (3)要分a =0或a =1或a ≠0且a ≠1讨论求解. 答案 (1)√ (2)√ (3)× (4)√2.(2017·咸阳二模)已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( ) A.9B.15C.18D.30解析 由题意知{a n }是以2为公差的等差数列,又a 1=-5,所以|a 1|+|a 2|+…+|a 6|=|-5|+|-3|+|-1|+1+3+5=5+3+1+1+3+5=18. 答案 C3.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为( )A.2n +n 2-1B.2n +1+n 2-1C.2n +1+n 2-2D.2n +n -2解析 S n =2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.答案 C4.(教材习题改编)数列{a n }中,a n =1n (n +1),若{a n }的前n 项和S n =2 0182 019,则n 等于________.解析 a n =1n (n +1)=1n -1n +1,S n =a 1+a 2+…+a n=1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.令n n +1=2 0182 019,得n =2 018. 答案 2 0185.(2018·河北“五个一”名校联盟质检)若f (x )+f (1-x )=4,a n =f (0)+f ⎝ ⎛⎭⎪⎫1n +…+f ⎝⎛⎭⎪⎫n -1n +f (1)(n ∈N +),则数列{a n }的通项公式为________. 解析 由f (x )+f (1-x )=4,可得f (0)+f (1)=4,…,f ⎝ ⎛⎭⎪⎫1n +f ⎝⎛⎭⎪⎫n -1n =4,所以2a n =(f (0)+f (1))+⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫1n +f ⎝⎛⎭⎪⎫n -1n +…+(f (1)+f (0))=4(n +1),即a n =2(n +1). 答案 a n =2(n +1)考点一 公式法求和【例1】 (2017·全国Ⅱ卷)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2. (1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.解 (1)设{a n }公差为d ,{b n }公比为q ,由题意得⎩⎨⎧-1+d +q =2,-1+2d +q 2=5, 解得⎩⎨⎧d =1,q =2或⎩⎨⎧d =3,q =0(舍去),故{b n }的通项公式为b n =2n -1.(2)由已知得⎩⎨⎧-1+d +q =2,1+q +q 2=21,解得⎩⎨⎧q =4,d =-1或⎩⎨⎧q =-5,d =8. ∴当q =4,d =-1时,S 3=-6; 当q =-5,d =8时,S 3=21.规律方法 1.数列求和应从通项入手,若无通项,则先求通项.2.通过对通项变形,转化为等差或等比或可求数列前n 项和的数列来求之. 【训练1】 (2017·北京卷)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (1)求{a n }的通项公式; (2)求和:b 1+b 3+b 5+…+b 2n -1.解 (1)设{a n }的公差为d ,由a 1=1,a 2+a 4=10得1+d +1+3d =10,所以d =2,所以a n =a 1+(n -1)d =2n -1.(2)由(1)知a 5=9.设{b n }的公比为q ,由b 1=1,b 2·b 4=a 5得qq 3=9,所以q 2=3, 所以{b 2n -1}是以b 1=1为首项,q ′=q 2=3为公比的等比数列, 所以b 1+b 3+b 5+…+b 2n -1=1·(1-3n )1-3=3n -12.考点二 分组转化法求和【例2】 (2018·济南质量预测)已知数列{a n }的前n 项和S n =n 2+n2,n ∈N +. (1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. 解 (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n ,故b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.规律方法 1.若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列{c n }的通项公式为c n =⎩⎨⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{a n }的前n 项和.【训练2】 (2016·天津卷)已知{a n }是等比数列,前n 项和为S n (n ∈N +),且1a 1-1a2=2a 3,S 6=63. (1)求{a n }的通项公式;(2)若对任意的n ∈N +,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和.解 (1)设数列{a n }的公比为q . 由已知,有1a 1-1a 1q =2a 1q 2,解得q =2或q =-1.又由S 6=a 1·1-q 61-q =63,知q ≠-1,所以a 1·1-261-2=63,得a 1=1.所以a n =2n -1.(2)由题意,得b n =12(log 2a n +log 2a n +1)=12(log 22n -1+log 22n )=n -12, 即{b n }是首项为12,公差为1的等差数列. 设数列{(-1)n b 2n }的前n 项和为T n ,则T 2n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=b 1+b 2+b 3+b 4+…+b 2n -1+b 2n =2n (b 1+b 2n )2=2n 2.考点三 裂项相消法求和【例3】 (2018·上饶模拟)已知数列{a n }为等差数列,其中a 2+a 3=8,a 5=3a 2. (1)求数列{a n }的通项公式; (2)记b n =2a n a n +1,设{b n }的前n 项和为S n .求最小的正整数n ,使得S n >2 0182 019. 解 (1)设等差数列{a n }的公差为d , 依题意有⎩⎨⎧2a 1+3d =8,a 1+4d =3a 1+3d ,解得⎩⎨⎧a 1=1,d =2,从而{a n }的通项公式为a n =2n -1,n ∈N +. (2)因为b n =2a n a n +1=12n -1-12n +1,所以S n =⎝ ⎛⎭⎪⎫11-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=1-12n +1,令1-12n +1>2 0182 019,解得n >1 009,故取n =1 010.规律方法 1.利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.2.将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.【训练3】 设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n,求数列{b n }的前n 项和为T n .解 (1)设数列{a n }的公差为d ,由题意得⎩⎨⎧3a 1+3d =a 1+6d ,(a 1+7d )-2(a 1+2d )=3,解得a 1=3,d =2, ∴a n =a 1+(n -1)d =2n +1. (2)由(1)得S n =na 1+n (n -1)2d =n (n +2),∴b n =1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2.∴T n =b 1+b 2+…+b n -1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2=12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2 =34-12⎝ ⎛⎭⎪⎫1n +1+1n +2.考点四 错位相减法求和(易错警示)【例4】 (教材习题原题)求和:1+2x +3x 2+…+nx n -1. 解 当x =1时,S n =1+2+3+…+n =n (n +1)2; 当x ≠1时,设S n =1+2x +3x 2+…+nx n -1,① 则xS n =x +2x 2+…+(n -1)x n -1+nx n ,② ①-②得(1-x )S n =1+x +x 2+…+x n -1-nx n .③ 即S n =1-x n (1-x )2-nx n1-x.规律方法 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和.2.在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.易错警示 (1)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.(2)在利用等比数列求和公式求和时,应注意分清是n 项还是n -1项.【训练4】 (2018·江西百校联盟联考)已知数列{a n }的前n 项和为S n ,数列⎩⎨⎧⎭⎬⎫S n n 是公差为1的等差数列,且a 2=3,a 3=5. (1)求数列{a n }的通项公式;(2)设b n =a n ·3n ,求数列{b n }的前n 项和T n .解 (1)由题意,得S nn =a 1+n -1,即S n =n (a 1+n -1), 所以a 1+a 2=2(a 1+1),a 1+a 2+a 3=3(a 1+2),且a 2=3,a 3=5.解得a1=1,所以S n=n2,所以当n≥2时,a n=S n-S n-1=n2-(n-1)2=2n-1,又n=1时也满足.故a n=2n-1.(2)由(1)得b n=(2n-1)·3n,所以T n=1×3+3×32+…+(2n-1)·3n,则3T n=1×32+3×33+…+(2n-1)·3n+1.∴T n-3T n=3+2×(32+33+…+3n)-(2n-1)·3n+1,则-2T n=3+2×32-3n×31-3-(2n-1)·3n+1=3n+1-6+(1-2n)·3n+1=(2-2n)·3n+1-6,故T n=(n-1)·3n+1+3.基础巩固题组(建议用时:25分钟) 一、选择题1.等差数列{a n}中,已知公差d=12,且a1+a3+…+a99=50,则a2+a4+…+a100=()A.50B.75C.100D.125解析a2+a4+…+a100=(a1+d)+(a3+d)+…+(a99+d)=(a1+a3+…+a99)+50d=50+50×12=75.答案 B2.数列{a n}的前n项和为S n,已知S n=1-2+3-4+…+(-1)n-1·n,则S17=()A.9B.8C.17D.16解析S17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.答案 A3.数列{a n}的通项公式为a n=(-1)n-1·(4n-3),则它的前100项之和S100等于()A.200B.-200C.400D.-400解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200. 答案 B4.(2017·高安中学模拟)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16等于( ) A.5B.6C.7D.16解析 根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,S 6=5+6+1+(-5)+(-6)+(-1)=0. 又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7. 答案 C5.(2018·安徽江南十校联考)已知函数f (x )=x α的图像过点(4,2),令a n =1f (n +1)+f (n ),n ∈N +.记数列{a n }的前n 项和为S n ,则S 2 017=( )A. 2 016-1B. 2 017-1C. 2 018-1D. 2 018+1解析 由f (4)=2可得4α=2,解得α=12,则f (x )=x 12.∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 017=a 1+a 2+a 3+…+a 2 017=(2-1)+(3-2)+(4-3)+…+( 2 017- 2 016)+( 2 018- 2 017)= 2 018-1. 答案 C 二、填空题6.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =________.解析 依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项,2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n (2+2n )2=n (n +1).答案 n (n +1)7.已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n .若a 1=2,则数列{a n }的前n 项和S n=________.解析 由a 2n +1-6a 2n =a n +1a n ,得(a n +1-3a n )(a n +1+2a n )=0, 又a n >0,所以a n +1=3a n ,又a 1=2,所以{a n }是首项为2,公比为3的等比数列, 故S n =2(1-3n )1-3=3n -1.答案 3n -18.(2018·衡水质检)中国古代数学有着很多令人惊叹的成就.北宋沈括在《梦溪笔谈》卷十八《技艺》篇中首创隙积术,隙积术意即:将木桶一层层堆放成坛状,最上一层长有a 个,宽有b 个,共计ab 个木桶,每一层长宽各比上一层多一个,共堆放n 层,设最底层长有c 个,宽有d 个,则共计有木桶n [(2a +c )b +(2c +a )d +(d -b )]6个.假设最上层有长2宽1共2个木桶,每一层的长宽各比上一层多一个,共堆放15层,则木桶的个数为________. 解析 各层木桶长与宽的木桶数自上而下组成一等差数列,且公差为1,根据题意得,a =2,b =1,c =2+14=16,d =1+14=15,n =15,则木桶的个数为 15[(2×2+16)×1+(2×16+2)×15+(15-1)]6=1 360(个). 答案 1 360 三、解答题9.(2018·西安质检)已知等差数列{a n }的前n 项和为S n ,且满足S 4=24,S 7=63. (1)求数列{a n }的通项公式;(2)若b n =2a n +a n ,求数列{b n }的前n 项和T n .解(1)由题意,得⎩⎪⎨⎪⎧S 4=4a 1+4×32d =24,S 7=7a 1+7×62d =63,解得⎩⎨⎧a 1=3,d =2,∴{a n }的通项公式为a n =2n +1.(2)由(1)得b n =2a n +a n =22n +1+(2n +1)=2×4n +(2n +1),所以T n =2×(4+42+…+4n )+(3+5+…+2n +1)=2×4(1-4n )1-4+n (3+2n +1)2=83(4n -1)+n 2+2n . 10.(2015·全国Ⅰ卷)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和. 解 (1)由a 2n +2a n =4S n +3,可知a 2n +1+2a n +1=4S n +1+3.可得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,则2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).由于a n >0,可得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1.(2)由a n =2n +1,得b n =1a n a n +1=1(2n +1)(2n +3)=12⎝ ⎛⎭⎪⎫12n +1-12n +3. 设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3 =n 3(2n +3). 能力提升题组(建议用时:20分钟)11.(2018·华中师大联盟质量测评)在数列{a n }中,已知a 1=3,且数列{a n +(-1)n }是公比为2的等比数列,对于任意的n ∈N +,不等式a 1+a 2+…+a n ≥λa n +1恒成立,则实数λ的取值范围是( )A.⎝ ⎛⎦⎥⎤-∞,25 B.⎝ ⎛⎦⎥⎤-∞,12 C.⎝ ⎛⎦⎥⎤-∞,23 D.(-∞,1]解析 由已知,a n +(-1)n =[3+(-1)1]·2n -1=2n ,∴a n =2n -(-1)n .当n 为偶数时,a 1+a 2+…+a n =(2+22+…+2n )-(-1+1-…+1)=2n +1-2,a n +1=2n +1-(-1)n +1=2n +1+1,由a 1+a 2+…+a n ≥λa n +1,得λ≤2n +1-22n +1+1=1-32n +1+1对n ∈N +恒成立,∴λ≤23; 当n 为奇数时, a 1+a 2+…+a n =(2+22+…+2n )-(-1+1-…+1-1)=2n +1-1,a n +1=2n +1-(-1)n +1=2n +1-1,由a 1+a 2+…+a n ≥λa n +1得,λ≤2n +1-12n +1-1=1,对n ∈N +恒成立, 综上可知λ≤23.答案 C12.(2017·成都诊断)已知数列{a n }的前n 项和为S n ,数列{a n }为12,13,23,14,24,34,15,25,35,45,…,1n ,2n ,…,n -1n ,…,若S k =14,则a k =________.解析 因为1n +2n +…+n -1n =1+2+…+n -1n =n 2-12,1n +1+2n +1+…+n n +1=1+2+…+n n +1=n 2,所以数列12,13+23,14+24+34,…,1n +1+2n +1+…+n n +1是首项为12,公差为12的等差数列,所以该数列的前n 项和T n =12+1+32+…+n 2=n 2+n 4.令T n =n 2+n 4=14,解得n =7,所以a k =78.答案 7813.(2016·浙江卷)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N +.(1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.解 (1)由题意得⎩⎨⎧a 1+a 2=4,a 2=2a 1+1,则⎩⎨⎧a 1=1,a 2=3.又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n ,同时a 2=3a 1,∴数列{a n }的通项公式为a n =3n -1,n ∈N +.(2)设b n =|3n -1-n -2|,n ∈N +,则b 1=2,b 2=1.当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3.设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3,当n ≥3时,T n =3+9(1-3n -2)1-3-(n +7)(n -2)2=3n -n 2-5n +112,此时T 2符合,T 1不符合,∴T n =⎩⎪⎨⎪⎧2,n =1,3n -n 2-5n +112,n ≥2,n ∈N *.。
步步高《单元滚动检测卷》高考数学(理)(北师大,全国)精练:6数 列(含答案解析)
高三单元滚动检测卷·数学考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上。
3.本次考试时间120分钟,满分150分。
单元检测六 数 列第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·南昌调研)已知{a n }是等差数列,a 1+a 7=-2,a 3=2,则{a n }的公差d 等于( )A .-1B .-2C .-3D .-42.(2015·福建)若a ,b 是函数f(x)=x 2-px +q(p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( )A .6B .7C .8D .93.(2015·青岛模拟)已知等比数列{a n }的前n 项和为S n =3n +a(n ∈N +),则实数a 的值是( )A .-3B .3C .-1D .14.已知数列{a n }是等差数列,若a 2 016+a 2 017<0,a 2 016·a 2 017<0,且数列{a n }的前n 项和S n 有最大值,那么S n 取得最小正值时,n 等于( )A .4 029B .4 030C .4 031D .4 0325.等比数列{a n }中,a 2=2,a 4=8,a n >0,则数列{log 2a n }的前n 项和为( ) A.n(n -1)2B.(n -1)22C.n(n +1)2D.(n +1)226.(2015·重庆模拟)已知a 1=1,a n =n(a n +1-a n )(n ∈N +),则数列{a n }的通项公式是( )A .a n =2n -1B .a n =(n +1n)n -1C .a n =n 2D .a n =n7.(2015·浙江)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( )A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>08.(2015·西安模拟)△ABC 中,tan A 是以-4为第3项,-1为第7项的等差数列的公差,tan B 是以12为第3项,4为第6项的等比数列的公比,则该三角形的形状是( ) A .钝角三角形B .锐角三角形C .等腰直角三角形D .以上均错9.设函数f(x)=2x -cos x ,{a n }是公差为π8的等差数列,f(a 1)+f(a 2)+…+f(a 5)=5π,则[f(a 3)]2-a 1a 5等于( )A .0B.116π2C.18π2D.1316π2 10.(2015·黄冈中学月考)若数列{a n }满足1a n +1-p a n =0,n ∈N +,p 为非零常数,则称数列{a n }为“梦想数列”.已知正项数列{1b n}为“梦想数列”,且b 1b 2b 3…b 99=299,则b 8+b 92的最小值是( )A .2B .4C .6D .811.数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q 等于( )A .1B.12 C .-1 D .-212.(2015·重庆模拟)数列{a n }的前n 项和为S n =2n +1-2,数列b n =3n -1,数列⎩⎨⎧⎭⎬⎫b n a n 的前n项和为( )A .5-3n +52n +1 B .5-3n +52n C .5-3n -52n D .5-3n +52n -1第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.设关于x 的不等式x 2-x<2nx(n ∈N +)的解集中整数的个数为a n ,数列{a n }的前n 项和为S n ,则S 100的值为________.14.(2015·江苏)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N +),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.15.在数列{a n }中,a 1≠0,a n +1=3a n ,S n 为{a n }的前n 项和.记R n =82S n -S 2n a n +1,则数列{R n }的最大项为第________项.16.(2015·杭州严州中学阶段测试)已知数列{a n }满足a 1=a ,a n +1=1+1a n.若对任意的自然数n≥4,恒有32<a n <2,则a 的取值范围为________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)(2015·福建)等差数列{a n }中,a 2=4,a 4+a 7=15.(1)求数列{a n }的通项公式;(2)设b n =2a n -2+n ,求b 1+b 2+b 3+…+b 10的值.18.(12分)已知a 2、a 5是方程x 2-12x +27=0的两根,数列{a n }是递增的等差数列,数列{b n }的前n 项和为S n ,且S n =1-12b n (n ∈N +). (1)求数列{a n },{b n }的通项公式;(2)记c n =a n ·b n ,求数列{c n }的前n 项和T n .19.(12分)(2015·北京西城区期末)已知数列{a n }满足a 2=5,且其前n 项和S n =pn 2-n.(1)求p 的值和数列{a n }的通项公式;(2)设数列{b n }为等比数列,公比为p ,且其前n 项和T n 满足T 5<S 5,求b 1的取值范围.20.(12分)(2015·淄博一模)在数列{a n }中,a 1=12,其前n 项和为S n ,则S n =a n +1-12,(n ∈N +). (1)求a n ,S n ;(2)设b n =log 2(2S n +1)-2,数列{c n }满足c n ·b n +3·b n +4=1+(n +1)(n +2)·2b n ,数列{c n }的前n 项和为T n ,求使4T n >2n +1-1504成立的最小正整数n 的值.21.(12分)(2015·山东省实验中学模拟)为了综合治理交通拥堵状况,缓解机动车过快增长势头,一些大城市出台了“机动车摇号上牌”的新规.某大城市2015年初机动车的保有量为600万辆,预计此后每年将报废本年度机动车保有量的5%,且报废后机动车的牌照不再使用.同时每年投放10万辆的机动车牌号.只有摇号获得指标的机动车才能上牌,经调研,获得摇号指标的市民通常都会在当年购买机动车上牌.(1)问:到2019年初,该城市的机动车保有量为多少万辆;(2)根据该城市交通建设规划要求,预计机动车的保有量少于500万辆时,该城市交通拥堵状况才真正得到缓解,问:至少需要多少年可以实现这一目标.(参考数据:0.954=0.81,0.955=0.77,lg 0.75=-0.13,lg 0.95=-0.02)22.(12分)已知等差数列{a n }的前3项和为6,前8项和为-4.(1)求数列{a n }的通项公式;(2)设b n =(4-a n )q n -1(q≠0,n ∈N +),求数列{b n }的前n 项和S n .答案解析1.C 2.D3.C [当n ≥2时,a n =S n -S n -1=3n -3n -1=2·3n -1,当n =1时,a 1=S 1=3+a ,因为{a n }是等比数列,所以有3+a =2,解得a =-1.故选C.]4.C [∵数列{a n }的前n 项和S n 有最大值,∴数列{a n }是递减的等差数列.又∵a 2 016+a 2 017<0,a 2 016·a 2 017<0,∴a 2 016>0,a 2 017<0,∴数列的前2 016项为正数,从第2 017项开始为负数,由求和公式和性质可得S 4 031=4 031a 2 016>0,S 4 032=2 016(a 2 016+a 2 017)<0, ∴S n 取最小正值时n =4 031.]5.A [设等比数列{a n }的公比为q.∵a 2=2,a 4=8,a n >0,∴a 1q =2,a 1q 3=8,解得q =2,a 1=1.∴a n =2n -1. ∴数列{log 2a n }的前n 项和log 2a 1+log 2a 2+…+log 2a n =log 2(1×2×22×…×2n -1) =log 22n(n -1)2=n(n -1)2.故选A.] 6.D [因为a n =n(a n +1-a n ),所以a n +1a n =n +1n, 所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n n -1×n -1n -2×n -2n -3×…×32×21×1=n.] 7.B [∵a 3,a 4,a 8成等比数列,∴(a 1+3d)2=(a 1+2d)(a 1+7d),整理得a 1=-53d , ∴a 1d =-53d 2<0,又S 4=4a 1+4×32d =-2d 3, ∴dS 4=-2d 23<0,故选B.]8.B [由题意知,tan A =-1-(-4)7-3=34>0, tan 3B =412=8,tan B =2>0,∴角A 、B 均为锐角. 又∵tan(A +B)=34+21-34×2=-112<0, ∴角A +B 为钝角,∴角C 为锐角,∴△ABC 为锐角三角形.]9.D [∵{a n }是公差为π8的等差数列, ∴a 1+a 5=a 2+a 4=2a 3,且a 1=a 3-π4,a 2=a 3-π8,a 4=a 3+π8,a 5=a 3+π4. ∵f(x)=2x -cos x ,∴f(a 1)+f(a 5)=2a 1-cos a 1+2a 5-cos a 5=2(a 1+a 5)-(cos a 1+cos a 5)=4a 3-⎣⎡⎦⎤cos ⎝⎛⎭⎫a 3-π4+cos ⎝⎛⎭⎫a 3+π4 =4a 3-2cos a 3cos π4=4a 3-2cos a 3, f(a 2)+f(a 4)=2a 2-cos a 2+2a 4-cos a 4=2(a 2+a 4)-(cos a 2+cos a 4)=4a 3-⎣⎡⎦⎤cos ⎝⎛⎭⎫a 3-π8+cos ⎝⎛⎭⎫a 3+π8 =4a 3-2cos a 3cos π8. ∴f(a 1)+f(a 2)+f(a 3)+f(a 4)+f(a 5)=10a 3-cos a 3-(2+2cos π8)cos a 3 =10a 3-⎝⎛⎭⎫1+2+2cos π8cos a 3=5π, ∴a 3=π2,∴f(a 3)=2×π2-cos π2=π. ∴a 1=π2-π4=π4,a 5=π2+π4=34π. ∴[f(a 3)]2-a 1a 5=π2-34π×π4=1316π2.] 10.B 11.A12.B [当n≥2时,a n =S n -S n -1=2n +1-2n =2n , 又a 1=S 1=21+1-2=2=21,也满足上式, 所以数列{a n }的通项公式为a n =2n .设T n =b 1a 1+b 2a 2+b 3a 3+…+b n a n=221+522+823+…+3n -12n , 2T n =2+521+822+…+3n -12n -1, 两式相减得T n =2+321+322+…+32n -1-3n -12n , T n =2+32⎝⎛⎭⎫1-12n -11-12-3n -12n =5-3n +52n .] 13.10 100 14.201115.4解析 ∵a 1≠0,a n +1=3a n .∴数列{a n }是等比数列.∴R n =82a 1(1-3n 2)-a 1(1-3n )(1-3)a 1·3n 2=(3n 2)2-82(3n 2)+813n 2(1-3) =11-3×(3n 2+813n 2-82)≤11-3(281-82) =643-1. 当且仅当3n 2=813n 2⇒3n =81⇒n =4时等号成立. 所以数列{R n }的最大项为第4项.16.(0,+∞)解析 a 1=a ,a 2=1+1a =a +1a ,a 3=1+a a +1=2a +1a +1,a 4=3a +22a +1.由题意对任意的自然数n≥4,恒有32<a n <2,所以32<1+1a n -1<2⇒1<a n -1<2,要使n≥4都成立,只需32<a 4<2成立, 所以32<3a +22a +1<2, 解得a>0.17.解 (1)设等差数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧ a 1+d =4,(a 1+3d)+(a 1+6d)=15, 解得⎩⎪⎨⎪⎧a 1=3,d =1. 所以a n =a 1+(n -1)d =n +2.(2)由(1)可得b n =2n +n ,所以b 1+b 2+b 3+...+b 10=(2+1)+(22+2)+(23+3)+...+(210+10) =(2+22+23+...+210)+(1+2+3+ (10)=2(1-210)1-2+(1+10)×102 =(211-2)+55=211+53=2 101.18.解 (1)由题意得a 2=3,a 5=9,公差d =a 5-a 25-2=2, 所以a n =a 2+(n -2)d =2n -1,由S n =1-12b n 得,当n =1时b 1=23, 当n≥2时,b n =S n -S n -1=12b n -1-12b n , 得b n =13b n -1, 所以数列{b n }是以23为首项,13为公比的等比数列, 所以b n =23n . (2)c n =a n ·b n =4n -23n, T n =4×1-231+4×2-232+4×3-233+…+4×(n -1)-23n -1+4n -23n , 3T n =4×1-230+4×2-231+4×3-232+…+4×(n -1)-23n -2+4n -23n -1,两式相减得:2T n =2+431+432+…+43n -1-4n -23n =4-4n +43n ,所以T n =2-2n +23n . 19.解 (1)由题意,得S 1=p -1,S 2=4p -2. 因为a 2=5,S 2=a 1+a 2,所以S 2=4p -2=p -1+5,解得p =2. 所以S n =2n 2-n.当n≥2时,由a n =S n -S n -1,得a n =(2n 2-n)-[2(n -1)2-(n -1)]=4n -3. 验证知n =1时,a 1符合上式,所以a n =4n -3,n ∈N +.(2)由(1),得T n =b 1(1-2n )1-2=b 1(2n -1). 因为T 5<S 5,所以b 1(25-1)<2×52-5,解得b 1<4531.又因为b 1≠0, 所以b 1的取值范围是(-∞,0)∪(0,4531). 20.解 (1)由S n =a n +1-12,得S n -1=a n -12(n≥2), 两式作差得:a n =a n +1-a n ,即2a n =a n +1(n≥2), ∴a n +1a n=2(n≥2), 又a 1=S 1=a 2-12,得a 2=1, ∴a 2a 1=2, ∴数列{a n }是首项为12,公比为2的等比数列, 则a n =12·2n -1=2n -2, S n =a n +1-12=2n -1-12. (2)b n =log 2(2S n +1)-2=log 22n -2=n -2, ∴c n ·b n +3·b n +4=1+(n +1)(n +2)·2b n , 即c n (n +1)(n +2)=1+(n +1)(n +2)·2n -2, c n =1(n +1)(n +2)+2n -2=1n +1-1n +2+2n -2,T n =(12-13)+(13-14)+…+(1n +1-1n +2)+(2-1+20+…+2n -2) =12-1n +2+12(1-2n )1-2=12-1n +2-12+2n -1 =2n -1-1n +2. 由4T n >2n +1-1504,得 4(2n -1-1n +2)>2n +1-1504, 即4n +2<1504,n>2 014. ∴使4T n >2n +1-1504成立的最小正整数n 的值为2 015. 21.解 (1)设2015年年初机动车保有量为a 1万辆,以后各年年初机动车保有量依次为a 2万辆,a 3万辆,…,每年新增机动车10万辆, 则a 1=600,a n +1=0.95a n +10.又a n +1-200=0.95(a n -200),且a 1-200=600-200=400, 所以数列{a n -200}是以400为首项,0.95为公比的等比数列. 所以a n -200=400·0.95n -1, 即a n =400·0.95n -1+200. 所以2019年初机动车保有量为a 5=400×0.954+200=524万辆.(2)由题意可知,a n =400·0.95n -1+200<500, 即0.95n -1<0.75,所以n>lg 0.75lg 0.95+1=7.5, 故至少需要8年的时间才能实现目标.22.解 (1)设等差数列{a n }的公差为d.由已知得⎩⎪⎨⎪⎧ 3a 1+3d =6,8a 1+28d =-4,解得⎩⎪⎨⎪⎧a 1=3,d =-1. 故a n =3+(n -1)·(-1)=4-n.(2)由(1)得,b n =n·q n -1,于是 S n =1·q 0+2·q 1+3·q 2+…+n·q n -1. 若q≠1,将上式两边同乘以q 有qS n =1·q 1+2·q 2+…+(n -1)·q n -1+n·q n .两式相减得到(q -1)S n =nq n -1-q 1-q 2-…-q n -1 =nq n-q n -1q -1=nq n +1-(n +1)q n +1q -1. 于是,S n =nq n +1-(n +1)q n +1(q -1)2. 若q =1,则S n =1+2+3+…+n =n(n +1)2. 所以S n =⎩⎪⎨⎪⎧ n(n +1)2,q =1,nq n +1-(n +1)q n +1(q -1)2,q≠1.。
北师版高考总复习一轮理科数精品课件 第6章 数列 解答题专项三 数列
1
Tn=1-Sn,求满足|Tn|>
的
2 022
n 的最大值.
解:(1)设等比数列{an}的公比为q,
因为-2S2,S3,4S4成等差数列,可得2S3=-2S2+4S4,
即 S4-S3=S2-S4,所以 2a4=-a3,解得
又因为
4 1
q= =-2,
3
3
a2=- ,所以数列{an}的通项公式为
1 − =2- ,
2
2
12
n-1
n
,代入
T
·
2
=n+50,得
2
-n-26=0.
n
-1
令f(x)=2x-x-26(x≥1),f'(x)=2xln 2-1>0对于x∈[1,+∞)成立,
所以f(x)=2x-x-26在[1,+∞)上是递增的.
因为f(4)=24-4-26=-14<0,f(5)=25-5-26=1>0,
所以b1+3b2+…+3n-2bn-1=3n-3(n≥2),
两式相减得3n-1bn=3,则bn=32-n(n≥2).
当n=1时,b1=3,符合上式,所以bn=32-n.
(2)由(1)知cn=(2n-1)+k(2-n)=(2-k)n+2k-1,则cn+1-cn=2-k(常数),
所以数列{cn}是等差数列.
(1)求证:数列{ }是等差数列,并求{an}的通项公式;
(2)若[x]表示不超过 x 的最大整数,如[-1.2]=-2,[2.1]=2,
求证:
1
12
+
1
22
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
45分钟滚动基础训练卷(六)(考查范围:第25讲~第27讲 分值:100分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.△ABC 中,点D 在边AB 上,CD 平分∠ACB .若CB →=a ,CA →=b ,|a |=1,|b |=2,则CD →=( )A.13a +23bB.23a +13bC.35a +45bD.45a +35b 2.若向量a =(cos α,sin α),b =(cos β,sin β),a ≠±b ,则a 与b 一定满足( ) A .a 与b 的夹角等于α-β B .a ⊥b C .a ∥bD .(a +b )⊥(a -b ) 3.设a ,b 是非零向量,若函数f (x )=(x a +b )·(a -x b )的图像是一条直线,则必有( ) A .a ⊥b B .a ∥bC .|a|=|b|D .|a|≠|b|4.已知下列命题:①若k ∈R ,且k b =0,则k =0或b =0;②若a·b =0,则a =0或b =0;③若不平行的两个非零向量a ,b ,满足|a |=|b |,则(a +b )·(a -b )=0;④若a 与b 平行,则a·b =|a |·|b |.其中真命题的个数是( )A .0B .1C .2D .35.已知向量a ,e 满足:a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则( ) A .a ⊥e B .a ⊥(a -e )C .e ⊥(a -e )D .(a +e )⊥(a -e )6.如图G6-1,在△ABC 中,AB =BC =4,∠ABC =30°,AD 是边BC 上的高,则AD →·AC →的值等于( )A .0B .4C .8D .-47.[2013·皖南八校联考] 在△ABC 中,若BA →·BC →=3,S △ABC ∈32,332,则角B 的取值范围是( )A.π4,π3B.π6,π4C.π6,π3D.π3,π28.[2013·黄冈中学月考] 函数y =f (x )为定义在R 上的减函数,函数y =f (x -1)的图像关于点(1,0)对称,x ,y 满足不等式f (x 2-2x )+f (2y -y 2)≤0,M (1,2),N (x ,y ),O 为坐标原点,则当1≤x ≤4时,OM →·ON →的取值范围为( )A .[12,+∞)B .[0,3]C .[3,12]D .[0,12]二、填空题(本大题共3小题,每小题6分,共18分)9.在长江南岸渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25 km/h.渡船要垂直地渡过长江,则航向为________.10.△ABC 的外接圆的圆心为O ,两条边上的高的交点为H ,OH →=m (OA →+OB →+OC →),则实数m =________.11.在面积为2的△ABC 中,E ,F 分别是AB ,AC 的中点,点P 在直线EF 上,则PC →·PB →+BC →2的最小值是________.三、解答题(本大题共3小题,每小题14分,共42分,解答应写出文字说明,证明过程或演算步骤)12.已知向量a ,b 满足|a |=|b |=1,且|a -k b |=3|k a +b |,其中k >0. (1)试用k 表示a·b ,并求出a·b 的最大值及此时a 与b 的夹角θ的值;(2)当a·b 取得最大值时,求实数λ,使|a +λb |的值最小,并对这一结果作出几何解释.13.[2013·郑州模拟] 已知二次函数f (x )对任意x ∈R ,都有f (1-x )=f (1+x )成立,设向量a sin x =(sin x ,2) ,b =⎝⎛⎭⎪⎫2sin x ,12,c =(cos2x ,1),d =(1,2),当x ∈[0,π]时,求不等式f (a ·b )>f (c ·d )的解集.14.如图G6-2,平面上定点F 到定直线l 的距离|FM |=2,P 为该平面上的动点,过P作直线l 的垂线,垂足为Q ,且(PF →+PQ →)·(PF →-PQ →)=0.(1)试建立适当的平面直角坐标系,求动点P 的轨迹C 的方程;(2)过点F 的直线交轨迹C 于A ,B 两点,交直线l 于点N ,已知NA →=λ1AF →,NB →=λ2BF →,求证:λ1+λ2为定值.45分钟滚动基础训练卷(六)1.B [解析] 由角平分线的性质得|AD →|=2|DB →|,即有AD →=23AB →=23(CB →-CA →)=23(a -b ).从而CD →=CA →+AD →=b +23(a -b )=23a +13b .故选B.2.D [解析] ∵a +b =(cos α+cos β,sin α+sin β), a -b =(cos α-cos β,sin α-sin β),∴(a +b )·(a -b )=cos 2α-cos 2β+sin 2α-sin 2β=1-1=0, 可知(a +b )⊥(a -b ).3.A [解析] f (x )=(x a +b )·(a -x b )的图像是一条直线,而(x a +b )·(a -x b )=x |a |2-x 2a ·b +a·b -x |b |2, 故a·b =0,又∵a ,b 为非零向量,∴a⊥b ,故应选A.4.C [解析] ①是对的;②也可能a⊥b ;③(a +b )·(a -b )=a 2-b 2=|a |2-|b |2=0; ④平行时分两向量的夹角为0°和180°两种,a·b =|a |·|b |cos θ=±|a |·|b |.5.C [解析] 由条件可知|a -t e |2≥|a -e |2对t ∈R 恒成立,又∵|e |=1,∴t 2-2a·e ·t +2a·e -1≥0对t ∈R 恒成立,即Δ=4(a·e )2-8a·e +4≤0恒成立.∴(a·e -1)2≤0恒成立,而(a·e -1)2≥0,∴a·e -1=0.即a·e =1=e 2,∴e ·(a -e )=0,即e ⊥(a -e ).6.B [解析] BD =AB cos30°=23,所以BD →=32BC →.故AD →=BD →-BA →=32BC →-BA →.又AC →=BC →-BA →.所以AD →·AC →=⎝ ⎛⎭⎪⎫32BC →-BA →·(BC →-BA →)=32BC →2-⎝⎛⎭⎪⎫1+32BA →·BC →+BA →2,BC →2=BA →2=16,BC →·BA→=4×4×cos30°=83,代入上式得AD →·AC →=83-⎝⎛⎭⎪⎫1+32×83+16=4.7.C [解析] BA →,BC →的夹角为B ,BA →·BC →=|BA →||BC →|cos B =3,∴|BA →||BC →|=3cos B.又S△ABC=12|BA →||BC →|sin B =12×3cos B ×sin B =32tan B ∈32,332,∴33≤tan B ≤3, ∴B ∈π6,π3.8.D[解析] 函数y =f (x -1)的图像关于点(1,0)对称,所以f (x )为奇函数,∴f (x 2-2x )≤f (y 2-2y ),又y =f (x )为减函数,∴x 2-2x ≥y 2-2y ,∴⎩⎪⎨⎪⎧x 2-2x ≥y 2-2y ,1≤x ≤4, 即⎩⎪⎨⎪⎧(x -y )(x +y -2)≥0,1≤x ≤4,画出可行域,可得x +2y ∈[0,12],即OM →·ON →=x +2y ∈[0,12].9.北偏西30° [解析] 如图,渡船速度为OB →,水流速度为OA →,船实际垂直过江的速度为OD →,依题意知,|OA →|=12.5,|OB →|=25,由于四边形OADB 为平行四边形,则|BD →|=|OA →|,又OD ⊥BD ,∴在Rt △OBD 中,∠BOD =30°,∴航向为北偏西30°.10.1 [解析] 取BC 的中点D ,则OB +OC =2OD ,且OD ⊥BC ,AH ⊥BC . 由OH →=m (OA →+OB →+OC →),可得OA →+AH →=m (OA →+2OD →), ∴AH →=(m -1)OA →+2mOD →. AH →·BC →=(m -1)·OA →·BC →+2m ·OD →·BC →,即0=(m -1)·OA →·BC →+0,故m =1.11.2 3 [解析] 方法一:问题可转化为已知△PBC 的面积为1,求PC →·PB →+BC →2的最小值.设△PBC 中,有P ,B ,C 所对的边分别为p ,b ,c , 由题设知bc sin P =2, ∴PC →·PB →+BC →2=bc cos P +(b 2+c 2-2bc cos P )=b 2+c 2-bc cos P ≥2bc -bc cos P =2(2-cos P )sin P,从而进一步转化为求2-cos Psin P的最小值.(可数形结合,可引入辅助角化为一个三角函数的形式,也可用万能公式转化后换元等,下略)方法二:建立坐标系,立即得目标函数.由题设知,△PBC 的面积为1,以B 为原点,BC 所在直线为x 轴,过点B 与直线BC 垂直的直线为y 轴建立平面直角坐标系,设C (a ,0),P ⎝ ⎛⎭⎪⎫t ,2a (a >0),则PB →=⎝ ⎛⎭⎪⎫-t ,-2a ,PC →=⎝ ⎛⎭⎪⎫a -t ,-2a ,∴PC →·PB →+BC →2=-t (a -t )+4a 2+a 2=⎝ ⎛⎭⎪⎫t -a 22+4a 2+3a 24≥0+23,当且仅当t =a2,a =4163时取等号,∴PC →·PB →+BC →2的最小值是2 3.12.解:(1)|a -k b |=3|k a +b |⇒(a -k b )2=3(k a +b )2⇒a ·b =-1+k 24k(k >0).∴a ·b =-14⎝ ⎛⎭⎪⎫k +1k ≤-12,∴a ·b 的最大值为-12,此时cos θ=-12,θ=2π3.故a 与b 的夹角θ的值为2π3.(2)由题意,(a·b )max =-12,故|a +λb |2=λ2-λ+1=⎝⎛⎭⎪⎫λ-122+34,∴当λ=12时,|a +λb |的值最小,此时⎝ ⎛⎭⎪⎫a +12b ·b =0,这表明当⎝ ⎛⎭⎪⎫a +12b ⊥b 时,|a +λb |的值最小.13.解:设f (x )的二次项系数为m ,由条件二次函数f (x )对任意x ∈R ,都有f (1-x )=f (1+x )成立得f (x )的图像关于直线x =1对称,若m >0,则当x ≥1时,f (x )是增函数 ;若m <0,则当x ≥1时,f (x )是减函数.∵a ·b =(sin x ,2)·⎝⎛⎭⎪⎫2sin x , 12=2sin 2x +1≥1,c ·d =(cos2x ,1)·(1,2)=cos2x +2≥1,∴当m >0时,f (a ·b )>f (c ·d )⇔f (2sin 2x +1)>f (cos2x +2)⇔ 2sin 2x +1>cos2x +2⇔1-cos2x +1>cos2x +2⇔cos2x <0⇔2k π+π2<2x <2k π+3π2,k ∈Z ,⇔k π+π4<x <k π+3π4, k ∈Z ,∵0≤x ≤π,∴π4<x <3π4,当m <0时,同理可得不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0≤x <π4或3π4<x ≤π 综上所述,不等式f (a ·b )>f (c ·d )的解集是:当m >0时,为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪π4<x <3π4 ;当m <0时,为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0≤x <π4或3π4<x ≤π. 14.解:(1)方法一:如图,以线段FM FM 所在的直线为y 轴建立直角坐标系xOy ,则F (0,1).设动点P 的坐标为(x ,y ),则动点Q 的坐标为(x ,-1), PF →=(-x ,1-y ),PQ →=(0,-1-y ), 由(PF →+PQ →)·(PF →-PQ →)=0,得x 2=4y .方法二:由(PF →+PQ →)·(PF →-PQ →)=0,得|PQ →|=|PF →|.所以,动点P 的轨迹C 是抛物线,以线段FM 的中点为原点O ,以线段FM 所在的直线为y轴建立直角坐标系xOy ,可得轨迹C 的方程为x 2=4y .(2)证明:方法一:如图,设直线的方程为=+1, A (x 1,y 1),B (x 2,y 2),则N ⎝ ⎛⎭⎪⎫-2k ,-1.联立方程组⎩⎪⎨⎪⎧x 2=4y ,y =kx +1,消去y 得,x 2-4kx -4=0,Δ=(-4k )2+16>0,故⎩⎪⎨⎪⎧x 1+x 2=4k ,x 1x 2=-4.由NA →=λ1AF →,NB →=λ2BF →得,x 1+2k =-λ1x 1,x 2+2k=-λ2x 2,整理得,λ1=-1-2kx 1,λ2=-1-2kx 2,λ1+λ2=-2-2k ⎝ ⎛⎭⎪⎫1x 1+1x 2=-2-2k ·x 1+x 2x 1x 2=-2+2k ·4k4=0.方法二:由已知NA →=λ1AF →,NB →=λ2BF →,得λ1·λ2<0.于是,|NA →||NB →|=-λ1|AF →|λ2|BF →|,①如图,过A ,B 两点分别作准线l 的垂线,垂足分别为A 1,B 1,则有|NA →||NB →|=|AA 1→||BB 1→|=|AF →||BF →|,②由①、②得λ1+λ2=0.。