专用汽车设计常用计算公式汇集

合集下载

汽车的动力性设计计算公式之欧阳地创编

汽车的动力性设计计算公式之欧阳地创编

汽车动力性设计计算公式3.1 动力性计算公式3.1.1 变速器各档的速度特性:0377.0i i n r u gi ek ai ⨯⨯=( km/h ) (1)其中:k r 为车轮滚动半径,m;由经验公式:⎥⎦⎤⎢⎣⎡-+=)1(20254.0λb d r k (m) d----轮辋直径,inb----轮胎断面宽度,inλ---轮胎变形系数e n 为发动机转速,r/min ;0i 为后桥主减速速比;gi i 为变速箱各档速比,)...2,1(p i i =,p 为档位数,(以下同)。

3.1.2 各档牵引力汽车的牵引力:t k gi a tq a ti r i i u T u F η⨯⨯⨯=0)()( ( N ) (2)其中:)(a tq u T 为对应不同转速(或车速)下发动机输出使用扭矩,N •m ;t η为传动效率。

汽车的空气阻力:15.212a d w u A C F ⨯⨯=( N ) (3)其中:d C 为空气阻力系数,A 为汽车迎风面积,m 2。

汽车的滚动阻力:f G F a f ⨯=( N ) (4)其中:a G =mg 为满载或空载汽车总重(N),f 为滚动阻尼系数汽车的行驶阻力之和r F :w f r F F F +=( N ) (5)注:可画出驱动力与行驶阻尼平衡图3.1.3 各档功率计算汽车的发动机功率:9549)()(ea tq a ei n u T u P ⨯= (kw ) (6)其中: )(a ei u P 为第)...2,1(p i i =档对应不同转速(或车速)下发动机的功率。

汽车的阻力功率:t aw f r u F F P η3600)(+= (kw ) (7)3.1.4 各档动力因子计算a wa ti a i G F u F u D -=)()( (8)各档额定车速按下式计算0.377.0i i n r u i g ce k i c a = (km/h ) (9)其中:c e n 为发动机的最高转速;)(a i u D 为第)...2,1(p i i =档对应不同转速(或车速)下的动力因子。

专用汽车设计常用计算公式汇集

专用汽车设计常用计算公式汇集

A 已知条件
a① 专用汽车轮距 B
b① 专用汽车空载质心高度 hg 空 c① 专用汽车满载质心高度 hg 满 d① 专用汽车行驶路面附着系数 φ(一般取 φ = 0.7~0.8)
B 计算公式
保证汽车行驶不发生侧翻的条件: B f (hg 一一一一一一一一
)
2hg
C 保证空车行驶不发生侧翻的条件: B f
)
Ga
C 空载整车质心高度计算
-3-
hg 空= gi 一 (一一一一一一一一
) yi 一 (一一一一一一一一一一 Ga 一 (一一一一一一 )
)
D 满载整车质心高度计算
hg 满= gi 一 (一一一一一一一一
) yi 一 (一一一一一一一一一一 Ga 一 (一一一一一一一 )
)
2 专用汽车行驶稳定性计算 2.1 专用汽车横向稳定性计算
一)
G一
C 满载水平质心位置计算
L 满(至后桥水平距离)=
g一
l(一
l 1 / 2l1 )(一 G一
l l1 )
1.4.2 垂直质心高度位置计算 A 已知条件
a① 整车各总成的质量为 gi b① 整车各总成的质心至地面的距离为 Yi
B 整车质心高度 hg = gi xyi (Ga 一一一一一一
1.1.3 高≤4m(汽车处于空载状态,顶窗、换气装置等处于关闭状态) 1.1.4 车外后视镜单侧外伸量不得超出汽车或挂车最大宽度处 250mm 1.1.5 汽车的顶窗、换气装置等处于开启状态时不得超出车高 300mm 1.2 专用汽车的轴距和轮距 1.2.1 轴距
轴距是影响专用汽车基本性能的主要尺寸参数。轴距的长短除影响汽车的总长外, 还影响汽车的轴荷分配、装载量、装载面积或容积、最小转弯半径、纵向通过半径等,此 外,还影响汽车的操纵性和稳定性等。

WY 第二章 专用汽车的总体设计(2)

WY 第二章 专用汽车的总体设计(2)
在专用汽车的主要性能、装载面积和轴荷分配方面均 得到满足的前提下,轴距短一些较好。
选择轴距时应参考表2-3
3.专用汽车轮距
轮距的大小对专用汽车的宽度、质量、横向通过半径、横向 稳定性和机动性影响较大。
轮距越大,则横向稳定性越好,悬架的角刚度也越大。但轮 距宽了,专用汽车的宽度和质量一般也要增大,改变汽车轮 距还会影响车厢或驾驶室内宽度、侧倾刚度、最小转弯直径 等,轮距过宽机动性变坏,还易导致车轮侧面甩泥。
车架计算的任务
1、确定汽车满载在不平度值很小(对称加载)的平坦路面上,以 需考虑动载荷的低速行驶于坏路面且当轴荷分配较小载荷的那 个桥的一个车轮滚上一个300mm高的凸包时车架元件的应力; 3、确定专用汽车的专用设备等上装部分工作时车架元件的应力。
二、 专用汽车质量参数
1、整备质量
汽车总质量( G )是指汽车装备齐全,并按规定装满客(包 括驾驶员)、货时的重量。汽车总质量的确定:
对于轿车,汽车总质量 = 整备质量 + 驾驶员及乘员质量 + 行李质量 对于客车,汽车总质量 = 整备质量 + 驾驶员及乘员质量 + 行李质 量 + 附件质量 对于货车,汽车总质量 = 整备质量 + 驾驶员及助手质量 + 货物质量
二、 副车架的安装
副车架与车架之间垫有8~30mm的缓冲垫。缓冲垫 能衰减冲击,使载荷均匀分布;还能使副梁避开 车架铆钉头等高起物。
副车架在车架上固定时,副梁的前端尽可能向前 伸,越靠近驾驶室越好。
常用的连接装置有:止推连接板、连接支架、止 推连接支架 。
二、 副车架的安装
1.止推连接板
货车的车架多采用冷铆工艺,必要时也可采用特制的防松螺栓连接。 车架材料应满足有足够高的屈服强度和疲劳强度,较低的应力集中敏感 性,良好的冷冲压性能和焊接性能。低碳和中碳低合金钢能满足这些要求。 轻型、中型货车冲压纵梁的钢板厚度为5~7mm;中型货车冲压纵梁的钢 板厚度为7~9mm

专用汽车设计常用计算公式汇集

专用汽车设计常用计算公式汇集
页眉内容
用汽车的总体设计
1 总布置参数的确定
1.1 专用汽车的外廓尺寸(总长、总宽和总高)
1.1.1 长
① 载货汽车≤12m
② 半挂汽车列车≤16.5m
1.1.2 宽≤2.5m(不含后视镜、侧位灯、示廓灯、转向指示灯、可折卸装饰线条、挠性挡泥板、折叠
式踏板、防滑链以及轮胎与地面接触部分的变形等)
1.1.3 高≤4m(汽车处于空载状态,顶窗、换气装置等处于关闭状态)
B 空载整车水平质心位置计算(力矩方程式) L 空= g空 l(或l 1/ 2l1)(或l l1) (质心至后桥中心水平距离)
G空 C 满载水平质心位置计算 L 满(至后桥水平距离)= g满 l(或l 1/ 2l1 )(或l l1 )
G满 1.4.2 垂直质心高度位置计算
A 已知条件 a) 整车各总成的质量为 gi
列公式计算(式中取煤的比容 900 千克/立方米)
货厢栏板高度(米)=
最大设计装载质量(含额定乘员质量)(千克) 900 货厢内部长度(米) 货厢内部宽度(米)
0.1
3.3 罐式汽车的总容量限值应按下列公式计算(式中取汽油的密度为 700 千克/立方米)
总容量(立方米)≤
最大设计装载质量(含额定乘员质量)(千克) 700 (千克/立方米)
c——=
M
l
max
(M l max (nm
M p )nm2 np)2
4.5 专用汽车运动平衡方程式
FHale Waihona Puke =Ff+Fi+Fw+FjN式中:Ft——汽车驱动力(作用在汽车驱动轮上的圆周力)N
Ff——滚动阻力(N)
Fi——坡道阻力(N)
Fw——空气阻力(N)
Fj——加速阻力(N)

专用汽车设计常用计算公式汇集

专用汽车设计常用计算公式汇集

专用汽车设计常用计算公式汇集1.负载能力计算:
负载能力=轴重×轴数
2.强度计算:
强度=承载能力/安全系数
3.随载荷的车辆的弯曲刚度计算:
弯曲刚度=轮距×反曲率
4.弹性模量计算:
弹性模量=受力/受力产生的应变
5.轮胎筋度计算:
筋度=载荷/平均轮胎接地面积
6.轴间距计算:
轴间距=轴距/轴数
7.动力计算:
动力=扭矩×转速
8.燃油消耗计算:
燃油消耗=燃油消耗率×行驶距离
9.悬挂系统设计中的均布荷载计算:
均布荷载=最大悬挂荷载/悬挂系统自重
10.制动系统设计中的制动力计算:
制动力=负荷×制动系数
11.车辆加速度计算:
加速度=净推力/质量
12.转向半径计算:
转向半径=转向角度×轴距
13.刹车距离计算:
刹车距离=初速度²/(2×刹车力×摩擦系数)
14.路面阻力计算:
路面阻力=风阻+滚动阻力+坡道阻力+惯性阻力
15.加重系数计算:
加重系数=充油重量/空车重量
这些公式可以帮助设计师进行专用汽车的设计和计算,以确保其满足设计要求和安全标准。

然而,需要注意的是,实际应用中还需要考虑许多其他因素,如材料的强度特性、零部件的可行性、摩擦系数等,并且可能需要进行进一步的工程分析和测试。

因此,在设计专用汽车时,应综合考虑各种因素,以确保所设计的汽车能够满足用户需求和安全要求。

叉车设计基本公式集

叉车设计基本公式集

GW : 爬坡能力 F : 最大牵引力 FR : 摩擦阻力 W : 车重
[%] [kgf] [kgf] [kgf]
30. 行驶速度
2 Ra N 60
V

iT
1000
V : 行驶速度 N : 马达转速 Ra : 车轮半径 iT : 减速比
[km/h] [rpm] [m] [-]
31. 驱动力
4.坡度 5%坡度:
5
tan
100
爬坡角度θ、坡度x%关系如下、
tan 1 x
100
LP' : 泵动力 [PS] LP : 泵动力 [kw] P : 输出压力 [kw/cm2] Q : 输出流量 [l/min] η : 效率 [-]
5.HST泵必要马力
F V L
270 G t
2.马力与扭矩关系
n T H
716 .2 n T L 973 .8
H 1.36 L
H : 马力 [PS] L : 功率 [kw] N : 转速 [rpm] T : 扭矩 [kg-m]
1PS 1.014HP
3.泵动力
P Q
L P 450
P Q
L P ' 612
[l/min] [cc/rev] [rpm] [-]
ηp : 泵效率
[-]
ηpv : 泵容积率
[-]
ηpm : 泵机械效率
[-]
Pp : 泵吐出压力 ηp : 泵效率 LP : 泵输入马力 Qp : 泵吐出流量
Tp : 泵所需扭矩 Pp : 泵吐出压力 Qp : 泵吐出流量 Np : 泵输入转速 ηp : 泵效率 Vp : 泵吐出排量 ηpm : 泵机械效率

专用汽车课件章05

专用汽车课件章05

三、静态稳定性计算 由普通汽车底盘改装成的专用汽车,其质心位置均较 普通货车为高。
其原因是由于副车架或工作装置的布置,使装载部分 的位置提高了,例如罐体、箱体等,因此应对整车的静 态稳定性进行计算。
对有些专用汽车,不仅要对运输状态进行稳定性计算, 而且对作业状态的稳定性也应进行计算,如自卸汽 车在举升卸货时,就有纵向或侧向失稳的可能性。
2 最大爬坡度
3 加速性能
二、燃油经济性计算
专用汽车的燃油经济性通常用车辆在水平的混凝 土或沥青路面上,以经济车速满载行驶的百公里耗 油量来评价,也称百公里油耗或等速百公里油耗Q 其计算公式为:
随着车速的不同,等速百公里油耗不相同。因而任意一挡 都有一条等速百公里油耗曲线。 下面以直接挡为例,介绍求作等速行驶百公里油耗曲线的 步骤。 首先,应知道该发动机的负荷特性或万有特性,并确定以 下参数, (1)首先从专用汽车直接挡行驶的某一初速。开始,计算 出相应的发动机转速
(2)然后由公式计算出该车速时的整车驱动功率或发动机 的有效输出功率。
(3)查发动机的万有特性或负荷特性,得到该工况时 的比油耗垂。 (4)由公式可计算出该车速时的百公里油耗Q。
(5)再以va。加上一定增量的车速取值(例如以10 km /h为间隔),按照上面的步骤,重新计算新增车速工 况时的百公里油耗,依此类推,直至最高车速。最后 将所求的对应各车速油耗的点连成光滑曲线,即为直 接挡在一定路面条件下等速行驶的百公里油耗曲线。
希望用数学表达式 描述
工程实践中
具体方法:
1 三点插值
2 经验公式
展开,按幂次合并,比较系数,得到三个 待定系统。
2 一种经验公式
得到:
修正系数:
(二)汽车的行驶方程式

汽车设计计算

汽车设计计算

3 计算公式3.1 动力性计算公式3.1.1 变速器各档的速度特性:( km/h) (1)其中:为车轮滚动半径,m;由经验公式: (m)d----轮辋直径,inb----轮胎断面宽度,in---轮胎变形系数为发动机转速,r/min;为后桥主减速速比;为变速箱各档速比,,为档位数,(以下同)。

3.1.2 各档牵引力汽车的牵引力:( N ) (2)其中:为对应不同转速(或车速)下发动机输出使用扭矩,N•m;为传动效率。

汽车的空气阻力:( N ) .. (3)其中:为空气阻力系数,A为汽车迎风面积,m2。

汽车的滚动阻力:( N ) (4)其中:=mg 为满载或空载汽车总重(N),为滚动阻尼系数汽车的行驶阻力之和:( N ) (5)注:可画出驱动力与行驶阻尼平衡图3.1.3 各档功率计算汽车的发动机功率:(kw) ... (6)其中:为第档对应不同转速(或车速)下发动机的功率。

汽车的阻力功率:(kw) (7)3.1.4 各档动力因子计算.... ..(8)各档额定车速按下式计算(km/h) ......(9)其中:为发动机的最高转速;为第档对应不同转速(或车速)下的动力因子。

对各档在[0,]内寻找使得达到最大,即为各档的最大动力因子注:可画出各档动力因子随车速变化的曲线3.1.5 最高车速计算当汽车的驱动力与行驶阻力平衡时,车速达到最高。

3.1.5.1 根据最高档驱动力与行驶阻力平衡方程,求解。

舍去中的负值或非实数值和超过额定车速的值;若还有剩余的值,则选择它们中最大的一个为最高车速,否则以最高档额定车速作为最高车速。

额定车速按下式计算(km/h) (10)其中:为发动机的最高转速为最高档传动比3.1.5.2 附着条件校验根据驱动形式计算驱动轮的法向反力驱动形式 4*4全驱:4*2前驱:4*2后驱:其中:为轴距,为满载或空载质心距前轴的距离若满足下式其中:——道路附着系数则表示“超出路面附着能力,达不到计算得出的最高车速值!”3.1.6 爬坡能力计算 (11)其中:为第档对应不同转速(或车速)下的爬坡度3.1.6.1 各档爬坡度在[0,]中对寻优,找到最大值3.1.6.2 附着条件校验计算道路附着系数提供的极限爬坡能力驱动形式 4*4:,计算4*2 前驱:,计算4*2后驱:,计算其中:——满载或空载质心到后轴的距离——道路附着系数——轴距取、之小者作为一档或直接档的最大爬坡度3.1.7 最大起步坡度3.1.7.1 按下式计算最大起步驱动力(N) (12)其中:为发动机的最大输出扭矩为起步档位的传动比,这里分别取一档传动比和二档传动比为主减速器的传动比为起步档(一档或二档)的传动效率3.1.7.2 按下式计算最大起步坡度(rad) (13)3.1.7.3 附着条件校验按3.1.6.2 校验附着条件,得到极限爬坡度,取和之较小者作为最大起步坡度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章专用汽车的总体设计1 总布置参数的确定1.1 专用汽车的外廓尺寸(总长、总宽和总高)1.1.1 长①载货汽车≤12m②半挂汽车列车≤16.5m1.1.2 宽≤2.5m(不含后视镜、侧位灯、示廓灯、转向指示灯、可折卸装饰线条、挠性挡泥板、折叠式踏板、防滑链以及轮胎与地面接触部分的变形等)1.1.3 高≤4m(汽车处于空载状态,顶窗、换气装置等处于关闭状态)1.1.4 车外后视镜单侧外伸量不得超出汽车或挂车最大宽度处250mm1.1.5 汽车的顶窗、换气装置等处于开启状态时不得超出车高300mm1.2专用汽车的轴距和轮距1.2.1 轴距轴距是影响专用汽车基本性能的主要尺寸参数。

轴距的长短除影响汽车的总长外,还影响汽车的轴荷分配、装载量、装载面积或容积、最小转弯半径、纵向通过半径等,此外,还影响汽车的操纵性和稳定性等。

1.2.2 轮距轮距除影响汽车总宽外,还影响汽车的总重、机动性和横向稳定性。

1.3专用汽车的轴载质量及其分配专用汽车的轴载质量是根据公路运输车辆的法规限值和轮胎负荷能力确定的。

1.3.1 各类专用汽车轴载质量限值(JT701-88《公路工程技术标准》)1.3.2 基本计算公式A 已知条件a)底盘整备质量G1b)底盘前轴负荷g1c ) 底盘后轴负荷Z 1d ) 上装部分质心位置L 2e ) 上装部分质量G 2f ) 整车装载质量G 3(含驾驶室乘员)g ) 装载货物质心位置L 3(水平质心位置)h ) 轴距)(21l l l +B 上装部分轴荷分配计算(力矩方程式)g 2(前轴负荷)×(121l l +)(例图1)=G 2(上装部分质量)×L 2(质心位置)g 2(前轴负荷)=12221)()(l l L G +⨯上装部分质心位置上装部分质量则后轴负荷222g G Z -= C 载质量轴荷分配计算g 3(前轴负荷)×)21(1l l +=G 3×L 3(载质量水平质心位置)g 3(载质量前轴负荷)=13321)()(l l L G +⨯装载货物水平质心位置整车装载质量则后轴负333g G Z -= D 空车轴荷分配计算例图1g 空(前轴负荷)=g 1(底盘前轴负荷)+g 2(上装部分前轴轴荷) Z 空(后轴负荷)=Z 1(底盘后轴负荷)+Z 2(上装部分后轴轴荷) G 空(整车整备质量)=空空Z g + E 满车轴荷分配计算 g 满(前轴负荷)=g 空+g 3 Z 满(后轴负荷)=Z 空+Z 3 G 满(满载总质量)=g 满+Z 满 1.4 专用汽车的质心位置计算专用汽车的质心位置影响整车的轴荷分配、行驶稳定性和操纵性等,在总体设计时必须要慎重全面考虑计算或验算,特别是质心高度是愈低愈好。

1.4.1 水平质心位置计算(力矩方程式) A 已知条件a ) 底盘轴距)(21l l l +b ) 整车整备质量G 空与满载总质量G 满c ) 空载前轴质量g 空与后轴轴载质量Z 空d ) 满载前轴质量g 满与后轴轴载质量Z 满 B 空载整车水平质心位置计算(力矩方程式) L 空=)())(2/1(11离质心至后桥中心水平距或或空空G l l l l l g ++⨯C 满载水平质心位置计算 L 满(至后桥水平距离)=满满或或G l l l l l g ))(2/1(11++⨯1.4.2 垂直质心高度位置计算 A 已知条件a ) 整车各总成的质量为g ib ) 整车各总成的质心至地面的距离为Yi B 整车质心高度h g =)(专用车总质量--∑a aii G G xy g C 空载整车质心高度计算h g 空=)()()(整车整备质量空载时各总成质心高度空载时各总成质量空空空a i i G y g ⨯∑D 满载整车质心高度计算 h g 满=)()()(整车满载总质量满载时各总成质心高度满载时各总成质量满满满a i i G y g ⨯∑2 专用汽车行驶稳定性计算 2.1 专用汽车横向稳定性计算 A 已知条件 a ) 专用汽车轮距Bb ) 专用汽车空载质心高度h g 空c ) 专用汽车满载质心高度h g 满d ) 专用汽车行驶路面附着系数φ(一般取φ = 0.7~0.8) B 计算公式保证汽车行驶不发生侧翻的条件:)(2专用汽车质心高度--hg hg Bϕ C 保证空车行驶不发生侧翻的条件:ϕ 空hg B2 D 保证满载行驶不发生侧翻的条件:ϕ 满hg B2 2.2 专用汽车纵向稳定性计算 A 已知条件a ) 专用汽车质心到后轴中心距离Lb ) 专用汽车质心高度h gc ) 专用汽车行驶路面附着系数φ(一般取φ = 0.7~0.8) B 计算公式保证汽车行驶不发生纵翻的条件:ϕ hg LC 保证空车行驶不发生纵翻的条件:ϕ 空hg LD 保证满载行驶不发生纵翻的条件:ϕ 满hg L3 专用汽车有关限值标准与计算 3.1 载质量利用系数计算A 栏板类载货汽车与自卸汽车限值标准B 载质量利用系数计算公式 载质量利用系数=)()()(千克千克整车整备质量含额定乘员质量最大允许装载质量3.2 货厢栏板高度计算栏板式载货汽车、栏板式半挂车和栏板式全挂车的货厢栏板高度大于0.6米时,高度限值应按下列公式计算(式中取煤的比容900千克/立方米)货厢栏板高度(米)=1.0)()(900))((+⨯⨯米货厢内部宽度米货厢内部长度千克含额定乘员质量最大设计装载质量3.3 罐式汽车的总容量限值应按下列公式计算(式中取汽油的密度为700千克/立方米) 总容量(立方米)≤05.1)/(700))((⨯立方米千克千克含额定乘员质量最大设计装载质量3.4 半挂车的允许最大总质量、最大装载质量和整备质量应符合GB6420的规定:注:液罐车与粉罐车的最大允许装载质量 = 总质量-整备质量 4 专用汽车主要性能参数选择与计算4.1 专用汽车在平路行驶时发动机功率计算公式(发动机功率一般为选定值)P lmax = kw V A C fV G Ta D D Ta a ηη7614072.23max max+ 式中:G a —— 专用汽车总质量(t )ηT —— 传动系机械效率(0.85~0.9) f —— 滚动阻力系数(0.02~0.03) C D —— 空气阻力系数(0.8~1.0)A D —— 汽车正面投影面积 =B D ×H D (B D 前轮距、H D 汽车总高)m 2 P lmax —— 发动机最大功率(kw ) V amax —— 汽车最高车速(km/h ) 4.2 专用汽车比功率标准GB7258标准要求专用汽车比功率≥4.8kw/t 4.3 专用汽车发动机最大扭矩计算(一般为选定值) M lmax = 9549P lmax K/n p N ·m式中:M lmax = 发动机最大扭矩(N ·m )(一般为选定值) P lmax = 发动机最大功率(KW )(一般为选定值)K = 发动机扭矩适应性系数,柴油机为1.05~1.25n p = 最大功率时的转速(1.4~2.0)n m (n m —最大扭矩时的转速) K =)(max发动机扭矩适应性系数pl M M式中:M p =))((9549max转矩发动机最大功率时输出m N n P pl ⋅4.4 发动机输出转矩计算公式 M l = an l 2+bn l +cM l =)()()(22max max m N n n n n M M M l m m p p l l ⋅----式中:M l —— 发动机输出转矩(N ·m )n l —— 发动机输出转速(r/min )M lmax —— 发动机最大输出转距(N ·m )M p —— 发动机最大输出功率时的输出转矩(N ·m ) n p —— 发动机最大输出功率时的曲轴转速(r/min ) n m —— 发动机最大输出转矩时的曲轴转速(r/min ) a —— =2max )(p m p l n n M M -+-b —— =2max )()(2p m p l m n n M M n --c —— = 22max max )()(p m mp l l n n n M M M ---4.5 专用汽车运动平衡方程式 F t = F f + F i +F w +F j N式中:F t —— 汽车驱动力(作用在汽车驱动轮上的圆周力)N F f —— 滚动阻力(N )F i —— 坡道阻力(N ) F w —— 空气阻力(N ) F j —— 加速阻力(N ) 4.5.1 汽车驱动力计算公式 F t =)(0N r i i M dg l μη式中:r d —— 驱动轮动力半径(m )i g —— 变速器的传动比 i 0 —— 主减速比η —— 传动系的机械效率(0.75~0.9) μ—— 发动机外特性修正系数(0.75~0.85) 4.5.2 汽车滚动阻力计算公式F f = m a gfcos α(N )(g 重力加速度9.81m/s 2) 式中:m a —— 专用汽车(或汽车列车)总质量(kg )α—— 道路坡度角f —— 滚动阻力系数(f = f 0+kv a )(50km/h ≤V a ≤100km/h )(一般取f = 0.010~0.020)4.5.3 专用汽车坡道阻力计算公式 F i = m a gsin α(N )4.5.4 专用汽车空气阻力计算公式 F w = C D A D V a 2(N )式中:A D —— 专用汽车的迎风面积(m 2)(AD 可按A D =B D H D 估算,B D —轮距,H D 汽车高度m )C D —— 空气阻力系数N ·h 2/(km 2·m 2),(专用汽车C d =0.03858~0.06944),半挂车的空气阻力系数增加10%4.5.5 加速阻力计算公式 F j = δm a j (N )式中:δ——专用汽车旋转质量换算系数j ——专用汽车加速度(m/s 2) δ的计算公式为:δ= 222021rm i i I r m I a g f a w η+∑+ 式中:I w ——车轮的转动惯量(kg ·m 2)I f ——飞轮的转动惯量(kg ·m 2) r —— 车轮滚动半径(m )也可以按经验公式估算δ值= 1+(0.04~0.06)i 02i g 2+(0.008~0.013)n l =rv i i a g 377.00k —— 滚动阻力比例系数(0.000148~0.00023) 4.5.6 专用汽车直线行驶时的运动微分方程式δm a j = AV a 2+BV a +C 1+C 2(fcos α+sin α)式中:A =D D dag A C r r i i -2330142.0μηB =dbg rr i i 377.0220μηC 1 =dcg r i i μη0C 2= -m a g4.6 专用汽车动力性参数计算4.6.1 专用汽车最高车速(km/h )计算公式V amax =)/(2)(2h km ADkC B -+-式中:D =)(4)(20122C f C A kC B +-+ 4.6.2 专用汽车最大爬坡度计算公式:i max (专用汽车最大爬坡度%)= tg αmax式中:αmax= 202022001arcsin(11arcsinE f E fE f f E +-≈+-+-E = 21244AC AC B -4.6.3 加速度计算公式专用汽车最大加速度j max (m/s 2)计算公式:j max = am A D δ42-4.6.4 专用汽车加速时间计算公式(t 加速时间h ) t = ⎰++++⨯-21)(107716.002124a a V V a a a aa kV f C C BV AV dV m δ 或t =⎥⎦⎤⎢⎣⎡+++-++-+++-++⨯-D kC B AV D kC B AV In D kC B AV D kC B AV In Dm a a a a a)(2)(2)(2)(2107716.021*******δ第二章 粉罐汽车设计计算公式(以YQ9550GSN 为例)1 罐体容积计算1.1 中间直筒容积计算公式 V 1=),(411121直筒长度直筒内径式中L L φφπ⨯⨯1.2 直角斜锥筒容积计算公式 V 2=),,(2)444(33434324233锥体长度小端直径大端直径式中L L φφφφφφπ⨯⨯++1.3 封头容积计算V 3=2×π×h 2(r -h/3)(式中h 封头高度、r 封头球面半径) 1.4 总容积计算公式 V 决=V 1+V 2+V 31.5 有效容积计算公式V 有效=V 总-V 总×k a (k a 容积系数0.08) 1.6 有效装载容积计算公式 V a =)/1000,,(3m kg P kg m P m s l sl水泥粉料堆积密度粉罐的额定装载质量式中 1.7 扩大容积计算公式V b =k b ×V a (k b 扩大容积系数0.1~0.2) 2 罐体壁厚计算公式2.1 筒体壁厚计算公式(圆筒)[]C PP S t+-⨯⨯⨯=ϕδφ211(式中P 设计压力取0.3Mpa ,S 1筒体壁厚,φ1筒体内径,[δ]许用应力,C 壁厚附加量)(φ焊缝系数)2.2 锥筒壁厚计算公式[])17,(cos 1212︒=+⨯-⨯⨯⨯=c c cC P P S αααϕδφ取锥形半角2.3 封头壁厚计算公式(碟形封头)[]C PRP M S d +-⨯⨯⨯⨯=5.023ϕδ式中:S 3 ——封头壁厚R ——封头球面部分内半径 r ——封头过渡段转角内半径M d ——封头形状系数=)3(41rR +⨯ 3 轴荷分配计算公式3.1 G 空销=上装部分质量×罐体中心至承载桥中心距离/牵引销至承载桥中心距离G 空轴=上装部分质量-G 空销 3.2 G满销=(上装部分质量+最大载质量)×罐体中心至承载桥中心距离/牵引销至承载桥中心距离G 满轴=(上装部分质量+最大载质量)-G 满销4 流态化床主要参数计算公式 4.1 临界流态化床气流速度计算公式 V f = 06.088.0394.082.1)10()(08.4ggp d ρηρρ⨯⨯-⨯式中:d p ——颗粒直径m ,水泥取88×10-6mρ——颗粒真密度(kg/m 3)、水泥取3200kg/m 3ρg ——气体密度,在气压P=0.3Mpa 、气温T=373K 、气体常数R a =29.28时,3/75.2m kg TR Pa g =⨯=ρ η——气体的动力粘度(P a ×S )取0.0218×10-3P a ·S4.2 罐体最大空床截面积计算公式)/,/(603max s m V s m Q V QA f f临界流态化速度气体体积流量式中=)(85.1max 对水泥Q A =4.3 粉料带出气流速度(V t )计算公式(粉料悬浮速度)()23122/81.9)(2254s m g d g V p g g t =⨯⎥⎥⎦⎤⎢⎢⎣⎡⨯⨯-⨯=式中ηρρρ(水泥的带出气速V t = 0.58m/s ) 4.4 最小空床截面积(A min )计算公式tV QA 60min =空压机排量Q 与罐体A max 、A min 的对应值(对水泥)4.5 流态化条件计算公式fV Q A ≤式中:A 流化床面积m 2,Q 气体体积流量m 3/s ,V f 临界流态化速度m/s ,水泥为V f =9×10-3m/s5 气力输送系统计算公式 5.1 输送空气量计算公式gaa Vk Q ρμ⨯= 式中:k a ——输送系统的漏气系数,取1.1~1.2V ——输送速度(即卸料速度)(kg/min )ρg ——空气密度(kg/m 3)μ——输送混合比(水泥取40~80)=物料质量/气体质量)(m g g Q V-=ρμ(Q 空气压缩机排量m 3/min ,g m 单位时间内输料管排出的粉料体积m 3/min )5.2 输料管内气流速度计算公式)/(60)/(4211s m d V Q V s 入口速度⨯+=πρ)/(60)/(4222s m dV Q V s 出口速度⨯+=πρ 式中:V 1——在入口处压力下空气流速;V 2——在末端压力下空气流速;Q 1——在入口处压力下空气流量(m 3/min ); Q 2——在末端压力下空气流量; ρs ——颗粒密度(kg/m 3); d ——输料管内径m 计算结果,据经验:V 1≥1.3V t5.3 输送系统压力损失计算公式 H 1=H d +H J =H d +H λ+H h +H ξ式中:H 1——系统全部压力损失(Pa ) H d ——动压损失(Pa ) H j ——静压损失(Pa )H λ——直管壁磨擦压力损失 H h ——垂直升高压力损失 H ξ——各局部阻力压力损失)1(28.9222VV gV H mg d μρ+⨯=(式中g=9.81m/s 2,V m 物料速度,V 气流速度,μ输送混合比,=22V V m 0.65~0.85))1(28.92μρλλ⨯+⨯⨯⨯=C dg V L H g(式中λ——摩擦阻力系数,查有手册,或当d=100mm 时,取λ=0.0235) (L ——直管长度,挠性管接长度加一倍计算m ) H h ——9.8ρg (1+μ)h (h ——垂直升高高度m )gC V H g 2)1(8.92μρξξ+⨯=∑式中:ξ——各种局部阻力系数(截止阀4~8,止回阀1.0-2.5>90°弯头1.0~2.0,三通1.5-2.0)λ——摩擦阻力系数=k λ(0.0125+d0011.0) (式中k λ管道内壁系数:无缝钢管取k λ=1.0,新焊接钢管1.3,旧焊接钢管1.6)6 专业性能和主要参数计算公式 6.1 平均卸料速度计算公式tmm V b ∆-=(式中m b 实际装载质量t ,△m 罐内剩余质量t ,t 卸料时间) 6.2 剩余率计算公式%100⨯∆=lm mi (m l 额定装载质量t ) 6.3 输送混合比计算公式Qm m m g sg s ⨯==ρμ 式中:μ——混合比(即质量浓度)m s ——粉粒体质量流量(kg/s ) m g ——气体质量流量(kg/s ) ρg ——气体密度(kg/m 3) Q ——气体体积流量(m 3/s )第三章 自卸汽车设计计算公式(以日产柴自卸汽车为例)1 前推连杆组合式举升机构计算公式1.1 三角臂A 点与举升质量质心G 点在举升角为θ的坐标:θθsin cos00A A A Y X X -= θθcos sin 00A A A Y X Y += θθsin cos 00G G G Y X X -= θθcos sin 00G G G Y X Y +=式中:0A X 、0A Y 、0G X 、0G Y 为θ= 0°时的坐标值X A 、Y A 、X G 、Y G 为A 点和G 点坐标(举升角为θ时)A 点坐标(X A ,Y A ),G 点坐标(X G ,Y G )1.2 求举升角为θ时B 点坐标:(X B ,Y B )222)()(BD Y Y X X D B D B =-+- 222)()(BA Y Y X X A B A B =-+-1.3 求举升角为θ时C 点坐标,求解方程组:222)()(BC Y Y X X B C B C =-+- 222)()(AC Y Y X X A C A C =-+-·········································· ② ····································可得举升角为θ时的C 点坐标(X C ,Y C ) 式中:BD 、BA 、BC 、AB 均为已知值 1.4 求BD 与CE 交点下的坐标(X F 、Y F )(解方程)B D BD B F B F X X Y Y X X Y Y --=--CE CE CF C F X X Y Y X X Y Y --=--式中:X B 、Y B 、X C 、Y C 为上式可求值,X D 、Y D 为已知值。

相关文档
最新文档