圆锥曲线的弦长公式及其推导过程

合集下载

三种圆锥曲线的弦长公式

三种圆锥曲线的弦长公式

三种圆锥曲线的弦长公式
介绍
圆锥曲线是椭圆以外的另一种类型曲线,其中有三种关键。

它们分别是锥形曲线、圆台曲线和高斯曲线。

这三种曲线使用了非常关键的弦长公式来进行计算。

首先,锥形曲线的弦长公式为L=2π√a2+b2-2a2cosθ,其中a和b分别代表锥形曲线的焦距和顶点角。

θ表示弦的角度。

其次,圆台曲线的弦长公式为L=2π(a2+b2-2abcosθ),其中a和b分别代表圆台曲线的焦距和Fourier角。

θ 表示弦的角度。

最后,高斯曲线的弦长公式为L=4π√a2+b2-2abcosθ+2abcos2θ,其中a和b分别代表高斯曲线的焦距和穹角。

θ表示弦的角度。

以上就是三种圆锥曲线的弦长公式。

锥形曲线的公式表示弦的长度取决于顶点角和焦距,而圆台曲线的公式则表示弦的长度取决于Fourier角和焦距,最后,高斯曲线的公式则表示弦的长度取决于穹角和焦距。

这三种圆锥曲线的弦长公式在计算曲线上每点的坐标时都非常有用,有助于我们更好地理解图形。

圆锥曲线弦长公式的各类表达形式及应用

圆锥曲线弦长公式的各类表达形式及应用

圆锥曲线弦长公式的各类表达形式及应用
圆锥曲线弦长公式是指一种求解圆锥曲线弦长长度的数学公式。

圆锥曲线是常见的椭圆锥这类参数方程曲线,表示一条从圆柱面出发在四个方向上均呈轻微弯曲,伸展出不同长度的弦曲线,它具有如下表达形式:
X^2 + Y^2 + z^2 / a^2 + 2z / c = 1
其中a为曲线的椭圆截面半径,c为曲线的焦点到原点的距离。

此外,圆锥曲线的弦长公式又有两种表达形式:积分形式和解析形式。

即:
积分形式:l= ∫ a,b √[(dx/dt)^2 + (dy/dt)^2+ (dz/dt)^2] dz
解析形式:l= 2a ∫ 0,π/2 [1+ (z/c)^2] ^1/2 d θ
这两种形式分别由圆锥曲线弦长公式参数方程求得,分别通过积分、解析解轴,分别求得弦长长度。

应用上,圆锥曲线弦长公式有各种广泛的应用。

它被冶金、机械、建筑等工程学科广泛使用,主要处理伸缩性有限的形状问题,满足测量要求及计算曲线的长度的需要。

同时,它还被广泛应用于地球物理学领域,一种可以变成圆锥曲线的小球轨迹,可以用来研究宇宙物质的运动规律。

总而言之,圆锥曲线弦长公式具有可探索性广泛的应用,对于求解圆锥曲线弦长长度具有重要意义。

圆锥曲线弦长公式二级结论

圆锥曲线弦长公式二级结论

圆锥曲线弦长公式二级结论
圆锥曲线弦长,又称布朗长度,是椭圆曲线理论在几何图形分析
中的重要概念。

它是指从一个点到另一点经过椭圆曲线伸展的曲线长度。

圆锥曲线弦长的计算一般是按伯恩斯特二级结论分析。

根据伯恩
斯特二级结论,当轴长和离心率都是定值时,椭圆弦长可表示为公式:L=2π[a(1-k^2)+bk(e-1)]/(e-k^2)
其中,a和b是椭圆的轴长,e是离心率,k=sqrt(1-e^2)。

伯恩斯特二级结论还提供了求解圆锥曲线弦长的方法。

据此,将
这类椭圆曲线分割为有限多段,并称这些段为圆锥曲线,可用上述表
达式将各段弦长累加求出椭圆曲线的总弦长。

圆锥曲线设m系直线的弦长公式

圆锥曲线设m系直线的弦长公式

圆锥曲线设m系直线的弦长公式圆锥曲线是数学中重要的一类曲线,其特点是在平面中呈现出不同于直线、抛物线、椭圆和双曲线的形态。

在学习圆锥曲线的过程中,我们经常要涉及到直线的概念,并且在解题中常常涉及到求取直线的一些基本性质。

其中一个比较重要的性质就是圆锥曲线上的任何两点都可以用一条过中心的直线来连接。

而这条连接两点的中心直线的长度则称为该圆锥曲线的弦长。

圆锥曲线的弦长公式是指,在圆锥曲线上任选两点,连接它们的中心直线的长度与这两点之间的距离存在某种固定的关系。

对于椭圆和双曲线而言,这个关系式比较简单,可以直接通过勾股定理得到:对于椭圆:中心直线的长度为a^2-b^2+c^2,其中a和b为椭圆的长短半轴,c为椭圆中心到焦点的距离;两点之间的距离为2a*sin (Θ/2),其中Θ为两点所在的圆心角。

对于双曲线:中心直线的长度为a^2+b^2+c^2,其中a和b为双曲线的长短半轴,c为双曲线中心到焦点的距离;两点之间的距离为2a*sinh(Θ/2),其中Θ为两点所在的圆心角的双曲正弦函数。

而对于圆锥曲线的第三种形态——抛物线来说,其弦长公式相对而言就较为复杂。

这是因为在抛物线上,任意两点之间的距离都相等,且其中心直线的长度与这个距离有关。

因此,在求解抛物线的弦长时,我们需要加入一些额外的推导工作,其中的关键就是确定一条通过两点的切线,并计算出其在抛物线上的交点。

通过这个交点,我们就能够得到弦长的具体数值。

总的来说,圆锥曲线的弦长公式是一个非常重要的数学工具,在解题过程中起着关键的作用。

不论是在研究圆锥曲线的一般性质,还是在具体的应用中,对这个公式的掌握都会事半功倍。

因此,在学习圆锥曲线的过程中,我们必须认真研究弦长公式,掌握其推导方法和具体应用技巧,才能在数学研究或实际问题求解中更加得心应手。

直线与圆锥曲线相交的弦长公式

直线与圆锥曲线相交的弦长公式

直线与圆锥曲线相交的弦长公式
直线与圆锥曲线的相交弦长公式是一类运用圆锥曲线的基本问题。

圆锥曲线可
以对比认为是一类极端复杂的二维曲线,而从数学角度出发,计算问题又被抽象为一个常见的的求解类型--求直线与曲线之间的相交点。

针对这种计算问题,已经有多种方法提供解决方案。

当一条直线与圆锥曲线相交时,首先要求出相交点将这条直线和这条曲线相连接,而相交弦长公式则介入此处以帮助理解相交点的交叉构造。

相交弦长公式的具体表达如下:假设L是一条直线,S是圆锥曲线,P是直线L与曲线S所形成的一
条弦,那么这条弦P的长度将可以用一下公式来表示:
P=∫_(α=α_1)^(α_2)∣∣r_α∥dα,其中α_1,α_2为直线L与曲线S之间
的两个起点和终点经度,r_α则是经度α处曲线S的切线方程。

借助相交弦长公式,我们可以得到直线L与曲线S之间的相交长度。

另外,应
用相交弦长公式,还可以用来解决如下两个典型问题:
(1)当某条弦长固定时,求两交点坐标;
(2)当某点在圆锥曲线上,以及其切线方程给出时,求其在直线上的坐标。

此外,相交弦长公式的应用可以不仅仅限于上述这两类求解问题,它可以被扩
展用于求解更复杂的数学模型和更加精确的函数调节问题。

由此可见,这一公式能够为我们解决不少圆锥曲线问题,并为理解复杂场景和真实系统提供强有力的助力。

求解圆锥曲线的弦长公式的推导过程

求解圆锥曲线的弦长公式的推导过程

圆锥曲线的弦长公式是:L=2π√(R^2+r^2)/2-Rr 。

推导过程如下:
1、将圆锥曲线分解成外部半径为R的大圆和内部半径为r的小圓,由于它们有相同的中心,因此可以将它们看作一条弧。

2、根据余弦定理可得出大圆和小圓之间的夹角θ=cos-1((R-r)/d) (d表示大小圓之间的距离)。

3、根据三角形周长公式可得出该三角形周长L=a+b+c (a,b,c分别表示大小圓之间夹边所对应的三条弦)。

4、由于该三角形是一个平行四边形中心旁切剖而成,因此有a=b=c=(R+r)sinθ/2
(sinθ/2表示斜对边所对应的半径所成外劈边所对应的斜对辰~也就是说斜对辰也是一条直径~ 就能通过上述方法将原始问题化整个思想流畅明了~ 正好可以使电子学习者不会陷入难以理解和无法适应学习氛围中~ 呵呵~ 终于有人能帮助你理清思想流畅明了~ 正好可以使电子学习者不会陷入难以理解和无法适应学习氛围中~ 呵呵~ 终于有人能帮助你理清思想流畅明了~~). 5、将上述步骤代入L = a + b + c , 即 L = 2 ( R + r ) sin θ / 2 . 6、根据正弦定理sin θ = 2 sin ( θ / 2 ) cos ( θ / 2 ) , 就可以将L = 4 R r cos ( θ / 2 ) . 7、再根据余弦定理cos ( θ / 2 ) = √ [ 1 - sin ^ { 2 } ( θ / 2 )] , 最后便可得出L = 4 R r √ [ 1 - ( R - r d ) ^
{ 2 } ] . 8. 最后化整即L = 4 π √(R^2+r^2)/4-Rr。

圆锥曲线焦点弦长公式(极坐标全参数方程)

圆锥曲线焦点弦长公式(极坐标全参数方程)

圆锥曲线焦点弦长公式(极坐标参数方程)圆锥曲线的焦点弦问题是高考命题的大热点,主要是在解答题中,全国文科一般为压轴题的第22题,理科和各省市一般为第21题或者第20题,几乎每一年都有考察。

由于题目的综合性很高的,运算量很大,属于高难度题目,考试的得分率极低。

本文介绍的焦点弦长公式是圆锥曲线(椭圆、双曲线和抛物线)的通用公式,它是解决这类问题的金钥匙,利用这个公式使得极其复杂的问题变得简单明了,中等学习程度的学生完全能够得心应手!?定理 已知圆锥曲线(椭圆、双曲线或者抛物线)的对称轴为坐标轴(或平行于坐标轴),焦点为F ,设倾斜角为α的直线l 经过F ,且与圆锥曲线交于A 、B 两点,记圆锥曲线的离心率为e ,通径长为H ,则(1)当焦点在x 轴上时,弦AB 的长|cos 1|||22αe HAB -=; (2)当焦点在y 轴上时,弦AB 的长|sin 1|||22αe HAB -=.推论:(1)焦点在x 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α22cos 1||e HAB -=;当A 、B 不在双曲线的一支上时,1cos ||22-=αe HAB ;当圆锥曲线是抛物线时,α2sin ||HAB =. (2)焦点在y 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α22sin 1||e HAB -=;当A 、B 不在双曲线的一支上时,1sin ||22-=αe HAB ;当圆锥曲线是抛物线时,α2cos ||HAB =.典题妙解下面以部分高考题为例说明上述结论在解题中的妙用.例1(06湖南文第21题)已知椭圆134221=+y x C :,抛物线px m y 22=-)((p >0),且1C 、2C 的公共弦AB 过椭圆1C 的右焦点.(Ⅰ)当x AB ⊥轴时,求p ,m 的值,并判断抛物线2C 的焦点是否在直线AB 上; (Ⅱ)若34=p 且抛物线2C 的焦点在直线AB 上,求m 的值及直线AB 的方程.2FOABxy例2(07全国Ⅰ文第22题)已知椭圆12322=+y x 的左、右焦点分别为1F 、2F ,过1F 的直线交椭圆于B 、D 两点,过2F 的直线交椭圆于A 、C 两点,且BD AC ⊥,垂足为P.(1)设P 点的坐标为),(00y x ,证明:232020yx +<1. (2)求四边形ABCD 的面积的最小值.2FABCD Oxy 1F P例3(08全国Ⅰ理第21题文第22题)双曲线的中心为原点O ,焦点在x 上,两条渐近线分别为1l 、2l ,经过右焦点F 垂直于1l 的直线分别交1l 、2l 于A 、B 两点. 已知||OA 、||AB 、||OB 成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.A ByO F x1l2lN M金指点睛1. 已知斜率为1的直线l 过椭圆1422=+x y 的上焦点F 交椭圆于A 、B 两点,则||AB =_________.2. 过双曲线1322=-y x 的左焦点F 作倾斜角为6π的直线l 交双曲线于A 、B 两点,则||AB =_________.3. 已知椭圆02222=-+y x ,过左焦点F 作直线l 交A 、B 两点,O 为坐标原点,求△AOB 的最大面积.B O xy AF4. 已知抛物线px y 42=(p >0),弦AB 过焦点F ,设m AB =||,△AOB 的面积为S ,求证:mS 2为定值.yO F x AB5.(05全国Ⅱ文第22题)P 、Q 、M 、N 四点都在椭圆1222=+y x 上,F 为椭圆在y 轴正半轴上的焦点. 已知PF 与FQ 共线,MF 与FN 共线,且0=⋅MF PF .求四边形PQMN 的面积的最大值和最小值.O xNPy MQF6. (07重庆文第22题)如图,倾斜角为α的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点.(Ⅰ)求抛物线的焦点F 的坐标及准线l 的方程;(Ⅱ)若α为锐角,作线段AB 的垂直平分线m 交x 轴于点P ,证明α2cos ||||FP FP -为定值,并求此定值.yO F xA BDEC lαm P7. 点M 与点)2,0(F 的距离比它到直线03:=+y l 的距离小1.(1)求点M 的轨迹方程;(2)经过点F 且互相垂直的两条直线与轨迹相交于A 、B ;C 、D. 求四边形ACBD 的最小面积.FO xA BD C y8. 已知双曲线的左右焦点1F 、2F 与椭圆1522=+y x 的焦点相同,且以抛物线x y 22-=的准线为其中一条准线. (1)求双曲线的方程;(2)若经过焦点2F 且互相垂直的两条直线与双曲线相交于A 、B ;C 、D. 求四边形ACBD的面积的最小值.y2FAO x1l2l B CD参考答案:证明:设双曲线方程为12222=-by a x (a >0,b >0),通径a b H 22=,离心率a ce =,弦AB 所在的直线l 的方程为)(c x k y +=(其中αtan =k ,α为直线l 的倾斜角),其参数方程为为参数)(,t t y t c x ⎩⎨⎧=+-=.sin cos αα. 代入双曲线方程并整理得:0cos 2cos sin 4222222=-⋅+⋅-b t c b t b a ααα)(. 由t 的几何意义可得:|cos 1|2|cos 1|2|cos sin |2cos sin 4cos sin cos 24||||22222222222222222222222122121αααααααααe a b e a b b a ab b a b b a c b t t t t t t AB -=-=-=-----=-+=-=)()(.|cos 1|22αe H-=例1.解:(Ⅰ)当x AB ⊥轴时,点A 、B 关于x 轴对称,0=∴m ,直线AB 的方程为1=x . 从而点A 的坐标为),(231或),(231-. 点A 在抛物线2C 上,.249p =∴即.89=p此时抛物线2C 的焦点坐标为),(0169,该焦点不在直线AB 上. (Ⅱ)设直线AB 的倾斜角为α,由(Ⅰ)知2πα≠.则直线AB 的方程为)(1tan -⋅=x y α.抛物线2C 的对称轴m y =平行于x 轴,焦点在AB 上,通径382==p H ,离心率1=e ,于是有又 AB 过椭圆1C 的右焦点,通径322==a b H ,离心率21=e . ∴.cos 412|cos 1|||222αα-=-=e H AB∴)(α2cos 138-.cos 4122α-= 解之得:6tan 71cos 2±==αα,.抛物线2C 的焦点),(m F 32在直线)(1tan -⋅=x y α上, ∴αtan 31-=m ,从而36±=m . 当36=m 时,直线AB 的方程为066=-+y x ; 当36-=m 时,直线AB 的方程为066=--y x 例2.(1)证明:在12322=+y x 中,123===c b a ,,. ,︒=∠9021PF F O 是1F 2F 的中点,.1||21||21===∴c F F OP 得.12020=+y x ∴点P 在圆122=+y x 上.显然,圆122=+y x 在椭圆12322=+y x 的内部. 故232020yx +<1.(2)解:如图,设直线BD 的倾斜角为α,由BD AC ⊥可知,直线AC 的倾斜角απ+2..cos 138sin ||22)(αα-==H AB 2FOABxy通径33422==a b H ,离心率33=e . 又 BD 、AC 分别过椭圆的左、右焦点1F 、2F ,于是.sin 3342cos 1||cos 334cos 1||222222ααπαα-=+-=-=-=)(,e H AC e H BD ∴四边形ABCD 的面积.2sin 2496sin 334cos 33421||||21222ααα+=-⋅-⋅=⋅=AC BD S [)]10[2sin 02,,,∈∴∈απα . ⎥⎦⎤⎢⎣⎡∈∴42596,S .故四边形ABCD 面积的最小值为2596. 例3,解:(Ⅰ)设双曲线的方程为12222=-by a x (a >0,b >0).||OA 、||AB 、||OB 成等差数列,设m AB =||,公差为d ,则d m OA -=||,d m OB +=||,∴222)()(d m m d m +=+-. 即2222222d dm m m d dm m ++=++-. ∴4m d =. 从而43||m OA =,45||mOB =. 又设直线1l 的倾斜角为α,则α2=∠AOB . 1l 的方程为x aby =. ∴.tan ab=α 而.34||||tan 2tan ==∠=OA AB AOB α 2FABCD Oxy 1F P∴34)(12tan 1tan 222=-⨯=-ab a bαα. 解之得:.21=a b∴.25)(12=+=a b e (Ⅱ)设过焦点F 的直线AB 的倾斜角为θ, 则απθ+=2.∴αθsin cos -=. 而.51)21(1)21(tan 1tan sin 22222=+=+=ααα∴51cos 2=θ.通径b abb a b H =⨯==222. 又设直线AB 与双曲线的交点为M 、N. 于是有:4cos 1||22=-=θe HMN .即451)25(12=⨯-b .解得3=b ,从而6=a .∴所求的椭圆方程为193622=-y x .1. 解:3,1,2===c b a ,离心率23==a c e ,通径122==ab H ,直线l 的倾斜角4πα=.∴58)22()23(11sin 1||2222=⋅-=-=αe HAB . 2. 解:2,3,1===c b a ,离心率2==ace ,通径622==a b H ,直线的倾斜角6πα=. A ByO F x1l2lN M∴3|)23(21|6|cos 1|||2222=⋅-=-=αe HAB .3. 解:1222=+y x ,1,1,2===c b a ,左焦点)0,1(-F ,离心率22==a c e ,通径222==ab H .当直线l 的斜率不存在时,x l ⊥轴,这时22||2===ab H AB ,高1||==c OF ,△AOB 的面积221221=⨯⨯=S . 当直线l 的斜率存在时,设直线l 的倾斜角为α,则其方程为)1(tan +⋅=x y α,即tan tan =+-⋅ααy x ,原点O 到直线AB 的距离ααααααs i n|s e c ||t a n|1t a n |t a n 0ta n 0|2==++-⨯=d . αααα222222sin 122cos 222cos )22(12cos 1||+=-=⋅-=-=e HAB . ∴△AOB 的面积αα2sin 1sin 2||21+=⨯⨯=d AB S . 0<α<π,∴αsin >0. 从而ααsin 2sin 12≥+. ∴22sin 2sin 2=≤ααS .当且仅当1sin =α,即2πα=时,“=”号成立. 故△AOB 的最大面积为22. 4. 解:焦点为)0,(p F ,通径p H 4=.当直线AB 的斜率不存在时,x AB ⊥轴,这时p m AB 4||==,高p OF =||,△AOBBO xy AF的面积22||||21p OF AB S =⨯⨯=. ∴3442444p pp m p m S ===,是定值.当直线AB 的斜率存在时,设直线的倾斜角为α,则其方程为)(tan p x y -⋅=α,即tan tan =+-⋅ααp y x ,原点O 到直线AB 的距离αααααs i n |s e c ||t a n|1t a n |t a n |2p p p d ==+=. αα22sin 4sin ||pH AB ==. ∴△AOB 的面积αsin 2||212p d AB S =⨯⨯=.∴32242424sin sin 41sin 4p pp m p m S =⨯=⨯=ααα. ∴不论直线AB 在什么位置,均有32p m S =(3p 为定值).5. 解:在椭圆1222=+y x 中,.112===c b a ,, 由已知条件,MN 和PQ 是椭圆的两条弦,相交于焦点),(10F ,且PQ MN ⊥. 如图,设直线PQ 的倾斜角为α,则直线MN 的倾斜角απ+2.通径222==ab H ,离心率22=e .于是有.sin 222sin 1||cos 222)2(sin 1||222222ααααπ-=-=-=+-=e H PQ e HMN ,∴四边形PQMN 的面积O xNPy MQFyO F x AB.2sin 816sin 222cos 22221||||21222ααα+=-⋅-⋅=⋅=PQ MN S [)]10[2sin 02,,,∈∴∈απα . ⎥⎦⎤⎢⎣⎡∈∴2916,S .故四边形PQMN 面积的最小值和最大值分别为916和2. 6.(Ⅰ)解:4,82==p p ,∴抛物线的焦点F 的坐标为)2,0(, 准线l 的方程为2-=x .(Ⅱ)证明:作l AC ⊥于C ,AC FD ⊥于D. 通径82==p H . 则ααααcos ||||,cos ||||,sin 8sin ||22AF AD FP EF H AB ====.∴4cos ||||||||+=+==αAF p AD AC AF .∴αcos 14||-=AF .∴αααα22sin cos 4sin 4cos 14||21||||||||=--=-=-=AB AF AE AF EF , 从而αα2sin 4cos ||||==EF FP . ∴8sin 2sin 4)2cos 1(||2cos ||||22=⋅=-=-ααααFP FP FP . 故α2cos ||||FP FP -为定值,此定值为8.7. 解:(1)根据题意,点M 与点)2,0(F 的距离与它到直线2:-=y l 的距离相等,∴点M 的轨迹是抛物线,点)2,0(F 是它的焦点,直线2:-=y l 是它的准线.从而22=p,∴4=p . ∴所求的点M 的轨迹方程是y x 82=.(2) 两条互相垂直的直线与抛物线均有两个交点, ∴它们的斜率都存在. 如图,设直线AB 的倾斜角为α, 则直线CD 的倾斜角为α+︒90.y O F xA BDEClαm P BDy抛物线的通径82==p H ,于是有:αααα2222sin 8)90(cos ||,cos 8cos ||=+︒===H CD H AB .∴四边形ACBD 的面积.2sin 128sin 8cos 821||||21222ααα=⋅⋅=⋅=CD AB S 当且仅当α2sin 2取得最大值1时,128min =S ,这时︒=︒=45,902αα.∴四边形ACBD 的最小面积为128.8. 解:(1)在椭圆1522=+y x 中,2,1,522=-===b a c b a ,∴其焦点为)0,2(1-F 、)0,2(2F .在抛物线x y 22-=中,1=p ,∴其准线方程为212==p x . 在双曲线中,21,22==c a c ,∴3,122=-==a c b a . ∴所求的双曲线的方程为1322=-y x .(2) 两条互相垂直的直线与双曲线均有两个交点,∴它们的斜率都存在. 如图,设直线AB 的倾斜角为α,则直线CD 的倾斜角为α+︒90.双曲线的通径622==a b H ,离心率2==a ce . 于是有: αααα222222sin 416)90(cos 1||,cos 416cos 1||-=+︒-=-=-=e H CD e H AB .∴四边形ACBD 的面积.2sin 4318sin 416cos 41621||||21222ααα+-=-⋅-⋅=⋅=CD AB S =18 y2FAO x1l2l B CD当且仅当α2sin 2取得最大值1时,18min =S ,这时︒=︒=45,902αα.∴四边形ACBD 的最小面积为18.。

圆锥曲线弦长公式带△的公式

圆锥曲线弦长公式带△的公式

圆锥曲线弦长公式带△的公式
在数学中,圆锥曲线是平面截圆锥得到的曲线。

这包括圆、椭圆、抛物线和双曲线。

在解决与这些曲线相关的问题时,我们经常需要找到通过曲线的弦的长度。

在某些情况下,我们还需要知道这个弦的中点的坐标。

为了解决这些问题,我们可以使用带△的圆锥曲线弦长公式。

这个公式能够计算出给定条件下弦的长度,并找到弦的中点的坐标。

首先,我们需要了解这个公式的使用前提。

它适用于圆锥曲线与直线相交的情况,并且要求直线和圆锥曲线必须满足一定的条件。

然后,我们可以使用以下公式来计算弦的长度:
同时,我们还可以使用以下公式来找到弦的中点的坐标:
这些公式都基于直线和圆锥曲线的交点坐标,以及给定的直线和圆锥曲线的参数。

在实际应用中,我们需要根据具体问题选择合适的公式,并代入相应的参数进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线的弦长公式及其推导过程
关于直线与圆锥曲线相交求弦长,通用方法是将直线y kx b代入曲线方程,化
为关于x的一元二次方程,设出交点坐标 A X i, y i , B X2, y ,利用韦达定理及弦长公式
7(1 k2)[(x i X2)24x1X2]求出弦长,这种整体代换、设而不求的思想方法对于求直线与
曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,若利用圆锥曲线的定义及有关定理导出各种曲线的焦点弦长公式就更为简捷.
、椭圆的焦点弦长
2
若椭圆方程为丰1(a b 0),半焦距为c>0,焦点F
1( c,0), F2(c,0)
,设过F1
的直线I的倾斜角为,l交椭圆于两点Ax1,y1 ,B x2, y2,求弦长AB .
解:连结F2A, F2B,设|F i A x,|F i B| y,由椭圆定义得卩2円2a x, F2B 2a y,
由余弦定理得x2(2c)2 2x 2c cos (2a x)2,整理可得x
b2
,同理可求a c cos
得y —
a c cos
2 2
cl b b 2ab
,则A B x y --------------- ------------ —__2 ----- 2
b2
2
同理可求得焦点在y轴上的过焦点弦长为|AB| 2 2宁2 ( a为长半轴,b为短
a c sin
半轴,c为半焦距).
结论:椭圆过焦点弦长公式:
2ab2
I ~2 2 2
AB a c cps
2
2a b2(焦点在y轴
上).
(焦点在X轴上),
D
1
二、双曲线的焦点弦长
2 2
设双曲线冷1a 0,— 0,其中两焦点坐标为F I( C,0),F2(C,0),过F I的直线I的
a b
倾斜角为,交双曲线于两点 A x1, y1 ,B x2, y2 ,求弦长|AB|.
b
解: (1)当arctan —
a arctan —时,(如图
2)a
直线l与双曲线的两个交点A、由双曲线定义可得『2人
2 2
X (2c) 2x 2c cos
整理可得X
|AB|X y
—2
(2)当0
B 在同一支上,连F Q A^B,设I F I A X,|F I B
X 2a, F2B
(X 2a)2,y2
—2
a c cos
a c cos
arcta n—或
a
直线l与双曲线交点
X 2a, F2B
—2
c cos
b arcta
n—
a
y,,
y 2a,由余弦定理可得
(2c)2 2y 2c cos( ) (y 2a)2
—2
y ----------- ,则可求得弦长
a c cos
2a—2
~2 2 2
a c cos
时,如图3,
A X i,y i ,
B X2, y2在两支上,连F?A,F?B设|只円x,
2a,由余弦定理可得
F I B y,
.y
A
B
2 2
X (2c) 2x 2c cos
2 2 2 2
(X 2a)2, y2(2c)2 2y 2c cos (y 2a)2,
因此焦点在x 轴的焦点弦长为
抛物线的焦点弦长
若抛物线/
2p x (p
0)与过焦点F
(号,0)的直线1
相交于两点
Ax1
,y1
,Bx2
,y2
,若
I 的倾斜角为,求弦长|AB|.(图4)
解:过A 、B 两点分别向x 轴作垂线AA i 、BB , A i 、
F
则点A 的横坐标为2
2
xcos
,点B 横坐标为1 ycos
,由抛物线定
义知2 x cos
x
,2 ycos

y,
即x - 1 cos
P 1 cos
p 1 cos
P 2p
1 cos 1 cos 2
2p
.2 Sin
同理y 2
2px (p 0)的焦点弦长为|AB |
2p
.2
Sin
整理可得,x
b 2
c cos
-,则
a
b 2
b 2
|AB I y x
c cos a c cos
2ab 2
2
cos a
2
2ab
~2
2 2
|AB | a
2 c cos ''
2ab 2
~2
2~
b
(arcta n —
a
arcta n —

a
b arcta n
— ), a arctanb
a
).
同理可得焦点在 y 轴上的焦点弦长公式
2ab 2
~2
|AB | a
2
2 (0
arcta nP 或
c sin a
2ab 2 b ———2 ----- (arcta n — c sin a a
arcta a b arcta n —).
a
),
其中a 为实半轴,b 为虚半轴,c 为半焦距,
为AB 的倾斜角.
B i 为垂足,设I F A X ,|FB
2py(p 0)的焦点弦长为AB
2p ,,所以抛物线的焦点弦长为cos
2P (焦点在X轴上),
sin
2p (焦点在y轴上).
cos
由以上三种情况可知利用直线倾斜角求过焦点的弦长,非常简单明确,应予以掌握|AB
圆锥曲线的弦长公

一、椭圆:
设直线与椭圆交于P i(x i,y i)R(X2,y2),且P1P2斜率为K,则
|P i P2| = |X i-X2| 寸—或|P i P2| = |y i-y2| i/K2) {K=(y?-y i)/(x2-
x i)}
J 2 2
=讥1 k )[(x i X2) 4x1X2]
二、双曲线:
设直线与双曲线交于P i(X i,y i),P2(X2,y2),且PP2斜率为K,则
|P I P2|=|X i-X2| ~K2)或|P i P2|=|y i-y2| 2
i/K ) {K=(护-y i)/(x2-
x i)}
2 2
k )[(X i X2) 4X i X2]
三、抛物线:
(1)焦点弦:已知抛物线y2=2px,A(x,y i),B(X2,y2),AB为抛物线的焦点弦,
则|AB|=x i+X2+p 或|AB|=2p/(sin2 ){为弦AB 的倾斜角}
或|AB|2P—匕三(k为弦AB所在直线的斜率)
1 k
(2)设直线与抛物线交于P i(X i,y i),P2(X2,y2),且P i P2斜率为K,贝U
|P i P2|=|x i-X2| K2)或|P i P2|=|y i-y2| \ {K=(y>-y i)/(x2-x i)} = J(1 k2)[(X i X2)24x1X2]。

相关文档
最新文档