滑动轴承试验台

滑动轴承试验台
滑动轴承试验台

滑动轴承试验台主轴初步计算

1. 试验台要求:

1)主轴直径:40-60mm 。

2)转速: 由轴颈最大线速度S V =70m/s ,轴颈线速度计算公式:60

S dn

V π=

;的

主轴最高转速60S

V n d

π=

。 3)载荷:

轴承最大比亚p=12Mpa ,轴承比亚计算公式:

F

P Bd

=

加载力: F P B d = ;

4)材料: 主轴选择材料40Cr , []1σ- =70Mpa ,在200℃时,材料的弹性模量E = 202Gpa 。 5)强度及刚度:

图中F 为加载力,R A 和R B 为 滚动轴承A 、B 处的支反力,T 为摩擦力矩。

F PBd =

2

A B F

R R ==

f F μ=

11f F μ=

122

fd f d T =

+ 其中f 、f 1为分别为滑动轴承和滚动轴承的摩擦力,取μ=0.02、1μ=0.002。 在垂直面内的弯矩:

AC 段:

2

AC Fx

M =, (0≤x ≤/2L )

BC 段:

()

2

CB F L x M -=

,(/2L ≤x ≤L ) 弯扭合成,计算当量弯矩 22)(T M M v α+=,轴单向稳定运转,去α=0.3。由于摩擦系数很小,为了便

于计算,取V M M ≈,对结果影响不大。

主轴中部: 44V FL PBdL M M ≈=

=。 轴颈尺寸变化处:2

V Fx

M M ≈=。

2. 试验台结构:试验台两端有两滚动轴承支承,试验用轴承位于主轴中部,加载时直接加载于轴瓦上。 初选轴结构如下:

初选主轴直径d=40mm ,d 1=35mm 。

主轴中部疲劳强度:ca σ =30.1V M d

=2

0.4PBL

d ≤[σ-1]=70Mpa , 得到 20.40.44070

12ca d d L PB B

σ??≤

=? 当/1B d =时,L ≤

0.44070

12??=93.3mm ;

当/1/2B d =时,L ≤

0.44070

212

???=186.7mm 。

上述两种情况得出的主轴跨度不满足使用要求。

现考虑增加主轴直径,同时为使滚动轴承m D n ?值不致太大,故选择如下形式阶梯轴。

取B/d=1/2,d=60mm ,d 1=40mm ,d 2=50mm 。

由主轴中部疲劳强度:ca σ=30.1V M d

=20.4PBL

d ≤[]1σ-=70Mpa ,

得L ≤280mm ,取L =280mm ,主轴跨度符合实验要求;现确定2L 尺寸,由d 2到d 轴尺寸变化处:

V M M ≈=

222

22

F L PBd L ?=≤[]1σ- 得到 2L ≤

[]2

1220.1d PB

σ-?=97.2mm ,

取2L =90mm 。选择宽度为12mm 的轴承,1L =12mm 。则主轴尺寸如下: 轴颈处强度校核:σca = 1310.4FL d = 1

2

1

0.4PBL d =6.75Mpa []1σ-。

计算主轴挠度,用当量轴径法计算:

21240278501006052.7280

v d mm ??+??+?==

由材料力学知识可知,中点处挠度最大,其挠度

y =

33

41.134104848FL PBdL m EI EI

-==? 其中4

64

v d I π=

对于一般使用要求:

[]0.00030.005L y L ≤≤,

取[]y =0.0005L ,[]41.410y y m -≤=?,满足使用要求。 3. 选择轴承

由60S V n d π==3

6070

23000/min 6010

r π-?≈??。根据转速荷载和选择轴承:

选择SKF 71908CD/HCP4A 轴承。其基本参数如下:

液体动压滑动轴承实验汇总

CQH-A液体动压滑动轴承实验台 使用说明书 本实验台用于液体动压滑动轴承实验,主要用它来观察滑动轴承的结构,测量其径向油膜压力分布和轴向油膜压力分布,测定其摩擦特征曲线和承载量。 该实验台结构简单、重量轻、体积小、外形美观大方,测量直观准确,运行稳定可靠。 一、实验台结构简介 1. 该实验台主要结构见图1所示: 图1 滑动轴承试验台结构图 1. 操纵面板 2. 电机 3. V带 4. 轴油压表接头 5. 螺旋加载杆 6. 百分表测力计装置 7. 径向油压表(7只) 8. 传感器支承板 9. 主轴10. 主轴瓦11. 主轴箱 2. 结构特点 该实验台主轴9由两个高精度的单列向心球轴承支承。 直流电机2通过V带3驱动主轴9,主轴顺时针旋转,主轴上装有精密加工制造的主轴瓦10,由装在底座里的无级调速器实现主轴的无级变速,轴的转速由装在面板1上的左数码管直接读出。 主轴瓦外圆处被加载装置(未画)压住,旋转加载杆5即可对轴瓦加载,加

载大小由负载传感器传出,由面板上右数码管显示。 主轴瓦上装有测力杆,通过测力计装置可由百分表6读出摩擦力值。 主轴瓦前端装有7只测径向压力的油压表7,油的进口在轴瓦长度的1/2处。 在轴瓦全长的1/4处装有一个轴向油压表的接头,需要时可用内六角扳手将堵油塞旋出,再装上备用的轴向油压表。 3. 实验中如需拆下主轴瓦观察,需按下列步骤进行: a. 旋出外加载传感器插头。 b. 用内六角扳手将传感器支承板8上的两个内六角螺钉卸下,拿出传感器支承板即可将主轴瓦卸下。 二、主要技术参数 实验轴瓦:内直径d=60mm 有效长度B=125mm 表面粗糙度?7) 材料ZCuSn5Pb5Zn5(即旧牌号ZQSn6-6-3)加载范围0~1000N(0~100kg?f) 百分表精度0.01 量程0—10mm 油压表精度 2.5% 量程0~0.6Mpa 测力杆上测力点与轴承中心距离L=120mm 测力计标定值k=0.098N/格 电机功率:355W 调速范围:2~400rpm 实验台总量:52kg 三、电气工作原理 5 4 3 图二 1—主轴转速数码管:主轴转速传感器采集的实时数据。

实验三 动压滑动轴承实验

实验三动压滑动轴承实验 一、实验目的 1.验证动压滑动轴承油膜压力分布规律,了解影响油膜压力分布规律的因素,并根据油膜压力分布曲线确定端泄影响系数K b; 2.测定动压滑动轴承的摩擦特征曲线,并考察影响摩擦系数的因素。 二、实验设备及仪器 1.HZS-1型动压滑动轴承试验台 图1 HZS-1型动压滑动轴承实验台 图1为试验台总体布置,图中件号1为试验的轴承箱,通过联轴器与变速箱7相联,6为液压箱,装于底座9的内部,12为调速电动机,通过三角带与变速箱输入轴相联,8为调速电机控制旋钮,5为加载油腔压力表,由減压阀4控制油腔压力,2为轴承供油压力表,由减压阀控制其压力,油泵电机开关为10,主电机开关为11,试验台的总开关在其正面下方。 图2为试验轴承箱,件号31为主轴,由一对D级滚动轴承支承,32为试验轴承,空套在主轴上,轴承内径d=60mm,有效宽度=60mm。在轴承中间横剖面上,沿周向开7个测压孔,在120°范围内的均匀分布,测压表21~27通过管路分别与测压孔相联。距轴承中间剖面L/4(15mm)处,轴承上端有一个测压孔,表头28与其相联,件号33为加载盖板,固定在箱体上,加载油腔在水平面上的投影面积为60cm2在轴承外圆左侧装有测杆35,环34装在测杆上以供测量摩擦力矩用,环34与轴承中心的距离为150mm,轴承外圆上装有两个平衡锤36,用以在轴承安装前做静平衡。

图2 实验轴承箱 箱体左侧装有一个重锤式拉力计如图3所示,测量摩擦力矩时,将拉力计上的吊钩与环34联接,即可测得摩擦力矩。测杆通过环34作用在拉力计上的力F,由重锤予以平衡,其 数值可由 α sin 1 R WL F= 求得。式中R为圆盘半径,W为重锤之重量,L1为重锤重心到轴 心之距离,α为圆盘之转角,圆盘转角α通过齿轮放大,可使表头指针转角放大10倍,表头刻度即为F的实际值,单位为克。 JZT型调速电动机的可靠调速范围为120~1200转/分,为了扩大调速范围,试验台传动系统中有一个两级变速箱,当手柄向右倾斜,主轴与电机转速相同;当手柄向右倾斜,主轴为电机转速的1/6。因此主轴的可靠调速范围为20~1200转/分。 图3 重锤式拉力计工作原理图 2.测速仪表及温度计 三、实验步骤 1. 测定动压滑动轴承的油膜压力分布,确定轴承端泄影响系数K b

电主轴的介绍 090404041009

电主轴的介绍 1.概括:高速数控机床(CNC)是装备制造业的技术基础和发展方向之一,是装备制造业的战略性产业。高速数控机床的工作性能,首先取决于高速主轴的性能。数控机床高速电主轴单元影响加工系统的精度、稳定性及应用范围,其动力性能及稳定性对高速加工起着关键的作用。高速主轴单元的类型主要有电主轴、气动主轴、水动主轴等。不同类型的高速主轴单元输出功率相差较大。 2.电主轴的结构:电动机的转子直接作为机床的主轴,主轴单元的壳体就是电动机机座,并且配合其他零部件,实现电动机与机床主轴的一体化。 3. 优点:电主轴具有结构紧凑、重量轻、惯性小、振动小、噪声低、响应快等优点,而且转速高、功率大,简化机床设计,易于实现主轴定位,是高速主轴单元中的一种理想结构。电主轴轴承采用高速轴承技术,耐磨耐热,寿命是传统轴承的几倍。 4.电主轴的融合技术: 高速轴承技术 电主轴通常采用动静压轴承、复合陶瓷轴承或电磁悬浮轴承。 动静压轴承具有很高的刚度和阻尼,能大幅度提高加工效率、加工质量、延长刀具寿命、降低加工成本,这种轴承寿命多半无限长。 复合陶瓷轴承目前在电主轴单元中应用较多,这种轴承滚动体使用热压Si3N4陶瓷球,轴承套圈仍为钢圈,标准化程度高,对机床结构改动小,易于维护。 电磁悬浮轴承高速性能好,精度高,容易实现诊断和在线监控,但是由于电磁测控系统复杂,这种轴承价格十分昂贵,而且长期居高不下,至今没有得到广泛应用。 高速电机技术 电主轴是电动机与主轴融合在一起的产物,电动机的转子即为主轴的旋转部分,理论上可以把电主轴看作一台高速电动机。关键技术是高速度下的动平衡; 润滑

电主轴的润滑一般采用定时定量油气润滑;也可以采用脂润滑,但相应的速度要打折扣。所谓定时,就是每隔一定的时间间隔注一次油。所谓定量,就是通过一个叫定量阀的器件,精确地控制每次润滑油的油量。而油气润滑,指的是润滑油在压缩空气的携带下,被吹入陶瓷轴承。油量控制很重要,太少,起不到润滑作用;太多,在轴承高速旋转时会因油的阻力而发热。 冷却装置 为了尽快给高速运行的电主轴散热,通常对电主轴的外壁通以循环,冷却装置的作用是保持冷却剂的温度。 高速刀具的装卡方式 广为熟悉的BT、ISO刀具,已被实践证明不适合于高速加工。这种情况下出现了HSK、SKI等高速刀具。 高频变频装置 要实现电主轴每分钟几万甚至十几万转的转速,必须用一高频变频装置来驱动电主轴的内置高速电动机,变频器的输出频率必须达到上千或几千赫兹。 电主轴的运动控制 在数控机床中,电主轴通常采用变频调速方法。目前主要有普通变频驱动和控制、矢量控制驱动器的驱动和控制以及直接转矩控制三种控制方式。 普通变频为标量驱动和控制,其驱动控制特性为恒转矩驱动,输出功率和转速成正比。普通变频控制的动态性能不够理想,在低速时控制性能不佳,输出功率不够稳定,也不具备C轴功能。但价格便宜、结构简单,一般用于磨床和普通的高速铣床等。 矢量控制技术模仿直流电动机的控制,以转子磁场定向,用矢量变换的方法来实现驱动和控制,具有良好的动态性能。矢量控制驱动器在刚启动时具有很大的转矩值,加之电主轴本身结构简单,惯性很小,故启动加速度大,可以实现启动后瞬时达到允许极限速度。这种驱动器又有开环和闭环两种,后者可以实现位置和速度的反馈,不仅具有更好的动态性能,还可以实现C轴功能;而前者动态性能稍差,也不具备C轴功能,但价格较为便宜。 直接转矩控制是继矢量控制技术之后发展起来的又一种新型的高性能交流调速技术,其控制思想新颖,系统结构简洁明了,更适合于高速电主轴的驱动,更能满足高速电主轴高转速、宽调速范围、高速瞬间准停的动态特性和静态特性的要求,已成为交流传动领域的一个热点技术。 5.电主轴的发展趋势:随着机床技术、高速切削技术的发展和实际应用的需要,对机床电主轴的性能也提出了越来越高的要求,

油液动压径向轴承设计及计算【开题报告】

毕业设计开题报告 机械设计制造及自动化 油液动压径向轴承设计及计算 1、选题的背景、意义 流体动压径向滑动轴承具有承载能力大、功耗小、耐冲击、抗振性好、运转精度高等突出的优点。所以,在高速、低速以及高速精密的旋转机械中应用十 分普遍,而且成为旋转机械的重要部件。比如在汽轮机组、舰船主动力机组、石油钻井机械、轧机及各类大型机床中都有广泛的应用,而且成为这类机械的关键部件之一。在这些机器中,径向滑动轴承的性能优劣直接影响或决定了整台机器的性能和效率。比如在汽轮发电机组中,性能优良的滑动轴承可以减少停机检修的次数,烧瓦的可能性也低得多。 轴承基本参数(轴径的长径比、半径间隙、偏心距和轴承包角等)的变化,对轴承的静动态特性会产生很大的影响。另外,实际工作中的滑动轴承,由于加工、安装误差等因数,其工况条件与理论分析时所考虑的理想工况有很大差距,这种情况下,轴承的一些性能参数会发生变化。 2、相关研究的最新成果及动态 我国轴承行业发展到现在,已具备相当的生产规模和较高的技术、质量水平。具有一定规模的轴承企业已发展到1 500余家,职工人数壮大到近80万人,轴承年产量从1 949年的1 3.8J5套增加到目前的20多亿套,轴承品种累计从1 00多个增加至7000多个,规格达28000多个。 近1 0年来国外轴承知名公司(如SKF、FAG、NSK、NBM 、 KOYO、T JM KEN、TORRlNGTON等)先后在我国投资办厂,对我国轴承设计技术水平的提高,生产工艺和生产管理的规范、生产装备水平的现代化、产品的质量和使用性能的提高等方面起到了很大的推动作用。2OO亿元,年出口量逾7.7亿套,出口创汇约达7

ZCS-Ⅱ液体动压轴承实验台指导书

ZCS -II 型 液体动压轴承实验台实验指导书 一、实验目的 该实验台用于机械设计中液体动压滑动轴承实验。主要利用它来观察滑动轴 承的结构、测量其径向油膜压力分布、测定其摩擦特征曲线。使用该实验系统可 以方便地完成以下实验: 1、液体动压轴承油膜压力径向分布的测试分析 2、液体动压轴承油膜压力径向分布的仿真分析 3、液体动压轴承摩擦特征曲线的测定 4、液体动压轴承实验的其他重要参数测定:如轴承平均压力值、轴承PV 值、偏心率、最小油膜厚度等 二、实验系统 1、实验系统组成 轴承实验台的系统框图如图1所示,它由以下设备组成: ⑴ 轴承实验台——轴承实验台的机械结构 ⑵ 压力传感器——共7个,用于测量轴瓦上油膜压力分布值 ⑶ 力传感器——共1个,测量外加载荷值 ⑷ 转速传感器——测量主轴转速 ⑸ 力矩传感器——共1个,测量摩擦力矩 ⑹ 单片机 ⑺ PC 机 ⑻ 打印机 2、实验系统结构 该实验机构中滑动轴承部分的结构简图如图2 轴承实验台 力 传感器 力矩传感器 数据采集器 计 算 机 CRT 显示器 打 印 转速传感器 压力传感器

1、电机 2、皮带 3、摩擦力传感器 4、压力传感器:测量轴承表面油膜压力,共7个F1~ F7, 5、轴瓦 6、加载传感器:测量外加载荷值 7、主轴 9、油槽 10、底座 11、面板 12、调速旋钮:控制电机转速 试验台启动后,由电机1通过皮带带动主轴7在油槽9中转动,在油膜粘力作用下通过摩擦力传感器3测出主轴旋转时受到的摩擦力矩;当润滑油充满整个轴瓦内壁后轴瓦上的7个压力传感器可分别测出分布在其上的油膜压力值;待稳定工作后由温度传感器t1测出入油口的油温,t2测出出油口的油温。 3、实验系统主要技术参数 (1) 实验轴瓦:内径d=70mm 长度L=125mm (2) 加载范围:0~1800 N (3) 摩擦力传感器量程:50 N (4) 压力传感器量程:0~1.0 MPa (5) 加载传感器量程:0~2000 N (6) 直流电机功率:355 W (7) 主轴调速范围:2~500 rpm

电主轴资料整理

金属切削机床 电主轴资料总结报告 2016.5

目录 一、电主轴简介 (3) 二、电主轴的性能 (3) 1.电主轴的静态特性 (3) 2.电主轴的动态特性 (4) 三、电主轴的润滑,冷却方式 (4) 1.液体冷却 (4) 2.空气强制冷却 (5) 四、电主轴的振动问题 (5) 五、电主轴的支撑方式 (6) 六、参考文献 (6)

一、电主轴简介 电主轴是最近几年在数控机床领域出现的将机床主轴与主轴电机融为一体的新技术。高速数控机床主传动系统取消了带轮传动和齿轮传动。机床主轴由内装式电动机直接驱动,从而把机床主传动链的长度缩短为零,实现了机床的“零传动”。这种主轴电动机与机床主轴“合二为一”的传动结构形式,使主轴部件从机床的传动系统和整体结构中相对独立出来,因此可做成“主轴单元”,俗称“电主轴”。 电主轴的主要特点如下: (1)电主轴系统减少了高精密齿轮等关键零件,消除了齿轮传动误差。 (2)减少了主轴的振动,减小了噪声,提高了主轴的回转精度。 (3)用交流变频调速和矢量控制,输出功率大,调速范围宽,功率一扭矩特 性好。 (4)机械结构简单,转动惯量小,快速响应性好,能实现很高的速度和加速 度及定角度的快速准停。 二、电主轴的性能 1.电主轴的静态特性 电主轴的静刚度简称主轴刚度,是机床主轴系统重要的性能指标,它反映主轴单元抵抗静态外载荷的能力,与负荷能力及抗振性密切相关。主轴单元的弯曲刚度足,定义为使主轴前端产生单位径向位移d时,在位移方向所需施加的力f,轴单元的轴向刚度,定义为使主轴轴向产生单位位移时,在轴向所需施加的力。一般情况,弯曲刚度远比轴向刚度重要,是衡量主轴单元刚度的重要指标,通常用来代指主轴的刚度。它与主轴单元的悬伸量、跨距、几何尺寸、主轴材料的物理性能及轴承刚度有关。

国内外轴承试验方法

国内外轴承试验方法,目前。主要有四种:一、摩擦磨损试验,二、试验,三、试验室( 试验场) 模拟试验,四、实际工况运行试验。国外对上述几种试验方法均有使用,但应用目的不一样,例如,开发一种全新的产品,首先须做摩擦磨损试验。但如果磨擦磨损形式无多大变化,仅产品尺寸、受载工况变化,则仅需做台架、模拟或实际运行试验即可。国外对一些关键部位的新产品( 如轿车轮毂轴承等) 考核极为严格,必需经实际运行试验,才干获准进行配套使用。 瑞典SKF 日本NTN 新近研究轴承仿真试验技术、只能替代台架、模拟或实验,以缩短产品设计的时间,加快产品开发的进度,但距实际运行情况还有所差距。现在国轴承行业已开展摩擦磨损试验的只有一家;已开展轴承的有、上海轴研所、杭州轴承试验中心和瓦房店、哈尔滨等20 余家国有轴承企业;可以展开模拟试验的有、杭州轴承试验中心以及洛轴、襄轴等企业。而要实际进行试验,只有在配套主机企业提出此方面要求时轴承生产企业才予以进行,如铁路客车轮对轴承及小轿车的轮毂轴承等。总之,国内在开展模拟和实际运行试验方面还不广泛,应进一步扩大主机范围或实际工况范围,为仿真试验早日提到日程作好充分的软、硬件准备。 主要研究内容和目标: 需先对一些代表性类型的典型产品进行台架或模拟试验,为了进行仿真试验。找出寿命与承载、工况之间的函数关系,而后利用这种关系,通过计算机进行轴承设计和试验工作,这通常只是针对那些极为重要的产品才进行的试验。根据我国现有能力,今后十年主要目标是对轴承、以及高速度磨床主轴轴承进行仿真试验研究,并逐渐具备一定的仿真试验条件。研究内容如下: 一、润滑技术: 技术概要: 润滑脂( 油) 和润滑方式的不同,在运动中由于阻力使轴承不断磨损而失效。对降低轴承摩擦磨损效果不同。因此润滑技术已成为轴承技术研究的重要组成局部。有人把润滑脂( 油) 称为“ 轴承的第五个零件” 其他为内圈、外圈、滚动体、坚持架) 使其轴承阻力最小,阻碍旋转的阻力由滚动磨擦、滑动磨擦和润滑剂磨擦组成。当滚动体在滚道上滚动时会出现滚动磨擦;滑动磨擦呈现在坚持架中滚动体的引导面上、坚持架的挡边引导面上以及滚子轴承中滚子端面和套圈挡边上。润滑剂磨擦则由润滑剂在接触处的内部磨擦以及润滑剂的搅拌和挤压所组成。一套轴承的总磨擦即滚动磨擦、滑动磨擦和润滑剂磨擦的总和就是阻抗轴承运动的阻力。研究润滑技术的任务就是开发不同润滑脂( 油) 及其润滑方式。寿命最长。 国内外发展趋势: 对常见工况下的( 油) 技术和生产上已完全过关,国外先进工业国家。已形成系列品种和批量生产能力,当前主要趋势是研究提高一些特殊情况下润滑脂的性能,如正在研究提高宇航用全氟醚润滑脂的真空稳定性,爬移性以及粘温性能等;又如低温脂,虽在应用中有较好效果,但其润滑机理未能有很好的理论论述。再如,研究在高温( 200-4000C 下使用气态润滑剂的研究等。国当前轴承润滑的研究任务极重,如果经费允许,应重点解决以下

3动压滑动轴承实验

实验三 动压滑动轴承实验 实验仪器:HS-B 型液体动压轴承试验台、计算机、绘图工具等 一、实验目的: 1、观察滑动轴承的结构; 2、测量及仿真其径向油膜压力分布和轴向压力分布; 3、测定及仿真其摩擦特性曲线 二、实验内容: 1、 测出某工况下的流体动压油膜压力分布和不同工况下的摩擦系数。 2、 整理计算实验数据,按比例绘制出油膜压力P 周向和轴向的分布曲线和轴承摩擦特性曲线。 三. 液体动压润滑径向滑动轴承的工作原理 当轴颈旋转将润滑油带入轴承摩擦表面时,由于油的粘性作用,当达到足够高的旋转速度时,油就被带入轴和轴瓦配合面间的楔形间隙内而形成流体动压效应,即在承载区内的油层中产生压力。当压力与外载荷平衡时,轴与轴瓦之间形成稳定的油膜。这时轴的中心相对轴瓦的中心处于偏心位置,轴与轴瓦之间处于完全液体摩擦润滑状态。因此这种轴承摩擦小,寿命长,具有一定吸震能力。 液体动压润滑油膜形成过程及油膜压力分布形状如图3-1所示。 滑动轴承的摩擦系数f 是重要的设计参数之一,它的大小与润滑油的粘度 (Pa s)、轴的转速n (r/min)和轴承压力p (MPa)有关,令 (1) 式中:λ — 轴承特性数 观察滑动轴承形成液体动压润滑的过程,摩擦系数f 随轴承特性数 λ 的变化如图8-2所示。图中相应于f 值最低点的轴承特性数 λc 称为临界特性数,且 λc 以右为液体摩擦润滑区,λc 以左为非液体摩擦润滑区,轴与轴瓦之间为边界润滑并有局部金属接触。因此f 值随 λ 减小而急剧增加。不同的轴颈和轴瓦材料,加工情况、轴承相对间隙等,f —λ曲线不同,λc 也随之不同。 λη=n p (b) 启动时 F F (a) 静止时(n=0) h min F φ e (c) 形成动压油膜 图 3-1 液体动压润滑油膜形成过程及油膜压力分布 0 λc λ f 非液体摩擦润滑区 液体摩擦润滑区 图 3-2 f —λ 特性曲线

滑动轴承实验指导书(更新并附实验报告)

滑动轴承实验 一、概述 滑动轴承用于支承转动零件,是一种在机械中被广泛应用的重要零部件。根据轴承的工作原理,滑动轴承属于滑动摩擦类型。滑动轴承中的润滑油若能形成一定的油膜厚度而将作相对转动的轴承与轴颈表面分开,则运动副表面就不发生接触,从而降低摩擦、减少磨损,延长轴承的使用寿命。 根据流体润滑形成原理的不同,润滑油膜分为流体静压润滑(外部供压式)及流体动压润滑(内部自生式),本章讨论流体动压轴承实验。 流体动压润滑轴承其工作原理是通过韧颈旋转,借助流体粘性将润滑油带人轴颈与轴瓦配合表面的收敛楔形间隙内,由于润滑油由大端人口至小端出口的流动过程中必须满足流体流动连续性条件,从而润滑油在间隙内就自然形成周向油膜压力(见图1),在油膜压力作用下,轴颈由图l(a)所示的位置被推向图1(b)所示的位置。 图1 动压油膜的形成 当动压油膜的压力p 在载荷F 方向分力的合力与载荷F 平衡时,轴颈中心处于某一相应稳定的平衡位置O 1,O 1位置的坐标为O 1(e ,Φ)。其中e =OO 1,称为偏心距;Φ为偏位角(轴承中心O 与轴颈中心O 1连线与外载荷F 作用线间的夹角)。 随着轴承载荷、转速、润滑油种类等参数的变化以及轴承几何参数(如宽径比、相对间隙)的不同.轴颈中心的位置也随之发生变化。对处于工况参数随时间变化下工作的非稳态滑动轴承,轴心的轨迹将形成一条轴心轨迹图。 为了保证形成完全的液体摩擦状态,对于实际的工程表面,最小油膜厚度必须满足下列条件: ()21min Z z R R S h += (1) 式中,S 为安全系数,通常取S ≥2;R z1,R Z2分别为轴颈和铀瓦孔表面粗糙度的十点高度。 滑动轴承实验是分析滑动轴承承载机理的基本实验,它是分析与研究轴承的润滑特性以及进行滑动轴承创新性设计的重要实践基础。 根据要求不同,滑动轴承实验分为基本型、综合设计型和研究创新型三种类型。

电主轴综述

高速电主轴技术 乔志敏 S1203027 摘要:通过阐述了高速电主轴的发展历程、高速电主轴的结构以及高速电主轴设计制造过程中的关键技术,分析了高精度、高转速电主轴对数控机床性能的影响。实践证明,采用高速加工技术可以解决机械产品制造中的诸多难题,能够获得特殊的加工精度和表面质量,高精度高转速电主轴功能部件,对提高数控机床的性能具有极大的影响。 关键词:高速电主轴;高精度;数控机床 Abstract: Based on the development of high-speed motorized spindle and the main str ucture of the motorized and the key technologies in the manufacturing process of high -speed motorized spindle, it analyzes the high precision, high speed electric spindle of influence on the performance of the numerical control machine. Practice has proved t hat high-speed processing technology can solve many problems in the manufacturing of mechanical products, and it can obtain special machining accuracy and surface qual ity. High precision and high speed motorized spindle features have a great impact on t he performance of CNC machine tools . Keywords: high-speed motorized spindle, high precision, CNC machine

ZCS液体动压轴承实验指导书M

液体动压轴承实验 一、实验目的 该实验台用于机械设计中液体动压滑动轴承实验。主要利用它来观察滑动轴承的结构、测量其径向油膜压力分布、测定其摩擦特征曲线。 1、观察滑动轴承的动压油膜形成过程与现象。 2、通过实验,绘出滑动轴承的特性曲线。 3、了解摩擦系数、转速等数据的测量方法。 4、通过实验数据处理,绘制出滑动轴承径向油膜压力分布曲线与承载量曲线。 二、实验系统组成 (一)实验系统组成 图1 滑动轴承实验系统框图

轴承实验系统框图如图1所示,它由以下设备组成: 1、ZCS—I液体动压轴承实验台——轴承实验台的机械结构 2、油压表——共7个,用于测量轴瓦上径向油膜压力分布值 3、工作载荷传感器——为应变力传感器、测量外加载荷值 4、摩擦力矩传感器——为应变力传感器、测量在油膜粘力作用下轴与轴瓦间产生的磨擦力矩 5、转速传感器——为霍尔磁电式传感器、测量主轴转速 6、XC—I液体动压轴承实验仪——以单片微机为主体、完成对工作载荷传感器,磨擦力矩传感器及转速传感器信号采集,处理并将处理结果由LED数码管显示出来。 (二)轴承实验台结构特点 实验台结构如图2所示 该试验台主轴7由两高精度的单列向心球轴承支承。直流电机1通过三角带2传动主轴7 ,主轴顺时针转动.主轴上装有精密加工的轴瓦5由装在底座上的无级调速器12实现主轴的无级变速,轴的转速由装在实验台上的霍尔转速传感器测出并显示。 主轴瓦5外圆被加载装置(末画)压住,旋转加载杆即可方便地对轴瓦加载,加载力大小由工作载荷传感器6测出,由测试仪面板上显示。 主轴瓦上还装有测力杆L,在主轴回转过程中,主轴与主轴瓦之间的磨擦力矩由磨擦力矩传感器测出,并在测试仪面板上显示,由此算出磨擦系数。 主轴瓦前端装有7只测径向压力的油压表4,油的进口在轴瓦的1/2处。由油压表可读出轴与轴瓦之间径向平面内相应点的油膜压力,由此可绘制出径向油膜压力分布曲线。

滑动轴承实验报告

液体动压滑动轴承实验报告 一、实验目的 1、测量轴承的径向和轴向油膜压力分布曲线。 2、观察径向滑动轴承液体动压润滑油膜的形成过程和现象。 3、观察载荷和转速改变时的油膜压力的变化情况。 4、观察径向滑动轴承油膜的轴向压力分布情况。 5、测定和绘制径向滑动轴承径向油膜压力曲线,求轴承的承载能力。 6、了解径向滑动轴承的摩擦系数f 的测量方法和摩擦特性曲线λ的绘制方法。 二、实验设备及工具滑动轴承实验台 三、实验原理 1、油膜压力的测量 轴承实验台结构如图1所示,它主要包括:调速电动机、传动系统、液压系统和实验轴承箱等部分组成。 在轴承承载区的中央平面上,沿径向钻有8个直径为1mm 的小孔。各孔间隔为 22.50,每个小孔分别联接一个压力表。在承载区内的径向压力可通过相应的压力表直接读出。 将轴径直径(d=60mm )按比例绘在纸上,将1~8个压力表读数按比例相应标出。(建议压力以1cm 代表5kgf/cm 2)将压力向量连成一条光滑曲线,即得到轴承中央剖面油膜压力分布曲线)。 同理,读出第4和第8个压力表示数,由于轴向两端端泄影响,两端压力为零。光滑连结0‘,8’,4‘,8’和0‘各点,即得到轴向油膜压力分布曲线。 图1 轴承实验台结构图 1、操纵面板 2、电机 3、三角带 4、轴向油压传感器接头 5、外加载荷传感器 6、螺旋加载杆 7、摩擦力传感器测力装置 8、径向油压传感器(8只) 9、传感器 支撑板 10、主轴 11、主轴瓦 12、主轴箱 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆、电气课件中调试资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到

高速电主轴及其结构

高速电主轴及其结构报告 姓名:周李念 学号: 班级:机自实验04班 重庆大学机械工程学院

高速电主轴及其结构 周李念 (重庆大学机械工程学院机自实验04班) 摘要:高速加工能显著地提高生产率、降低生产成本和提高产品加工质量,是制造业发展的重要趋势,也是一项非常有前景的先进制造技术。实现高速加工的首要条件是高质量的高速机床,而高速机床的核心部件是高速电主轴单元,它实现了机床的“零传动”,简化了结构,提高了机床的动态响应速度,是一种新型的机械结构形式,其性能好坏在很大程度上决定了整台机床的加工精度和生产效率。 关键词:高速加工;电主轴;结构设计 1 高速电主轴概述 高速电主轴最早是用于磨削机床加工,逐步发展到加工中心电主轴及其他各行业机床主轴.典型的磨削电主轴的结构如图1 所示,传统的主轴一般是通过传动带、齿轮来进行传动驱动,而电主轴的驱动是将异步电机直接装入主轴内部,通过驱动电源直接驱动主轴进行工作,以实现机床主轴系统的零传动,形成“直接传动主轴”.从而减少中间皮带或者齿轮机械传动等环节,实现了机械与电机一体的主轴单元.电主轴不但减少了中间环节存在的打滑、振动和噪音的因素,也加速了主轴在高速领域的快速发展,成为满足高速切削,实现高速加工的最佳方案,其高转速、高精度、高刚性、低噪音、低温升、结构紧凑、易于平衡、安装方便、传动效率高等优点,使它在超高速切削机床上得到广泛的应用[1]. . 1 转轴;2 前轴承组;3 定子部件;4 转子部件;5 后轴承组;6 进-出水孔;7 进油孔;8 接线座;9 出油孔 图1 电主轴结构简图 高速电主轴的优点: 高速电主轴取消了由电机驱动主轴旋转工作的中间变速和传动装置(如齿轮、皮带、联轴节等),因此高速电主轴具有如下优点: (1)主轴由内装式电机直接驱动,省去了中间传动环节,机械结构简单、紧凑, 噪声低,主轴振动小,回转精度高,快速响应性好,机械效率高; (2)电主轴系统减少了高精密齿轮等关键零件,消除了齿轮传动误差,运行时更加平稳; (3)采用交流变频调速和矢量控制技术,输出功率大,调速范围宽,功率—扭矩特性好,可在额定转速范围实现无级调速,以适应各种负载和工况变化的需要; (4)可实现精确的主轴定位,并实现很高的速度、加速度及定角度快速准停,动态精度和稳定性好,可满足高速切削和精密加工的需要; (5)大幅度缩短了加工时间,只有原来的约 1/4; (6)加工表面质量高,无需再进行打磨等表面处理工序;

滚动轴承实验

滚动轴承实验报告 一、实验目的 1、测定和绘制滑动轴承径向油膜压力曲线,求轴承的承载能力。 2、观察载荷和转速改变时油膜压力的变化情况。 3、观察径向滑动轴承油膜的轴向压力分布情况。 4、了解径向滑动轴承的摩擦系数f 的测量方法和摩擦特性曲线的绘制原理及方法。 二、实验原理 1.左、右滚动轴承座可轴向移动,各装有轴向载荷传感器,可通过电脑或数显测试并计算单个滚动轴承轴向载荷与总轴向载荷的关系; 2.右滚动轴承上装有8 个径向载荷传感器,可通过计算机或操作面板显示测绘滚动轴承在轴向、径向载荷作用下轴承径向载荷分布变化情况; 3.通过电脑直接测量滚子对外圈的压力及变化情况,绘制滚动体受载荷变化曲线。 三、实验设备 1.ZQ-GZ滚动轴承实验台 2.滚动轴承:圆锥滚子轴承30310 深沟球轴承 6310 3.可移动的滚动轴承座:1对; 4.滚动轴承、径向加载装置:1套;(作用点位置可在0~180mm内任意调节); 5.滚动轴承径向载荷传感器:精度等级:0.05 量程:10000N,1个/台; 6.轴向载荷传感器:量程:5000N,2个/台; 四、实验内容及注意事项 1.滚动轴承径向载荷分布及变化实验;测试在总轴向和径向载荷作用下,滚动轴承径向载荷分布及变化情况,并作出载荷分布曲线。 2.注意事项 a)选定一对实验轴承,本实验装置提供向心球轴承和圆锥滚子轴承,每一种 轴承有大小型号各一种出厂已装配好可任选一台. b)实验前首先调整好左右轴向受力支撑(称重传感器支座)位置,使端盖 外伸与传感器刚好接触. c)静态实验需调节加载支座,使加载力的方向保持在一定角度,并保持空载。

d)将测力及传感器的检测点一一接至检测系统对应的接口 e)打开电源,使检测系统处于工作状态. f)将检测系统与PC 机串行口相连,并打开分析界面. g)以上准备工作完成后,打开操作面板上的电源开关然后调零: i.通过系统软件测试界面上的“置零”,使得设备传感器调零 注意:测试前请一定置零 h)当17 个通道全部置零后,用手转动手轮加载到100Kg 以上,观察并记 录 各测量点数据.(记录滚动体经过弹片中点时的力值)。 i)改变加载力和加载角度,重复上述过程。 j)实验完成,卸下载荷并关闭电源。 五、实验数据记录 1.静态数据记录 (实验的时候自动生成的实验报告中有相关的数据表格和图像,放进来。并将一些需要的计算完成。) 2、应力分布图

机械设计实验报告2011

机械设计实验报告 姓名: 班级: 学号: 日期: 机械设计教研室 河南机电高等专科学校

机械设计现场认识实验报告 一、实验目的 二、实验设备 三、回答问题 1.螺纹的类型有、、、、螺纹联接的类型有、、、。螺纹联接的防松有、、, 2.键联接的类型有、。花键联接的类型有、。 3.普通V带的型号有。V带轮的结构型式有、、、。V带传动的张紧装置有、、。4.链传动的型式有、、。5.齿轮的结构型式有、、。 6.蜗轮的结构型式有、、、。7.滑动轴承按其所承受载荷方向的不同,可分为、。向心滑动轴承的结构形式有、、、、。8.常用滚动轴承的类型及其代号有、、、、、、、、、。滚动轴承的内圈的轴向固定方法有、、、。滚动轴承外圈的轴向固定方法有、、、。滚动轴承的密封形式有接触式和非接触式密封两种,接触式密封有、两种。非接触式密封有、两种。 9.联轴器可分为、、三大类。 刚性联轴器的型式有、、、、、。 10.离合器的类型有、、、、 、。 11.轴按承载类型有、、。轴上零件的轴向固定方式有。 轴上零件的周向固定方式有。12.按照所受载荷的不同,弹簧可分为、、、。

带传动实验报告一、实验目的 二、实验设备及仪器 三、带传动实验参数 1. 带的种类(V带、圆带、三角带)。 2. 预紧力:2F01= N;2F02= N。 3. 带轮基准直径:d1= mm ;d2= mm 4.测力杆力臂长:L1=L2= mm 5.测力杆刚性系数:K1=K2= N/格 四、实验数据记录与计算 五、绘制弹性滑动曲线和效率曲线

液体动压滑动轴承实验报告 一、实验目的 二、实验设备 三、实验参数 轴颈直径d=mm;轴承宽度B=mm 润滑油动力粘度η=P a s ;润滑油温度t=C 四、实验数据记录 油膜压力测试 转速n = rpm;负载F = N; 五、绘制径向、轴向油膜压力分布曲线 1.径向油膜压力分布曲线 2.轴向油膜压力分布曲线

电主轴轴承的装配方法

电主轴轴承的装配方法 1.专业装配的工装 轴承间隙测量,调整工具(很正规专业那种). 精密的标准平台,V型支撑,还有测量内外圆标高的仪器(全是瑞士产的), 还有一些手动工具. 动平衡测量,试验台. 最终的跑合试验台(自带润滑系统,动力系统的). 要求太高了相关的图纸,啊啊, 一套液压安装工具和一套感应加热工具.FAG和NSK都有商品供应. 角接触球轴承一般是成对使用的,有面对面,背对背、同向三种装配的方法,主要是看设计者的思路了,不同的装配方法做预加负载的方法也是不同的。作预加负载是使轴承的内圈与钢球、外圈之间产生一定的弹性变形,来适合你所需要的转速。预加负载的大小不但影响精度,而且影响它的使用寿命。比如背对背使用时,一般采取垫外圈或者磨内圈的方法来实现消除间隙,因为背对背使用时一般是用轴来限制轴承的位置,而外圈一般没有限制的。 2. 轴承安装,不同的人有不同的安装方法:过度配合(0.04mm以内)--开水烫或煮;过盈(0.04mm以上)---油煮等。 1、检查配合要求是否与负载和转速要求相同。 2、测量配合是否超标。 3、根据测量计算决定加热方式。保证轴承油隙。温度不宜超过300--400度。注意防风。不宜用明火加热。条件不许可非用明火时注意温度变化及温度的均匀性。 4、调整轴承的轴向间隙。外圈加垫。

5、用塞尺实测轴承油隙。对特大轴承的油隙最好在实际最大负载(偏载)下调整,要考虑现场温度对轴承的影响。 6、检查转动部份与不动部分是否干涉。 7、加油。注意污染。 8、现场运行监测。 轴承加热温度记得好像应该是小于120度吧 说得对~曾遇到过超过120C后轴承不能回复到原状,报废. 还有的轴承带润滑脂,也不能用热套. 热塑模芯杆, 为了节约材料, 准备用局部镶嵌式联接(相配直径φ30,长度30,用热套方式), 不转递扭矩: 请大家推荐过盈量是多少最合适, 热套零件会变形,二只零件热套后不再加工直接使用,行得通, 热套工艺适合热塑模具, 过盈量在:0---0.03以内。加热温度70度以内。国外轴承装配过盈量一般为0。我这装过几百支辊道辊,过盈量0.03--0.05,加热温度70--90。轴承是国外的。加热设备是自己做的。很土但很实用 对于精度要求较高的主轴组件,为了提高主轴的回转精度,除了要保证主轴及相关零件高的加工精度及采用精密的主轴轴承以外,轴承内圈与主轴装配需采用定向装配法或角度选配法,也就是人为地控制各装配件的径向跳动误差的方向,使误差相互抵消而不是误差累积. 电主轴是高速数控加工机床的“心脏部件”,本文介绍了电主轴的工作原理、典型结构,阐述了电主轴的关键技术,总结了其发展趋势。 关键词:电主轴陶瓷球混合轴承油气润滑 1、概述

滚动轴承实验

滚动轴承实验报告 一、实验目得 1、测定与绘制滑动轴承径向油膜压力曲线,求轴承得承载能力。 2、观察载荷与转速改变时油膜压力得变化情况。 3、观察径向滑动轴承油膜得轴向压力分布情况。 4、了解径向滑动轴承得摩擦系数f 得测量方法与摩擦特性曲线得绘制原理及方法。 二、实验原理 1.左、右滚动轴承座可轴向移动,各装有轴向载荷传感器,可通过电脑或数显测试并计算单个滚动轴承轴向载荷与总轴向载荷得关系; 2.右滚动轴承上装有8 个径向载荷传感器,可通过计算机或操作面板显示测绘滚动轴承在轴向、径向载荷作用下轴承径向载荷分布变化情况; 3.通过电脑直接测量滚子对外圈得压力及变化情况,绘制滚动体受载荷变化曲线。 三、实验设备 1、 ZQGZ滚动轴承实验台 2、滚动轴承:圆锥滚子轴承30310 深沟球轴承 6310 3、可移动得滚动轴承座:1对; 4、滚动轴承、径向加载装置:1套; (作用点位置可在0~180mm内任意调节); 5、滚动轴承径向载荷传感器:精度等级:0、05 量程:10000N,1个/台; 6、轴向载荷传感器:量程:5000N,2个/台; 四、实验内容及注意事项 1、滚动轴承径向载荷分布及变化实验;测试在总轴向与径向载荷作用下,滚动轴承径向载荷分布及变化情况,并作出载荷分布曲线。 2、注意事项 a)选定一对实验轴承,本实验装置提供向心球轴承与圆锥滚子轴承,每一种 轴承有大小型号各一种出厂已装配好可任选一台、 b)实验前首先调整好左右轴向受力支撑(称重传感器支座)位置,使端盖外伸 与传感器刚好接触、 c)静态实验需调节加载支座,使加载力得方向保持在一定角度,并保持空载。 d)将测力及传感器得检测点一一接至检测系统对应得接口 e)打开电源,使检测系统处于工作状态、 f)将检测系统与PC 机串行口相连,并打开分析界面、

电主轴的工作原理、典型结构及优点

电主轴的工作原理、典型结构及优点 打印引用发布时间:2010-04-25 电主轴是高速数控加工机床的“心脏部件”,本文介绍了电主轴的工作原理、典型结构,阐述了电主轴的关键技术,总结了其发展趋势. 1、概述 由于高速加工不但可以大幅度提高加工效率,而且还可以显著提高工件的加工质量,所以其应用领域非常广泛,特别是在航空航天、汽车和模具等制造业中。于是,具有高速加工能力的数控机床已成为市场新宠。目前,国内外各著名机床制造商在高速数控机床中广泛采用电主轴结构,特别是在复合加工机床、多轴联动、多面体加工机床和并联机床中。电主轴是高速数控加工机床的“心脏部件”,其性能指标直接决定机床的水平,它是机床实现高速加工的前提和基本条件。 2、电主轴的工作原理、典型结构及优点 2.1 电主轴的工作原理 电主轴就是直接将空心的电动机转子装在主轴上,定子通过冷却套固定在主轴箱体孔内,形成一个完整的主轴单元,通电后转子直接带动主轴运转。 2.2电主轴的典型结构 电主轴单元典型的结构布局方式是电机置于主轴前、后轴承之间(如图所示),其优点是主轴单元的轴向尺寸较短,主轴刚度大,功率大,较适合于大、中型高速数控机床;其不足是在封闭的主轴箱体内电机的自然散热条件差,温升比较高。 1主轴箱体 2冷却套 3冷却水进口 4定子 5转子 6套筒 7冷却水出口 8转轴 9反馈装置 10主轴前轴承 11主轴后轴承 2.3电主轴的优点 电主轴省去了带轮或齿轮传动,实现了机床的“零传动”,提高了传动效率。电主轴的刚性好、回转精度高、快速响应性好,能够实现极高的转速和加、减速度及定角度的快速准停(C轴控制),调速范围宽。 3、电主轴的关键技术 “电主轴”的概念不应简单理解为只是一根主轴套筒,而应该是一套组件,包括:定子、转子、轴承、高速变频装置、润滑装置、冷却装置等。因此电主轴是高速轴承技术、润滑技术、冷却技术、动平衡技术、精密制造与装配技术以及电机高速驱动等技术的综合运用。 3.1电主轴的高速轴承技术 实现电主轴高速化精密化的关键是高速精密轴承的应用。目前在高速精密电主轴中应用的轴承有精密滚动轴承、液体动静压轴承、气体静压轴承和磁悬浮轴承等,但主要是精密角接触陶瓷球轴承和精密圆柱滚子轴承。液体动静压轴承的标准化程度不高;气体静压轴承不适合于大功率场合;磁悬浮轴承由于控制系统复杂,价格昂贵,其实用性受到限制。

滑动轴承实验台的设计

滑动轴承实验台的设计 1、引言 滑动轴承是一种最基本的机械部件,其正常工作时轴颈和轴瓦间的润滑液体在一定条件下形成动压油膜,处于液体润滑状态,且动压油膜形成后具有一定的承载能力,也是滑动轴承性能的主要因素。一般高等工科院校的相关专业所开设的机械设计课程中,都会讲解滑动轴承的原理及设计方法,为了配合学生更好的理解滑动轴承动压油膜形成原理,以及滑动轴承承载特性曲线,利用专门的滑动轴承教学实验台,开设滑动轴承实验课。以前使用的仪器设备,结构已老化严重,实验手段落后。为此我们设计出一种新型的滑动轴承实验台,可以大大提高实验台的工作性能。 2、实验台的主体设计 新型滑动轴承实验台的主体由几个部分组成,各部分的功能设计与实现如图1所示,系统将7路采集来的信号通过多路开关送入A/D转换电路进行模数转换,然后通过译码器译码,通过 数字显示板显示;主轴速度经过放大整形之后,通过数字显示板显示;步进电机、直流电机分别用在加载机构和调速电路上,实现自动连续加载,直流电机速度可调。 图1滑动轴承实验台的组成框图 2.1步进电机驱动杠杆放大加载机构设计 加载机构的设计是本实验系统的主要部分,步进电机驱动杠杆放大加载机构示意图如图2所示,为了保证能够在轴承的轴瓦上加上足够的连续变化的载荷,采用步进电机带动丝杆转动再带动螺母做直线运动,通过杠杆放大机构把载荷连续均匀地加到轴瓦上。 1.托板 2.螺母 3.支架 4.杠杆放大机构 5.丝杆 6.销轴座 7.步进电机 8.称重传感器 图2步进电机驱动杠杆加载机构 2.2 轴瓦及传感器的安装方案的设计

原实验台轴瓦结构为半瓦,为了减少端泄改为全瓦结构使轴承动压油膜曲线能更符合雷诺曲线。轴瓦及传感器的安装示意图如图3所示,轴瓦包角3600度,由青铜材料制成,与轴承间的配合为间隙配合。在轴瓦径向上按周向每隔22.50钻一个1mm的小孔,每个小孔都连接有压力传感器,将传感器安装在轴瓦边上而不是中部,是兼顾滑动轴承实验台整体结构设计而定的,轴承内形成动压油膜后,每点的油膜压力可以通过压力传感器测出并通过放大,并将数据经过转换显示出来。 图3 轴瓦及传感器的安装示意图 3、实验台的电路设计 3.1 实验台的硬件电路系统 实验台的硬件电路组成如图4所示,包含有7路压力传感器信号、1路承载力传感器信号、1路摩擦转矩传感器信号、传感器放大电路、多路转换电路、A/D转换电路、直流电机调速、测速系统、步进电机驱动系统等。7路传感器信号从实验台的后面板输入,接入放大板,放大板上有传感器共桥电源调零电路和信号放大电路。双端输入的传感器信号经过放大电路放大成单端输出0-5V的信号,通过拨码开关与数据采集板相连。数据采集板上的A/D转换电路可通过拨码开关控制,测量电机转速的光电开关从后面板接入,通过整形电路在前面板的电机转速显示电路显示。 图4 硬件电路组成 3.2 多路转换电路 由于只对手动控制进行设计,因此只需将7路放大电路直接接入拨码开关SW-DIP9,手动控制采集通道的切换,即通过手动控制开关来决定哪路放大电路接通,每次只能有一路电路接通并显示压力值。 3.3 A/D 转换电路

相关文档
最新文档