DSP+FPGA实时信号处理系统
基于FPGA的数字信号处理系统设计

基于FPGA的数字信号处理系统设计数字信号处理(Digital Signal Processing, DSP)是一种利用计算机或数字电子设备对模拟信号进行采样、量化、编码、处理以及还原的技术,它在实际应用中起到了至关重要的作用。
为了满足实时性、高性能和低功耗等要求,基于现场可编程门阵列(Field-Programmable Gate Array, FPGA)的数字信号处理系统开始逐渐流行。
一、引言近年来,随着通信技术和信号处理领域的快速发展,人们对于数字信号处理系统的性能要求越来越高。
传统的通信设备采用的是固定功能的专门硬件电路,难以满足不断变化的信号处理需求。
而FPGA作为一种灵活可编程的集成电路,其具备可实现硬件功能的能力,从而使得DSP系统能够灵活地适应不同的信号处理算法与应用。
二、FPGA架构和特性FPGA使用基于通用逻辑门的可编程逻辑技术进行设计,其架构主要由逻辑单元(Look-Up Table, LUT)、寄存器、多路器、存储单元以及全局时钟网络等组成。
这些特性使得FPGA具备了以下几个优势:1. 灵活性:FPGA可以根据应用需求灵活配置硬件,实现不同的功能,满足不同的信号处理算法要求。
2. 可重构性:FPGA支持在线重编程,即可以通过配置文件的更新来改变电路的功能,方便快捷。
3. 并行处理能力:FPGA拥有大量的逻辑单元和寄存器,可以同时处理多个数据。
这在实时性要求较高的信号处理领域非常有优势。
4. 低功耗:相比于传统的固定功能电路,FPGA在处理相同任务时的功耗更低,有利于降低系统整体的功耗消耗。
三、基于FPGA的数字信号处理系统设计基于FPGA的数字信号处理系统设计主要包括以下几个方面的内容:1. 系统设计与分析:首先,需要对信号处理的要求进行分析,确定系统的功能与性能指标。
然后,基于这些要求,进行系统的整体架构设计,包括硬件与软件部分的分配、接口定义以及模块划分等。
2. 信号采集与预处理:系统中的信号可能是模拟信号,需要通过模数转换器(Analog-to-Digital Converter, ADC)将模拟信号转换为数字信号。
基于DSP+FPGA的实时信号采集系统设计与实现

基于DSP+FPGA的实时信号采集系统设计与实现周新淳【摘要】为了提高对实时信号采集的准确性和无偏性,提出一种基于DSP+FPGA 的实时信号采集系统设计方案.系统采用4个换能器基阵并联组成信号采集阵列单元,对采集的原始信号通过模拟信号预处理机进行放大滤波处理,采用TMS32010DSP芯片作为信号处理器核心芯片实现实时信号采集和处理,包括信号频谱分析和目标信息模拟,由DSP控制D/A转换器进行数/模转换,通过FPGA实现数据存储,在PC机上实时显示采样数据和DSP处理结果;通过仿真实验进行性能测试,结果表明,该信号采集系统能有效实现实时信号采集和处理,抗干扰能力较强.%In order to improve the accuracy and bias of real-time signal acquisition,a real-time signal acquisition system based on DSP +-FPGA is proposed.The system adopts 4 transducer array to build parallel array signal acquisition unit,the original signal acquisition amplification filtering through analog signal pretreatment,using TMS32010DSP chip as the core of signal processor chip to realize real-time signal acquisition andprocessing,including the signal spectrum analysis and target information simulation,controlled by DSP D/A converter DAC,through the realization of FPGA data storage,real-time display on the PC and DSP sampling data processing results.The performance of the system is tested by simulation.The results show that the signal acquisition system can effectively realize the real-time signal acquisition and processing,the anti-interference ability is strong.【期刊名称】《计算机测量与控制》【年(卷),期】2017(025)008【总页数】4页(P210-213)【关键词】DSP;FPGA;信号采集;系统设计【作者】周新淳【作者单位】宝鸡文理学院物理与光电技术学院,陕西宝鸡721016【正文语种】中文【中图分类】TN911实时信号采集是实现信号处理和数据分析的第一步,通过对信号发生源的实时信号采集,在军事和民用方面都具有广泛的用途。
基于FPGA+DSP的实时图像处理系统设计与实现

万方数据万方数据·110·微处理机2010年(DPRAM)。
虽然C6416片内集成了高达8M位的片内高速缓存,但考虑到图像处理算法必涉及到对前后几帧图像进行处理,为保证系统运行时存储容量不会成为整个系统的性能瓶颈(chokepoint),在DSP模块中额外扩展存储空间。
由于EMIFA口的数据宽度更大,因此系统在EMIFA的CEl空间内扩展了两片总共128M位的同步存储器。
C6416的引导方式有三种,分别是:不加载,CPU直接开始执行地址0处的存储器中的指令;ROM加载,位于EMIFBCEl空间的ROM中的程序首选通过EDMA被搬人地址O处,ROM加载只支持8位的ROM加载;主机加载,外部主机通过主机接口初始化CPU的存储空间,包括片内配置寄存器。
本系统采用的是ROM加载方式。
C6416片内有三个多通道缓冲串口,经DSP处理的最终结果将通过DSP的多通道缓冲串口传送至FPGA。
3.4图像输出模块该模块的功能是将DSP处理后的图像数据进行数模转换,并与字符信号合成后形成VGA格式的视频信号。
这里选用的数模转换芯片为ADV7125。
这是ADI公司生产的一款三通道(每通道8位)视频数模转换器,其最大数据吞吐率330MSPS,输出信图2原始图像图3FPGA图像增强结果5结论实时图像处理系统以DSP和FPGA为基本结构,并在此结构的基础上进行了优化,增加了视频输入通路。
同时所有的数据交换都通过了FPGA,后期的调试过程证明这样做使得调试非常方便,既可以监视数据的交换又方便修正前期设计的错误。
整个系统结构简单,各个模块功能清晰明了。
经后期大量的系统仿真验证:系统稳定性高,处理速度快,能满足设计要求。
号兼容RS一343A/RS一170。
由FPGA产生的数字视频信号分别进入到ADV7125的三个数据通道,经数模转换后输出模拟视频信号并与原来的同步信号、消隐信号叠加后便可以在显示器上显示处理的结果了。
基于DSP和FPGA的通用数字信号处理系统设计

p e r f o r m d a t a p r o c e s s i n g a n d a c c o mp l i s h t h e c o n t r o l o f US B i n t e r f a c e,ADC ,DA C,e t c .r e s p e c t i v e l y .Th e s y s t e m c a n i m— p l e me n t s p e c t r a l a n a l y s i s ,d i g i t a l f i l t e r d e s i g n a n d o t h e r c l a s s i c d i g i t a l s i g n a l p r o c e s s i n g a l g o r i t h ms .Ha r d wa r e d e b u g r e —
Ab s t r a c t :I n n o wa d a y s ,t h e f u n c t i o n a n d s t r u c t u r e o f e l e c t r o n i c e q u i p me n t a r e b e c o mi n g i n c r e a s i n g l y c o mp l i c a t e d .Th e r e —
s u h s s u g g e s t t h a t i t me e t s t h e d e s i g n r e q u i r e me n t s , a n d c o u l d b e i mp l e me n t e d t o r e a l p r o j e c t a n d d i g i t a l s i g n a l p r o c e s s i n g
基于DSP和FPGA的视频采集实时处理系统设计

后 经过 图像处 理模 块 进 行 处理 , 处 理 后 的 数据 通 将
作者简介 : 常奇峰 (9 4 ) 男, 18 一 , 河南省周 口市人 , 南京航 空航 天大学硕 士研 究生, 主要研 究方向为数 字图像 处理.
郑 州 轻 工 业 学 院 学 报 (自 然 科 学 版 )
本文 拟 以 T 公 司 的 T 30 6 1 核 心 , I MS2 C 73为 结
合大 规 模 逻 辑 器 件 F G , 及 视 频 采 集 芯 片 PA 以
S A A 7 11 1A设计 实时 f 的视频 采集处 理 系统. 生好
1 系统原理及硬件结构设计
系统原 理框 图如 图 1 所示 .
21 00拄
过双 口送 给 D\ A进行 转换 , 将数 字信 号 转换 为模 拟 信号 , 送往 显示器 显示 .
工作时 , 一块 缓存用 于存放 当前采集 到 的图像数 据, 另一块用 于保存前一 帧数 据, 实现 了高速采集 的数据存储 与读取并行 , 简化 了系统设计 , 提高 了 系统的可靠性.
的效率降低 , 响应 速度 变差. 但是采 用可编程逻辑
器件设计 视 频 采 集 处 理 系统 , 有 开 发 周 期 短 , 具 功 耗 低 , 作频率 高 , 工 编程 配置灵 活等一 系列 优点 .
收 稿 日期 :0 9—1 2 20 2— 6
该系统首先对 由 C D摄像头输出的模拟视频 C
性能实 , 明该系统可以完成常用算法的实时处理. 证
关键 词 : 视频 采 集 ;P A; F G 图像 处理 中 图分 类号 :P 7 . T 242 文 献标 志码 : A
一种基于DSP和FPGA的实时信号处理平台设计

T 1 1是 A I 司推 出的一款 高性能浮点 D P处理器 . s0 D公 S 采用超级 哈佛结构 , 可直接构成 分布式并行 系统 和共享存储式并 行系统, 主要性 能 指 标 如 21 F1 : - 3 () 1内部核时钟频 率可达 30 z 即指令周 期为 33 s 内核 具有 双运算模 块——x和 Y, 条相互 独立 的 18 i内部数 3 2 bt 据 总线 ; () 3支持 81/26 bt /63/4 i 定点和 3 /4 i 26 bt 浮点数据格式 ; ()4 46 位数据线 和 3 位 地址线, 2 可提供4 G的统一寻址空 问; ()4 DMA通道 , 51 个 提供 了处理 核零开销数据传输 ; () 6支持 慢速 设 备和 流水 协议 两种 外设 访 问模式 , 芯片 内部 集成 SR D AM 控 制 器 ; ()通 道全双T链路 V , 74 I单个链路 V最大通信速率 20 ye/, I 5 MB ts 总 s
用到 雷 达 信 号 处 理 系统 中。
[ 关键词 ] 雷达信 号处理
O 引 言 .
DS T 11 F G P S 0 P A D P通过 F G S P A来进行 S M的读写控制 ; RA ()P 6F GA实现 处理板与外 部的通讯 和控制 , 如串 口 、 系统 状态输 出 及 控 制 输 入 、 出接 口 。 输 22 路 口 电路 设 计 .链
T 1 1物 理 引 脚 D P行 地 址 S0 S
A0
A1
21 .信号处理平 台原理框 图 信 号 处 理 板 硬 件 架 构 如 图 1 示 。信 号 处 理 平 台 采 用 A 所 D— s — s 0 为 主 处 理 芯 片 , 簇 4片 T 1 1 内 核 时 钟 3 0 P T l1 一 S0 , 0 MHz簇 总 线 速 , 度 为 7 M, 内包 含 2 6 yeS AM及 1MB t F A H。4片 A 5 簇 5 MB t DR 6 ye L S D— S — SIl P T 之间通过共享总线 的方式实现 紧耦合 。 O
数字电路设计方案中DSP与FPGA的比较与选择

数字电路设计方案中DSP与FPGA的比较与选择数字信号处理技术和大规模集成电路技术的迅猛发展,为我们设计数字电路提供了新思路和新方法。
当前数字系统设计正朝着速度快、容量大、体积小、重量轻的方向发展。
DSP和FPGA 技术的发展使这一趋势成为可能和必然。
和计算机一样,数字信号处理的理论从60年代崛起以来,到80年代DSP产生,它飞速发展改变了信号处理的面貌。
今天DSP已广泛应用在语音、图像、通讯、雷达、电子对抗、仪器仪表等各个领域。
DSP起了十分关键的作用,成为数字电路设计的主要方法。
二十世纪80年代以来,一类先进的门阵列——FPGA的出现,产生了另一种数字电路设计方法,具有十分良好的应用前景。
基于FPGA的数字电路设计方式在可靠性、体积、成本上的优势是巨大的。
除了上述两种方案,还有DSP+FPGA方案,以及选择内部嵌入DSP模块的FPGA实现系统的方案。
1 DSP和FPGA的结构特点1.1 DSP的结构特点DSP是一种具有特殊结构的微处理器。
DSP芯片的内部采用程序和数据分开的哈佛结构,具有专门的硬件乘法器,广泛采用流水线操作,提供特殊的DSP 指令,可以用来快速地实现各种数字信号处理算法。
根据数字信号处理的要求,DSP芯片一般具有如下的一些主要特点:(1)在一个指令周期内可完成一次乘法和一次加法;(2)程序存储器和数据存储器是两个相互独立的存储器,每个存储器独立编址,可以同时访问指令和数据;(3)片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问;(4)具有低开销或无开销循环及跳转的硬件支持;(5)快速的中断处理和硬件I/O支持;(6)具有在单周期内操作的多个硬件地址产生器;(7)可以并行执行多个操作;(8)支持流水线操作,使取指、译码和执行等操作可以重叠执行。
1.2 FPGA的结构特点FPGA的结构是由基于半定制门阵列的设计思想而得到的。
从本质上讲,FPGA是一种比半定制还方便的ASIC(Application Specific Integrated Circuit 专用集成电路)设计技术。
基于DSP+FPGA的数字信号处理系统设计

。
尤 其是 数据 传输 和运 算 速 度方 面 ,虽 然采 用 并 用 ,数 百万 门高 密度 的F G 问 世 ,新 型 的F G 采 PA PA
行 处理技 术 可 以提 高 系统 的运 算速 度 ,但是 并行 处 用 了大量 的新技 术 更加适 应 于信 号处理 的实 现 。归
理 使得 数据 传输 率 大大 提 高 ,D P 身 同定 的数据 纳起来 具有 如下 特点 : S本 ] 总 线宽度 和高 速数 据传输 的信 号完 整性使 得 并行处
[ 日 2 0 — 2 2 收稿 期] 7 1- 4 0
() 3 分布式存储器
f 作者简介] 郑伟亮 ( 9 0 ),男 ( 18 一 汉),讲师,E ma : g J zt - iz n w@si—m. lh i r n
维普资讯
第4 期
郑 伟 亮 :基 于 D P F G 的 数 字 信 号 处 理 系统 设 计 s+ P A
等模 块 。用 F G 来 实 现某 些 信 号处 理 算法 可 以很 资 源降低 了2 %。 PA 5
好地解 决并行 性和 运算 速度 问题 ,而且 其灵 活性 , 使 得 F G 构 成 的 系统 非常 易 于修 改 、易于 测 试及 PA ( 高速 I 接 口 2) / O 新 型F GA 件具 有上 百 个接 收 器 和发 送 器通 P 器
维普资讯
第5 第4 卷 期
2 0 年 l月 07 2
深圳信息职业技术学院学报
V 1 o o.N . 5 4
De . o0 c2 7
基于D P F G 的数字信号处理系统设计 S+P A
郑 伟 亮 ,张 贝 贝
( 深圳信 息职业技 术 学院 应用英语 系 ,广 东 深圳 5 8 2 ) 10 9
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DSP+FPGA实时信号处理系统摘要:简要叙述了常用的信号处理系统的类型与处理机结构,介绍了正逐步得到广泛应用的DSP+FPGA处理机结构,在此基础上提出了一种实时信号处理的线性流水阵列,并举例说明了该结构的具体实现,最后分析说明了此结构的优越性。
关键词:实时信号处理处理机结构线性流水阵列实时信号处理系统要求必须具有处理大数据量的能力,以保证系统的实时性;其次对系统的体积、功耗、稳定性等也有较严格的要求。
实时信号处理算法中经常用到对图象的求和、求差运算,二维梯度运算,图象分割及区域特征提取等不同层次、不同种类的处理。
其中有的运算本身结构比较简单,但是数据量大,计算速度要求高;有些处理对速度并没有特殊的要求,但计算方式和控制结构比较复杂,难以用纯硬件实现。
因此,实时信号处理系统是对运算速度要求高、运算种类多的综合性信息处理系统。
1信号处理系统的类型与常用处理机结构根据信号处理系统在构成、处理能力以及计算问题到硬件结构映射方法的不同,将现代信号处理系统分为三大类:·指令集结构(ISA)系统。
在由各种微处理器、DSP处理器或专用指令集处理器等组成的信号处理系统中,都需要通过系统中的处理器所提供的指令系统(或微代码)来描述各种算法,并在指令部件的控制下完成对各种可计算问题的求解。
·硬连线结构系统。
主要是指由专用集成电路(ASIC)构成的系统,其基本特征是功能固定、通常用于完成特定的算法,这种系统适合于实现功能固定和数据结构明确的计算问题。
不足之处主要在于:设计周期长、成本高,且没有可编程性,可扩展性差。
·可重构系统。
基本特征是系统中有一个或多个可重构器件(如FPGA),可重构处理器之间或可重构处理器与ISA结构处理器之间通过互连结构构成一个完整的计算系统。
从系统信号处理系统的构成方式来看,常用的处理机结构有下面几种:单指令流单数据流(SISD)、单指令流多数据流(SIMD)、多指令流多数据流(MIMD)。
·SISD结构通常由一个处理器和一个存贮器组成,它通过执行单一的指令流对单一的数据流进行操作,指令按顺序读取,数据在每一时刻也只能读取一个。
弱点是单片处理器处理能力有限,同时,这种结构也没有发挥数据处理中的并行性潜力,所以在实时系统或高速系统中,很少采用SISD结构。
· SIMD结构系统由一个控制器、多个处理器、多个存贮模块和一个互连网络组成。
所有“活动的”处理器在同一时刻执行同一条指令,但每个处理器执行这条指令时所用的数据是从它本身的存储模块中读取的。
对操作种类多的算法,当要求存取全局数据或对于不同的数据要求做不同的处理时,它是无法独立胜任的。
另外,SIMD一般都要求有较多的处理单元和极高的I/O吞吐率,如果系统中没有足够多的适合SIMD处理的任务,采用SIMD是不合算的。
· MIMD结构就是通常所指的多处理机,典型的MIMD系统由多台处理机、多个存储模块和一个互连网络组成,每台处理机执行自己的指令,操作数也是各取各的。
MIMD结构中每个处理器都可以单独编程,因而这种结构的可编程能力是最强的。
但由于要用大量的硬件资源解决可编程问题,硬件利用率不高。
2DSP+ASIC结构随着大规模可编程器件的发展,采用DSP+ASIC结构的信号处理系统显示出了其优越性,正逐步得到重视。
与通用集成电路相比,ASIC芯片具有体积小、重量轻、功耗低、可靠性高等几个方面的优势,而且在大批量应用时,可降低成本。
现场可编程门阵列(FPGA)是在专用ASIC的基础上发展出来的,它克服了专用ASIC不够灵活的缺点。
与其他中小规模集成电路相比,其优点主要在于它有很强的灵活性,即其内部的具体逻辑功能可以根据需要配置,对电路的修改和维护很方便。
目前,FPGA的容量已经跨过了百万门级,使得FPGA成为解决系统级设计的重要选择方案之一。
DSP+FPGA结构最大的特点是结构灵活,有较强的通用性,适于模块化设计,从而能够提高算法效率;同时其开发周期较短,系统易于维护和扩展,适合于实时信号处理。
实时信号处理系统中,低层的信号预处理算法处理的数据量大,对处理速度的要求高,但运算结构相对比较简单,适于用FPGA进行硬件实现,这样能同时兼顾速度及灵活性。
高层处理算法的特点是所处理的数据量较低层算法少,但算法的控制结构复杂,适于用运算速度高、寻址方式灵活、通信机制强大的DSP芯片来实现。
3线性流水阵列结构在我们的工作中,设计并实现了一种实时信号处理结构。
它采用模块化设计和线性流水阵列结构(图1)。
这种线性流水阵列结构具有如下特点:·接口简单。
各处理单元(PU)之间采用统一的外部接口。
·易于扩充和维护。
各个PU的内部结构完全相同,而且外部接口统一,所以系统很容易根据需要进行硬件的配置和扩充。
当某个模块出现故障时,也易于更换。
·处理模块的规范结构能够支持多种处理模式,可以适应不同的处理算法。
每个PU的核心由DSP芯片和可重构器件FPGA组成,另外还包括一些外围的辅助电路,如存储器、先进先出(FIFO)器件及FLASHROM等(图2)。
可重构器件电路与DSP处理器相连,利用DSP处理器强大的I/O功能实现单元电路内部和各个单元之间的通信。
从DSP的角度来看,可重构器件FPGA相当于它的宏功能协处理器(Co-processor)。
PU中的其他电路辅助核心电路进行工作。
DSP和FPGA各自带有RAM,用于存放处理过程所需要的数据及中间结果。
FLASHROM中存储了DSP的执行程序和FPGA的配置数据。
先进先出(FIFO)器件则用于实现信号处理中常用到的一些操作,如延时线、顺序存储等。
每个PU单独做成一块PCB,各级PU之间通过插座与底板相连。
底板的结构很简单,主要由几个串连的插座构成,其作用是向各个PU提供通信通道和电源供应。
可以根据需要安排底板上插座的个数,组成多级线性阵列结构。
这种模块化设计的突出优点在于,它使得对系统的功能扩充和维护变得非常简单。
需要时,只要插上或更换PU电路板,就可以实现系统的扩展和故障的排除。
每一级PU中的DSP都有通信端口与前级和后级PU电路板相连,可以很方便地控制和协调它们之间的工作。
4应用实例我们应用上述线性流水阵列结构实现了一个实时目标检测系统,该系统的任务主要是接收摄像头输出的灰度图象,经预处理、编码、直线拟合和目标识别后,输出结果到PC机显示。
在这个任务中,预处理模块包括抽样、卷积和编码等步骤,属于低层的处理,其运算数据量大,但运算结构较规则,适于用FPGA进行纯硬件实现;而直线拟合及目标识别等高层图象处理算法,所处理的数据量相对较少,但要用到多种数据结构,其控制也复杂得多,我们用DSP编程来实现。
重构处理模块采用的是Xilinx公司的XC5200系列FPGA芯片。
这是一种基于SRAM的现场可编程门阵列。
表1给出了XC5200系列FPGA的一些参数。
表1 XC5200系列FPGA的一些参数XC5200系列FPGA逻辑功能的实现由内部规则排列的逻辑单元阵列(LCA)来完成,它是FPGA的主要部分。
LCA的核心是可重构逻辑块(CLB),四周是一些输入/输出块(IOB)。
CLB和IOB之间通过片内的布线资源相连接。
LCA由配置代码驱动,CLB和IOB的具体逻辑功能及它们的互联关系由配置数据决定。
整个FPGA模块的设计实现在Xilinx公司的Foundation2.1i开发平台上完成。
该系统支持设计输入、逻辑仿真、设计实现(设计综合)和时序仿真等系统开发全过程。
在选用DSP芯片时,主要应考虑性能能否满足快速判读算法的要求,具体说就是要求选择那些指令周期短、数据吞吐率高、通信能力强、指令集功能完备的处理器,同时也要兼顾功耗和开发支持环境等因素。
表2列出了一些常用微处理器的性能参数。
我们选择的是应用广泛、性价比较高的TMS320C40芯片。
它是美国TI公司推出的为满足并行处理需求的32位浮点DSP。
主要特性如下:表2 常用微处理器对照表·外部时钟40MHz,内部时钟20MHz,所有指令均单周期完成,处理器内部采用高度并行机制,可同时进行多达11项各类操作。
·两套相同的外部数据、地址总线,支持局部存储器和全局共享存储器。
·6个高速并行通信口,采用异步传输方式,最大速率可达20Mb/s。
通过令牌传递可灵活实现数据双向传输,这种结构很适合C40之间的互连。
·6个DMA通道,每个通道的最大速率可达20Mb/s。
DMA内部总线与CPU的地址、数据、指令总线完全分开,避开了总线使用上的瓶颈。
从结构和功能上看,C40很适合与可重构器件互相配合起来构成高速、高精度的实时信息处理系统,并完全可以胜任图像信息的实时处理任务;此外,C40的开发系统也比较完备,支持C语言和汇编语言编程,能够方便地进行算法移植和软/硬件的协同设计。
衡量系统的整体性能不仅要看所使用的器件和所能完成的功能,还要看器件之间采用怎样的互连结构。
XC5200可以完成模块级的任务,起到DSP的协处理器的作用。
它的可编程性使它既具有专用集成电路的速度,又具有很高的灵活性。
C40内部结构的主要优势是:所有指令的执行时间都是单周期,指令采用流水线,内部的数据、地址、指令及DMA总线分开,有较多的寄存器。
这些特征使它有较高的处理速度。
FPGA具有硬件的高速性,而C40具有软件的灵活性,从器件上考察,能够满足处理复杂算法的要求。
同时,C40的6个通信口和6个DMA通道使其能够在不被中断的情况下比较从容地应付与外界大量的数据交换。
从PU内部互连来看,C40使用了专用的通信口完成与FPGA的互连,能够保证在任何情况下FPGA与C40的数据通道的畅通。
另外,FPGA和C40各自都有输入端口,使得系统的处理结构多样化。
比如,FPGA可以作为处理流程中的一个模块,独立完成某项功能,也可以作为C40的协处理器,通过C40的调用来完成特定的子函数。
底板将互连性延伸到PU之间,使得多个电路板能够组成多处理机系统。
前级的C40既可以与下一级的C40通信,也可以将数据发送到下一级的FPGA。
综上所述,本文提出的基于DSP+FPGA的线性流水阵列结构,为设计中如何处理软硬件的关系提供了一个较好的解决方案。
同时,该系统具有灵活的处理结构,对不同结构的算法都有较强的适应能力,尤其适合实时信号处理任务。