美国燃油系统标准

合集下载

国外小车用油管理方案

国外小车用油管理方案

国外小车用油管理方案咱来唠唠国外小车用油管理那些事儿。

一、美国的小车用油管理。

1. 分级燃油制度。

在美国啊,加油站的油那是分得挺细的。

他们有不同的辛烷值等级,就像给小车准备了不同口味的“饮料”。

普通的车呢,加个87号汽油(相当于咱们国内的标号)就跑得挺欢。

但要是那种高性能的小跑车,就像那些爱出风头的“小帅哥”车,那就得喝91号甚至93号这种“高级饮料”。

这样分级的好处就是,每辆车都能找到适合自己“胃口”的油,既不会浪费高标号油在普通车上,也不会让高性能车“饿肚子”。

2. 燃油经济性标准。

政府可是下了狠手管这个呢。

汽车制造商得按照规定,让他们生产的小车达到一定的燃油经济性标准。

比如说,一辆小型轿车,在城市里开,每加仑油得能跑个二三十英里(这是英里哦,和咱们公里算法不太一样)。

要是达不到这个标准,制造商就得挨罚。

这就逼得那些车企拼命研究怎么让车更省油,像给车减肥啊,改进发动机技术啥的。

车主们呢,也会因为这个更在意自己车的油耗,开车的时候也会悠着点,不会大脚油门乱踩啦。

3. 税收调节。

美国的油税也是个调节小车用油的手段。

联邦政府和州政府都会收油税。

不同州的油税还不太一样呢。

有些州油税高,这油就贵点。

这就使得一些车主会考虑,我这油这么贵,得少开点车或者换个更省油的车。

而且啊,油税的一部分钱还会用来搞道路建设啥的,也算是取之于车,用之于车的路了。

二、欧洲的小车用油管理。

1. 二氧化碳排放与油税挂钩。

在欧洲,那些环保人士可厉害啦。

政府就把小车的二氧化碳排放量和油税联系起来。

要是你的车二氧化碳排得多,那你加油的时候就得付更多的税。

这就好比你的车是个爱放屁的家伙,那你就得为这个“屁”多掏钱。

这样一来,车主们就更愿意去买那些二氧化碳排放少的车,汽车制造商也得赶紧研发更环保的发动机技术,像柴油发动机的清洁技术,还有现在流行的小排量涡轮增压发动机,都是为了少交税,还能让车跑得动。

2. 严格的燃油质量标准。

欧洲对燃油质量要求那叫一个严格。

国外清洁汽油标准现状及我国的差距

国外清洁汽油标准现状及我国的差距

国外清洁汽油标准现状及我国的差距目前国际上较为先进的汽油质量标准分为美、欧、日、《世界燃油规范》四大标准体系。

1.美国的汽油标准美国目前关于汽油的标准有美国材料与试验协会(ASTM)的D4814-2003、美国22州新配方汽油标准、加州CaRFG3标准。

在这三类汽油规格标准中以ASTM标准最宽松,加州标准最严格,其限值变化最大的是硫含量。

ASTM D4814-2003要求硫含量不大于1000µg/g,对苯含量、烯烃含量和芳烃含量则没有加以限制。

美国加州现行汽油质量指标执行硫含量不大于15µg/g,苯含量不大于0.7%,烯烃含量不大于4.0%,芳烃含量不大于22%,蒸气压不高于48.3kPa的标准。

现行的加州汽油标准比2006年执行的联邦标准还严格。

美国联邦汽油标准将于2006年开始执行硫含量不大于30µg/g,苯含量不大于1%,烯烃含量不大于10%,芳烃含量不大于25~30%,蒸气压不大于51.7kPa的具体指标,从而进一步经济合理的降低汽车污染物排放。

2.欧洲的汽油标准EN 228汽油质量标准是欧洲统一实施的汽油标准。

EN 228标准主要由两部分组成,第一部分限定了密度、辛烷值以及硫含量、苯含量等指标的最大值。

第二部分根据气候和季节将汽油的挥发性划分成不同的等级,分别执行。

由于欧洲国家较多,具体情况差别较大,因此欧洲一些先进国家在满足欧洲统一法规的大前提下,又制定了符合自己国情的实施标准。

为了进一步降低汽车污染物的排放, EN 228-2002汽油质量标准(与欧Ⅲ排放法规相对应),将汽油硫含量降到150µg/g、芳烃含量降到42%、要求苯含量不大于1.0%,铅含量不大于5 mg/L,并对各种氧化物的含量加以限制。

2005年,欧洲将开始执行欧Ⅳ排放标准,将清洁汽油中的硫含量降为50µg/g,芳烃、苯、烯烃含量分别降为35%、1.0% 和18%。

2007年10月1日起推行无硫汽油,使硫含量低于10µg/g,并于2009年1月1日开始强制执行此指标。

美国白宫推出最新燃效标准 加州首先响应

美国白宫推出最新燃效标准 加州首先响应

美国白宫推出最新燃效标准加州首先响应
佚名
【期刊名称】《汽车工程师》
【年(卷),期】2011(000)008
【摘要】据悉,美国2017-2025年度企业平均燃油经济标准CAFE(Corporate Average Fuel Economy)将提高至54.5mpg,而加利福尼亚州的监管机构率先表示将支持白宫的燃油效率计划。

【总页数】1页(P6-6)
【正文语种】中文
【中图分类】V271.1
【相关文献】
1.美国最新CAFE燃效标准将使新车单价上涨5000美元 [J],
2.美国最新CAFE燃效标准将使新车单价上涨5000美元 [J],
3.美国白宫推出最新燃效标准加州首先响应 [J],
4.特朗普又放大招:冻结燃效标准,撤销加州权力 [J], ;
5.美国加州推出最新垃圾填埋场能源发电项目 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

美国发布第三阶段机动车排放和燃料标准

美国发布第三阶段机动车排放和燃料标准

美国发布第三阶段机动车排放和燃料标准
佚名
【期刊名称】《中国标准导报》
【年(卷),期】2014(000)006
【摘要】近日,美国环保署(EPA)在联邦公报上发布了一条最终规则,为减少机动:车和燃料对于空气质量和公众健康的影响,从2017年开始,Tier3(第三阶段)将启动更加严苛的机动车排放标准以及更低的汽油硫含量标准。

【总页数】1页(P17-17)
【正文语种】中文
【相关文献】
1.美国EPA发布2014~2016年“可再生燃料标准”
2.乘用车燃料消耗量限值(第三阶段)标准正式实施
3.美国环保署发布可再生燃料标准
4.明年实施第三阶段机动车排放新标准
5.美国环保署发布可再生燃料标准
因版权原因,仅展示原文概要,查看原文内容请购买。

国内外汽油标准对比之欧阳引擎创编

国内外汽油标准对比之欧阳引擎创编

我国汽油标准与国外汽油标准的对比欧阳引擎(2021.01.01)目前国际上较为先进的汽油质量标准分为美、欧、日、《世界燃油规范》四大标准体系。

其中,欧盟汽油标准和《世界燃油规范》最具影响力,被许多国家引用。

1.欧盟汽油标准EN 228汽油质量标准是欧洲统一实施的汽油标准。

EN 228标准主要由两部分组成,第一部分限定了密度、辛烷值以及硫含量、苯含量等指标的最大值。

第二部分根据气候和季节将汽油的挥发性划分成不同的等级,分别执行。

由于欧洲国家较多,具体情况差别较大,因此欧洲一些先进国家在满足欧洲统一法规的大前提下,又制定了符合自己国情的实施标准。

为了进一步降低汽车污染物的排放, EN 228-2002汽油质量标准(与欧Ⅲ排放法规相对应),将汽油硫含量降到150µg/g、芳烃含量降到42%、要求苯含量不大于1.0%,铅含量不大于5 mg/L,并对各种氧化物的含量加以限制。

2005年,欧洲将开始执行欧Ⅳ排放标准,将清洁汽油中的硫含量降为50µg/g,芳烃、苯、烯烃含量分别降为35%、1.0% 和18%。

2007年10月1日起推行无硫汽油(欧Ⅴ排放标准),使硫含量低于10µg/g,并出台了EN 228-2008汽油质量标准,于2009年1月1日开始强制执行,该标准为最新的欧盟汽油标准。

欧盟汽油规格主要指标的变化见表1。

表1 欧盟汽油规格主要指标的变化《世界燃油规范》是美国汽车制造商协会(AAMA)、欧洲汽车制造商协会(ACEA)、日本汽车制造商协会(JAMA)根据所属的30个汽车公司的研究成果联合发表的,主要是汽车制造商和发动机制造商针对环保要求,对汽车燃料提出的基本要求。

世界燃油规范要求清洁汽油降低硫含量,减少尾气中SO x的排放,抑制尾气转化器中催化剂中毒;降低烯烃含量,避免发动机进油系统和喷嘴堵塞,减少发动机进气阀和燃烧室中生成沉积物,减少汽车尾气中1,3-丁二烯的排放,避免汽油辛烷值分布不均;降低苯和芳烃含量,减少致癌物;降低蒸汽压和T90,减少挥发性有机化合物(VOC)、毒物(TOX)的排放;提高辛烷值,提高汽车动力性能,减少污染物的排放。

FAA适航规章

FAA适航规章

FAA适航规章引言概述:FAA(美国联邦航空局)适航规章是确保飞机及其相关产品的安全和性能符合标准的重要法规。

这些规章涵盖了飞机设计、创造、维护和运营的各个方面。

本文将详细介绍FAA适航规章的内容和重要性。

一、飞机设计规章1.1 飞机结构设计要求:FAA规定了飞机结构设计的标准和要求,包括材料的选择、强度和刚度的计算以及结构的可靠性分析等。

这些规定确保了飞机在正常和应急情况下的结构强度和稳定性。

1.2 电气和电子系统设计要求:FAA规章对飞机的电气和电子系统设计提出了严格要求,包括电路设计、线缆布置、电磁兼容性等。

这些规定旨在确保飞机的电气系统安全可靠,不会干扰其他系统的正常运行。

1.3 燃油系统设计要求:FAA规章对飞机燃油系统的设计和安装提出了详细要求,包括油箱结构、油管布置、燃油泄漏控制等。

这些规定旨在确保燃油系统的安全性,防止燃油泄漏和火灾等事故的发生。

二、飞机创造规章2.1 材料和零部件质量控制要求:FAA规章要求飞机创造商对使用的材料和零部件进行严格的质量控制,包括材料的检测和认证、零部件的创造过程控制等。

这些规定确保了飞机创造的质量和可靠性。

2.2 创造过程控制要求:FAA规章要求飞机创造商建立和执行有效的创造过程控制程序,包括零部件的加工、装配和测试等。

这些规定旨在确保飞机的创造过程符合标准,保证飞机的质量和性能。

2.3 质量管理体系要求:FAA规章要求飞机创造商建立和维护有效的质量管理体系,包括质量控制计划、质量审核和不合格品管理等。

这些规定旨在确保飞机创造商能够持续提供符合标准的产品。

三、飞机维护规章3.1 维护手册要求:FAA规章要求飞机创造商编制和发布详细的维护手册,包括维护程序、维护间隔和维护记录等。

这些规定旨在确保飞机的维护工作按照标准进行,保证飞机的安全和可靠性。

3.2 维修人员资质要求:FAA规章要求飞机维修人员获得适当的培训和认证,以确保他们具备足够的知识和技能进行飞机的维修和检查工作。

世界燃油规范

世界燃油规范
残炭,m%不大于
0.30
0.30
0.20
0.20
CFPP或LTFT或CP,℃
最大值应等于或低于最低的环境温度预期值
水分,mg/kg不大于
500
200
200
200
氧化安定性,g/m不大于
25
25
25
25
泡沫体积,mL不大于


100
100
泡沫消失时间,min不大于


15
15
生物增长

“0”含量
“0”含量
“0”含量
植物衍生脂m% *




脂肪酸甲酯含量(FAME),v% *不大于
5%
5
5
不可检出
乙醇/甲醇含量,v % *
不可检出
不可检出
不可检出
不可检出
总酸值,mgKOH/g不大于

0.08
0.08
0.08
铜片腐蚀,级不大于
1级
1级
1级
1级
腐蚀性能

轻锈或微量
轻锈或微量
轻锈或微量
灰分,m%不大于
0.01
0.01
0.01
0.01
颗粒物,mg/L *不大于
10
10
10
10
喷嘴清洁度Ⅰ,%空气流量损失不大于

85
85
85
喷嘴清洁度Ⅱ
平均渗入沉积物比率*流量损失百分比% *








润滑性(HFRR磨斑直径@60℃),μm不大于
400
400

燃油环保标准

燃油环保标准

燃油环保标准燃油环保标准代表一种实现可持续发展的方法,主要是为了减少汽车尾气排放所带来的环境污染。

燃油环保标准的制定是为了控制车辆尾气中的有害物质,如一氧化碳、氮氧化物和挥发性有机化合物等,减少空气污染,保护人类健康和环境。

在全球经济和工业不断发展的现代社会中,燃油环保标准已经成为了汽车工业的重要组成部分。

燃油环保标准通常包括排放标准和燃油质量标准两个方面。

排放标准是指汽车尾气排放中特别关注的有害物质的浓度限制值,目前通常按照国际标准以PPM(每百万分之一)为计量单位进行测量。

而燃油质量标准是指汽车使用的燃油应当符合一定的物理和化学特性指标,如硫含量、馏分范围、平均分子量等。

为了更好地控制汽车尾气排放和保护环境,全球多个国家和地区逐渐推出了各自的燃油环保标准。

例如,欧盟实施的欧洲排放标准要求汽车在不同时间段内排放二氧化碳、氮氧化物和颗粒物的限值不断降低。

美国EPA制定了汽车尾气排放标准和燃油质量标准,其中包括“Tier 3”排放标准,要求汽车的尾气污染比先前标准降低70%以上。

中国也于2019年推出了一组新燃油标准,包括汽油和柴油的国六a和国六b标准。

这些标准的实施,有望大幅提高车辆的燃油效率和减少尾气污染,从而改善空气质量,保护生态环境。

燃油环保标准的制定和实施需要多方参与合作,包括政府、汽车制造商、石油公司、环保组织等。

政府是燃油环保标准制定的主要推动者和监管者,汽车制造商和石油公司则需要逐步跟进并确保生产的汽车和燃料符合新标准。

而环保组织则需要密切监督燃油标准的执行情况,推动更加环保的改进措施,如推进新能源汽车的开发和应用。

总的来说,燃油环保标准对于环境保护和可持续发展具有重要意义。

燃油环保标准的不断完善和加强,将推动汽车工业、石油行业和环保组织朝着更加环保、低碳的方向不断努力,也将带来更加清洁、健康的生态环境。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

As for the content of this “Automotive Regulations Information”, JASIC has edited the original text of the official gazette issued by the authorities concerned. In spite of every effort to make its edition faithful to the original, there are possibilities that the edited text may contain some inaccuracies in content or in structure. JASIC is not liable for any problems caused by such inaccuracies. Users of this information are advised to refer to the original text of the official gazette itself in case that accuracy is needed.Japan Automobile Standards Internationalization Center 49 CFR PART 571FMVSS No.301FUEL SYSTEM INTEGRITY Development of StandardsNo.Revised Issue Date Effective Date Date Presented by JASIC Remarks 1.40FR483531975/10/152.53FR499901988/12/133.58FR56331992/1/221993/4/234.58FR517881993/10/51993/10/29 5.61FR192011996/5/11996/5/311996/5/246.63FR289221998/5/271999/5/271998/6/267.8.9.10.11.12.Effect after 180 daysNo.Revised Issue Date Effective Date Date Presentedby JASIC RemarksSec. 571.301 Standard No. 301;Fuel system integrity.S1.Scope.This standard specifies requirements for the integrity of motor vehicle fuel systems.S2.Purpose.The purpose of this standard is to reduce deaths and injuries occurring from fires thatresult from fuel spillage during and after motor vehicle crashes, and resulting fromingestion of fuels during siphoning.S3.Application.This standard applies to passenger cars, and to multipurpose passenger vehicles, trucksand buses that have a GVWR of 4,536 kg or less and use fuel with a boiling point above0 degrees C, and to school buses that have a GVWR greater than 4,536 kg and use fuelwith a boiling point above 0degreesC.S4.Definition.Fuel spillage means the fall, flow, or run of fuel from the vehicle but does not includewetness resulting from capillary action.S5.General requirements.S5.1.Passenger cars, and multipurpose passenger vehicles, trucks, and buses with a GVWR of 10,000 pounds or less.Each passenger car and each multipurpose passenger vehicle, truck, and bus with aGVWR of 10,000 pounds or less shall meet the requirements of S6.1. through S6.4. Eachof these types of vehicles that is manufactured to use alcohol fuels shall also meet therequirements of S6.6.S5.2.[Reserved]S5.3.[Reserved]S5.4.Schoolbuses with a GVWR greater than 10,000 pounds.Each schoolbus with a GVWR greater than 10,000 pounds shall meet the requirementsof S6.5. Each schoolbus with a GVWR greater than 10,000 pounds that is manufacturedto use alcohol fuels shall meet the requirements of S6.6.S5.5.Fuel spillage; Barrier crash.Fuel spillage in any fixed or moving barrier crash test shall not exceed 28 g from impactuntil motion of the vehicle has ceased, and shall not exceed a total of 142 g in the 5-minute period following cessation of motion. For the subsequent 25-minute period, fuelspillage during any 1 minute interval shall not exceed 28 g.S5.6.Fuel spillage; rollover.Fuel spillage in any rollover test, from the onset of rotational motion, shall not exceed atotal of 142 g for the first 5 minutes of testing at each successive 90degrees increment.For the remaining test period, at each increment of 90degrees fuel spillage during any 1minute interval shall not exceed 28 g.S5.7.Alcohol fuel vehicles.Each vehicle manufactured to operate on an alcohol fuel (e.g., methanol, ethanol) or afuel blend containing at least 20 % alcohol fuel shall meet the requirements of S6.6.S6.Test requirements.Each vehicle with a GVWR of 4,536 kg or less shall be capable of meeting therequirements of any applicable barrier crash test followed by a static rollover, withoutalteration of the vehicle during the test sequence. A particular vehicle need not meetfurther requirements after having been subjected to a single barrier crash test and a staticrollover test.S6.1. Frontal barrier crash.When the vehicle travelling longitudinally forward at any speed up to and including 48km/h impacts a fixed collision barrier that is perpendicular to the line of travel of thevehicle, or at any angle up to 30degrees in either direction from the perpendicular to theline of travel of the vehicle, with 50th-percentile test dummies as specified in part 572of this chapter at each front outboard designated seating position and at any otherposition whose protection system is required to be tested by a dummy under theprovisions of Standard No. 208, under the applicable conditions of S7., fuel spillageshall not exceed the limits of S5.5.S6.2.Rear moving barrier crash.When the vehicle is impacted from the rear by a barrier moving at 48 km/h, with testdummies as specified in part 572 of this chapter at each front outboard designatedseating position, under the applicable conditions of S7., fuel spillage shall not exceed thelimits of S5.5.teral moving barrier crash.When the vehicle is impacted laterally on either side by a barrier moving at 32 km/h with50th-percentile test dummies as specified in part 572 of this chapter at positions requiredfor testing to Standard No. 208, under the applicable conditions of S7., fuel spillage shallnot exceed the limits of S5.5.S6.4.Static rollover.When the vehicle is rotated on its longitudinal axis to each successive increment of 90degrees, following an impact crash of S6.1., S6.2., or S6.3., fuel spillage shall not exceedthe limits of S5.6.S6.5.Moving contoured barrier crash.When the moving contoured barrier assembly traveling longitudinally forward at anyspeed up to and including 48 km/h impacts the test vehicle (school bus with a GVWRexceeding 4,536 kg) at any point and angle, under the applicable conditions of S7.1. andS7.5., fuel spillage shall not exceed the limits of S5.5.S6.6.Anti-siphoning test for alcohol fuel vehicles.Each vehicle shall have means that prevent any hose made of vinyl plastic or rubber,with a length of not less than 1,200 millimeters (mm) and an outside diameter of not lessthan 5.2 mm, from contacting the level surface of the liquid fuel in the vehicle's fuel tankor fuel system, when the hose is inserted into the filler neck attached to the fuel tank withthe fuel tank filled to any level from 90 to 95% of capacity.S7.Test conditions.The requirements of S5.1. through S5.6. and S6.1. through S6.5. shall be met under thefollowing conditions. Where a range is specified, the vehicle must be capable of meetingthe requirements at all points within the range.S7.1.General test conditions.The following conditions apply to all tests.S7.1.1.The fuel tank is filled to any level from 90 to 95 % of capacity with Stoddard solvent, having the physical and chemical properties of type 1 solvent, Table I ASTM StandardD484-71, ''Standard Specifications for Hydrocarbon Dry Cleaning Solvents.''S7.1.2.The fuel system other than the fuel tank is filled with Stoddard solvent to its normal operating level.S7.1.3.In meeting the requirements of S6.1. through S6.3., if the vehicle has an electrically driven fuel pump that normally runs when the vehicle's electrical system is activated, itis operating at the time of the barrier crash.S7.1.4.The parking brake is disengaged and the transmission is in neutral, except that in meeting the requirements of S6.5. the parking brake is set.S7.1.5.Tires are inflated to manufacturer's specifications.S7.1.6.The vehicle, including test devices and instrumentation, is loaded as follows:(a)Except as specified in S7.1.1., a passenger car is loaded to its unloaded vehicleweight plus its rated cargo and luggage capacity weight, secured in the luggagearea, plus the necessary test dummies as specified in S6., restrained only bymeans that are installed in the vehicle for protection at its seating position.(b)Except as specified in S7.1.1., a multipurpose passenger vehicle, truck, or buswith a GVWR of 4,536 kg or less is loaded to its unloaded vehicle weight, plusthe necessary test dummies, as specified in S6., plus 136 kg or its rated cargo andluggage capacity weight, whichever is less, secured to the vehicle and distributedso that the weight on each axle as measured at the tire-ground interface isproportional to its GAWR. If the weight on any axle, when the vehicle is loadedto unloaded vehicle weight plus dummy weight, exceeds the axle's proportionalshare of the test weight, the remaining weight shall be placed so that the weighton that axle remains the same. Each dummy shall be restrained only by meansthat are installed in the vehicle for protection at its seating position.(c)Except as specified in S7.1.1., a school bus with a GVWR greater than 4,536 kgis loaded to its unloaded vehicle weight, plus 54 kg of unsecured mass at eachdesignated seating position.teral moving barrier crash test conditions.The lateral moving barrier crash test conditions are those specified in S8.2. of StandardNo. 208, 49 CFR 571.208.S7.3.Rear moving barrier test conditions.The rear moving barrier test conditions are those specified in S8.2. of Standard No. 208,49 CFR 571.208, except for the positioning of the barrier and the vehicle. The barrierand test vehicle are positioned so that at impact -(a)The vehicle is at rest in its normal attitude;(b)The barrier is traveling at 48 km/h with its face perpendicular to the longitudinalcenterline of the vehicle; and(c) A vertical plane through the geometric center of the barrier impact surface andperpendicular to that surface coincides with the longitudinal centerline of thevehicle.S7.4.Static rollover test conditions.The vehicle is rotated about its longitudinal axis, with the axis kept horizontal, to eachsuccessive increment of 90 degrees, 180 degrees, and 270 degrees at a uniform rate, with90 degrees of rotation taking place in any time interval from 1 to 3 minutes. Afterreaching each 90 degrees increment the vehicle is held in that position for 5 minutes. S7.5.Moving contoured barrier test conditions.The following conditions apply to the moving contoured barrier crash test.S7.5.1.The moving barrier, which is mounted on a carriage as specified in Figure 1, is of rigid construction, symmetrical about a vertical longitudinal plane. The contoured impactsurface, which is 629 mm high and 1,981 mm wide, conforms to the dimensions shownin Figure 2, and is attached to the carriage as shown in that figure. The ground clearanceto the lower edge of the impact surface is 133 mm +/- 13 mm. The wheelbase is 3,048mm +/- 50 mm.S7.5.2.The moving contoured barrier, including the impact surface, supporting structure, and carriage, has a mass of 1,814 kg +/- 23 kg with the mass distributed so that 408 kg +/-11 kg is at each rear wheel and 499 kg +/- 11 kg is at each front wheel. The center ofgravity is located 1,372 mm +/- 38 mm rearward of the front wheel axis, in the verticallongitudinal plane of symmetry, 401 mm above the ground. The moment of inertia aboutthe center of gravity is:Ix = 367 kgm2 +/- 18.4 kgm2Iz = 4,711 kgm2 +/- 236 kgm2S7.5.3.The moving contoured barrier has a solid nonsteerable front axle and fixed rear axle attached directly to the frame rails with no spring or other type of suspension system onany wheel. (The moving barrier assembly is equipped with a braking device capable ofstopping its motion.)S7.5.4.The moving barrier assembly is equipped with G78-15 pneumatic tires with a tread width of 152 mm +/- 25 mm, inflated to 165 kPa.S7.5.5.The concrete surface upon which the vehicle is tested is level, rigid, and of uniform construction, with a skid number of 75 when measured in accordance with AmericanSociety of Testing and Materials Method E: 274-65T at 64 km/h, omitting waterdelivery as specified in paragraph 7.1 of that method.S7.5.6.The barrier assembly is released from the guidance mechanism immediately prior to impact with the vehicle.Fig. 1-COMMON CARRIAGE FOR MOVING BARRIERSFig.2-COMMON CARRIAGE WITH CONTOURED IMPACT SURFACE ATTACHED。

相关文档
最新文档