自动控制系统 线性与非线性的判断
自动控制原理-第9章 控制系统的非线性问题

9 控制系统的非线性问题9.1概述在物理世界中,理想的线性系统并不存在。
严格来讲,所有的控制系统都是非线性系统。
例如,由电子线路组成的放大元件,会在输出信号超过一定值后出现饱和现象。
当由电动机作为执行元件时,由于摩擦力矩和负载力矩的存在,只有在电枢电压达到一定值的时候,电动机才会转动,存在死区。
实际上,所有的物理元件都具有非线性特性。
如果一个控制系统包含一个或一个以上具有非线性特性的元件,则称这种系统为非线性系统,非线性系统的特性不能由微分方程来描述。
图9-1所示的伺服电机控制特性就是一种非线性特性,图中横坐标u 为电机的控制电压,纵坐标ω为电机的输出转速,如果伺服电动机工作在A 1OA 2区段,则伺服电机的控制电压与输出转速的关系近似为线性,因此可以把伺服电动机作为线性元件来处理。
但如果电动机的工作区间在B 1OB 2区段.那么就不能把伺服电动机再作为线性元件来处理,因为其静特性具有明显的非线性。
图9-1 伺服电动机特性9.1.1控制系统中的典型非线性特性的类型常见典型非线性特性有饱和非线性、间隙非线性、死区非线性、继电非线性等。
9.1.1.1饱和非线性控制系统中的放大环节及执行机构受到电源电压和功率的限制,都具有饱和特性。
如图9-2所示,其中a x a <<-的区域是线性范围,线性范围以外的区域是饱和区。
许多元件的运动范围由于受到能源、功率等条件的限制,也都有饱和非线性特性。
有时,工程上还人为引入饱和非线性特性以限制过载。
图9-2 饱和非线性9.1.1.2不灵敏区(死区)非线性控制系统中的测量元件、执行元件等一般都具有死区特性。
例如一些测量元件对微弱的输入量不敏感,电动机只有在输入信号增大到一定程度的时候才会转动等等。
如图9-3所示,其特性是输入信号在∆<<∆-x 区间时,输出信号为零。
超出此区间时,呈线性特性。
这种只有在输入量超过一定值后才有输出的特性称为不灵敏区非线性,其中区域∆<<∆-x 叫做不灵敏区或死区。
自动控制原理非线性分析知识点总结

自动控制原理非线性分析知识点总结自动控制原理是工程领域中的一门重要学科,它研究的是如何通过设备和技术手段,使得系统的运行能够自动控制并满足特定的性能要求。
非线性分析则是探讨系统在非线性条件下的行为特性。
在这篇文章中,我们将对自动控制原理中的非线性分析知识点进行总结。
一、非线性系统的定义与特点非线性系统是指系统的输出与输入之间的关系不是简单的比例关系,而是呈现出非线性的特征。
与线性系统相比,非线性系统具有以下几个特点:1. 非线性叠加性:系统的输出并不是输入信号的简单叠加,而是受到系统自身状态和非线性特性的影响。
2. 非线性失稳性:非线性系统可能会出现失稳现象,即系统的输出会趋向于无穷大或无穷小。
3. 非线性动态行为:非线性系统在输入信号发生变化时,其输出信号的变化可能是不连续的,出现跳跃、震荡等现象。
二、非线性系统的分析方法1. 相平面分析法:通过绘制相平面图,可以直观地了解系统的非线性行为。
相平面图可以显示出系统的轨迹、奇点等信息,帮助我们分析系统的稳定性和动态特性。
2. 频域分析法:利用频域分析方法,我们可以对非线性系统进行频谱分析,找出系统的频率响应和频率特性。
通过分析系统的幅频特性和相频特性,我们可以判断系统的稳定性和动态性能。
3. 时域响应分析法:时域分析是对系统的输入信号与输出响应进行时间上的观察和分析。
通过观察和分析系统的阶跃响应、脉冲响应、频率响应等,可以推断出系统的稳定性和动态特性。
4. 广义函数法:广义函数是处理非线性系统时常用的一种数学方法。
通过引入广义函数,我们可以简化非线性系统的数学描述,方便进行分析与计算。
5. 数值模拟方法:对于复杂的非线性系统,我们可以利用计算机进行仿真和数值模拟,通过对系统的模拟实验,得到系统的动态行为和性能参数。
三、非线性系统的稳定性分析1. 稳定性概念:稳定性是衡量系统响应的一种重要指标。
对于非线性系统,我们通常关注的是渐近稳定性和有界稳定性。
非线性控制系统

(0 m 1)
由于具有死区和滞环的继电器特性是对原点多值奇 对称,它在正弦输入作用下的输出量y(t)既不是奇函 数又不偶函数,所以A1和B1都必须计算,但A0=0
A1
1
2
0
y(t )cos td(t )
4 1 2 Mcos td(t ) Mcos td(t ) 3 1
注:非线性元件在正弦输入下,其输出也是一个同频率的正弦量, 只是振幅和相位发生了变化。这与线性元件在正弦信号作用下的 输出具有形式上的相似性,故称上述近似处理为谐波线性化。 一般高次谐波的振幅小于基波的振幅,因而为进行近似处理提 供了可靠的物理基础。
描述函数(describing function)
系统状态演变对 初值极端敏感,相图 中两个任意靠近的点 经过足够长时间,对 应截然不同的状态— —由于实际上对初值 的测量不可能绝对精 确,这种不确定性在 一定条件下被放大, 导致不可预测的结果 ——蝴蝶效应。
3.非线性系统可能存在自激振荡现象。
自激振荡:无外作用时非线性系统内部产生的稳定的 等幅振荡称为自激振荡,简称自振荡。
y(t)
x(t)
0 1 2
y1(t) Y1sin(t +1) y(t) π 2 3 4
ωt
π
X x(t)
1
2
π
π 2
3 4
x(t) Xsint
ωt
非线性的输出
1 t 2 3 t 4 mh h 2 arcsin 式中: 1 arcsin , X X h mh 3 arcsin , 3 2 arcsin X X
( A a)
死区非线性的描述函数为
自动控制原理第十章非线性控制系统

自动控制原理第十章非线性控制系统非线性控制系统是指系统动态特性不能用线性数学模型表示或者用线性控制方法解决的控制系统。
非线性控制系统是相对于线性控制系统而言的,在现实工程应用中,许多系统经常具有非线性特性,例如液压系统、电力系统、机械系统等。
非线性控制系统的研究对于实现系统的高效控制和稳定运行具有重要意义。
一、非线性控制系统的特点1.非线性特性:非线性控制系统的动态特性往往不能用线性方程或者线性微分方程描述,经常出现非线性现象,如饱和、死区、干扰等。
2.多变量关联:非线性系统动态关系中存在多个变量之间的相互影响,不同变量之间存在复杂的耦合关系,难以分离分析和解决。
3.滞后响应:非线性系统的响应时间较长,且在过渡过程中存在较大的像后现象,不易预测和控制。
4.不确定性:非线性系统通常存在参数变化、外部扰动和测量误差等不确定性因素,会导致系统性能变差,控制效果下降。
二、非线性控制系统的分类1.反馈线性化控制:将非线性系统通过适当的状态反馈、输出反馈或其它形式的反馈转化为线性系统,然后采用线性控制方法进行设计。
2.优化控制:通过建立非线性系统的数学模型,利用优化理论和方法,使系统达到其中一种性能指标最优。
3.自适应控制:根据非线性系统的参数变化和不确定性,设计自适应控制器,实时调整控制参数,以适应系统的动态变化。
4.非线性校正控制:通过建立非线性系统的映射关系,将测量信号进行修正,以减小系统的非线性误差。
5.非线性反馈控制:根据非线性系统的特性,设计合适的反馈控制策略,使得系统稳定。
三、非线性控制系统设计方法1.线性化方法:通过将非线性系统在其中一工作点上线性化,得到局部的线性模型,然后利用线性控制方法进行设计和分析。
2.动态编程方法:采用动态系统优化的方法,建立非线性系统的动态规划模型,通过求解该模型得到系统的最优控制策略。
3.反步控制方法:通过构造适当的反步函数和反步扩散方程,实现系统状态的稳定和输出的跟踪。
线性与非线性控制系统的性能比较与分析

线性与非线性控制系统的性能比较与分析引言:控制系统是指通过一系列的输入和输出信号间的相互关系来实现对被控对象的控制。
其中,线性控制系统和非线性控制系统是两种常见的控制系统类型。
本文将对线性控制系统和非线性控制系统的性能进行比较与分析,以帮助读者更好地了解两者的优劣之处。
一、线性控制系统的性能:1. 频率响应特性:线性控制系统的频率响应特性较为简单,可以使用传统的频率域分析方法进行系统的设计和分析。
例如,可以使用Bode图和Nyquist图等工具评估系统的幅频和相频特性,进一步优化系统的性能。
2. 稳定性分析:线性控制系统的稳定性分析相对较为简单,可以通过分析系统传递函数的根位置来判断系统的稳定性。
常见的稳定性准则包括Routh-Hurwitz准则和Nyquist稳定性判据等。
这使得线性控制系统的设计与分析更加便捷。
3. 控制性能指标:线性控制系统可以使用传统的性能指标来评估其控制性能。
常用的性能指标有超调量、调节时间和稳态误差等。
这些指标可以帮助工程师在系统设计过程中更好地优化系统的性能。
二、非线性控制系统的性能:1. 非线性特性:与线性控制系统相比,非线性控制系统具有更为复杂的特性。
由于非线性元件的存在,系统的频率响应不再是简单的幅频和相频特性。
因此,频域分析方法在非线性系统的设计和分析中会遇到困难。
2. 稳定性分析:非线性控制系统的稳定性分析比线性控制系统更为复杂,常常需要使用数值方法进行分析。
例如,可以使用Lyapunov稳定性准则来评估非线性系统的稳定性。
此外,也需要考虑系统的局部和全局稳定性。
3. 控制性能指标:非线性控制系统的性能评估相对复杂。
由于系统的非线性特性,传统的性能指标可能不再适用。
因此,需要根据实际情况选择相应的性能指标来评估非线性控制系统的性能。
三、线性与非线性控制系统性能比较与分析:1. 频率响应:线性控制系统的频率响应特性较为直观,可以使用传统的频域分析方法进行判断和优化。
自动控制原理第八章非线性控制系统

如果一个非线性系统在初始扰动下偏离平衡状态,但在时间推移过程中能够恢复到平衡状态,则称该系统是稳定 的。
线性系统稳定的必要条件
系统矩阵A的所有特征值均具有负实 部。
系统矩阵A的所有特征值均具有非正实 部,且至少有一个特征值为0。
劳斯-赫尔维茨稳定判据
劳斯判据
通过计算系统矩阵A的三次或更高次特征多项式的根的实部来判断系统的稳定性。如果所有根的实部 均为负,则系统稳定;否则,系统不稳定。
输出反馈方法
通过输出反馈来改善非线性系统的性能,实 现系统的稳定性和跟踪性能。
自适应控制方法
通过在线调整控制器参数来适应非线性的变 化,提高系统的跟踪性能和稳定性。
非线性系统的设计方法
根轨迹法
通过绘制根轨迹图来分析系统的稳定性,并 设计适当的控制器。
相平面法
通过绘制相平面图来分析非线性系统的动态 行为,进行系统的分析和设计。
感谢您的观看
THANKS
自动控制原理第八章非线性 控制系统
目录
• 非线性系统的基本概念 • 非线性系统的分析方法 • 非线性系统的稳定性分析 • 非线性系统的校正与设计 • 非线性系统的应用实例
01
非线性系统的基本概念
非线性系统的定义
非线性系统的定义
非线性系统是指系统的输出与输入之 间不满足线性关系的系统。在自动控 制原理中,非线性系统是指系统的动 态特性不能用线性微分方程来描述的 系统。
02
它通过将非线性系统表示为一 个黑箱模型,通过测量系统的 输入输出信号来研究其动态特 性。
03
输入输出法适用于分析具有复 杂结构的非线性系统,通过实 验测量和数据分析,可以了解 系统的动态响应和稳定性。
03
自动控制工程基础复习题及答案

一、单项选择题:1. 线性系统和非线性系统的根本区别在于 ( C )A .线性系统有外加输入,非线性系统无外加输入。
B .线性系统无外加输入,非线性系统有外加输入.C .线性系统满足迭加原理,非线性系统不满足迭加原理。
D .线性系统不满足迭加原理,非线性系统满足迭加原理。
2.令线性定常系统传递函数的分母多项式为零,则可得到系统的 ( B )A .代数方程B .特征方程C .差分方程D .状态方程 3. 时域分析法研究自动控制系统时最常用的典型输入信号是 ( D )A .脉冲函数B .斜坡函数C .抛物线函数D .阶跃函数4.设控制系统的开环传递函数为G (s)=)2s )(1s (s 10++,该系统为 ( B )A .0型系统B .I 型系统C .II 型系统D .III 型系统5.二阶振荡环节的相频特性)(ωθ,当∞→ω时,其相位移)(∞θ为 ( B )A .—270°B .—180°C .—90°D .0°6. 根据输入量变化的规律分类,控制系统可分为 ( A )A.恒值控制系统、随动控制系统和程序控制系统B 。
反馈控制系统、前馈控制系统前馈—反馈复合控制系统 C.最优控制系统和模糊控制系统 D.连续控制系统和离散控制系统7.采用负反馈连接时,如前向通道的传递函数为G (s ),反馈通道的传递函数为H (s ),则其等效传递函数为 ( C )A .)s (G 1)s (G + B .)s (H )s (G 11+C .)s (H )s (G 1)s (G +D .)s (H )s (G 1)s (G -8. 一阶系统G (s )=1+Ts K的时间常数T 越大,则系统的输出响应达到稳态值的时间 ( A )A .越长B .越短C .不变D .不定9.拉氏变换将时间函数变换成 ( D )A .正弦函数B .单位阶跃函数C .单位脉冲函数D .复变函数10.线性定常系统的传递函数,是在零初始条件下 ( D )A .系统输出信号与输入信号之比B .系统输入信号与输出信号之比C .系统输入信号的拉氏变换与输出信号的拉氏变换之比D .系统输出信号的拉氏变换与输入信号的拉氏变换之比 11.若某系统的传递函数为G(s )=1Ts K+,则其频率特性的实部R (ω)是 ( A ) A .22T 1Kω+B .-22T 1Kω+C .T1K ω+D .—T1Kω+12。
自动控制理论——非线性系统的分析

Aa A a
3 滞环特性
K ( A sin t a ) x2 (t ) K ( A a ) K ( A sin t a )
x2 x2
3 2 2
a
0
a
x1
0
2
2
t
滞环非线性环节的 描述函数为
N ( A) C1 j1 1 e A12 B12 e j1 A A
一 非线性系统稳定性分析
• 描述函数是在正弦输入信号作用下,输出 的基波分量与输入正弦信号之间的关系。
• 描述函数只能用于对非线性系统的稳定性 和自持振荡的近似分析。
含有非线性环节的系统结构图
r
G1 j
x1
N A
x2
x 2
G2 j
y
H j
• 非线性部分用描述函数 N ( A) 表示; • 非线性部分用描述函数 G ( j ) 表示; G( j) G1 ( j)G2 ( j)H ( j) • 自持振荡只与非线性系统的结构和参 数有关,分析自持振荡时,设 r 0 。
x1
t
a)
单值继电特性在正弦输入作用下的输出波形
(2).非单值继电特性
x2
x2m x2m
x2
非继电特性的 描述函数为
a
x2m
0
aቤተ መጻሕፍቲ ባይዱ
x1
0
x2m
t
4 x2m j N ( A) e A
b)
A
A
0
A
x1
t
a)
非单值继电特性在正弦输入作用下的输出波形
7-5 用描述函数研究非线性系统
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制原理教学探讨——叠加原理与线性系统的
判别问题
四川大学电气信息学院自动化系 赵耀
2014年9月
问题:初始状态不为零的标准线性系统是否满足叠加原理?
例:RC 电路,输入为)t (u i ,输出为)t (u o
dt )
t (du C i )
t (u Ri )t (u o i 0 =+= )t (u )t (u dt
)t (du RC
i o =+∴0 属于标准的线性系统,应当满足叠加原理。
设1=RC ,输出)t (u o 的初值为)(u o 0,输入)t (u i 为阶跃信号,其幅值为A ,则输出响应为
)e (A e )(u )t (u t t o o ---+=10
上式的第一项对应由初始状态引起的零输入响应,第二项对应由输入信号引起的零状态响应。
显然,由于零输入响应项的存在,若输入)t (u i 的幅值增大一倍,对应的输出只是零状态响应部分增大一倍,不会整体增大一倍,即整体并不满足叠加原理的均匀性;同样道理,整体看,把2个输入分别作用产生的响应叠加起来并不等于2个输入同时作用产生的响应,即不满足叠加原理的叠加性,只有零状态响应部分满足叠加性。
表面上看,似乎系统不满足叠加原理。
对于该问题,应当怎么看?
实际上,零输入响应对应的方程为
0 0=+)t (u dt )t (du RC o
即相当于输入0=)t (u i 时的响应,所以应当把系统总的响应看作两部分响应的叠加,即0=)t (u i 所对应的零输入响应加上0≠)t (u i 所对应的零状态响应。
这样看,系统就完全满足叠加原理了。
上述分析说明,叠加原理所讲的某个输入产生某个响应,指的是该响应完全由该输入引
起(即系统属于因果系统),即不施加该输入的情况下就不应当有输出,其他因素引起的任何响应都不应当考虑进来。
因此,使用叠加原理时,首先应当把每一种输入和输出的对应关系划分清楚。
再看一个例子,设系统的数学描述为 5+=u y ,式中u 和y 分别为系统输入和输出。
显然,该系统不满足叠加原理,似乎应当是非线性系统,但该系统在本质上仍然属于线性系统,和u y =所代表的系统没有本质区别。
这种情况下又应当如何看待不满足叠加原理这一问题呢?
对于该例,一种思路是可以认为该系统相当于初始值不为零的线性系统,即不加输入时系统的初始值为5。
也就是说,输入01=u 对应输出51=y ,输入02≠u 对应输出22u y =,则输入为21ku u u +=时,对应的输出为21ky y y +=,满足叠加原理。
另一种思路是进行线性变换,令51-=y y (相当于坐标平移), 则u y =1, 为线性系统,满足叠加原理。
对于很多实际系统往往也是这样处理的,例如分析和设计温度控制系统时,由于不施加控制时系统的温度有一个初值(常温),所以系统的输出量一般并不是选取实际温度值,而是实际温度值减去温度初值,控制作用改变对应该温度差值的变化。
这样对应输入与输出,就可以把系统近似地看作线性系统了。