判断是否为线性系统例题
如何分析判断系统是否为稳定系统、因果系统、线性系统?

如何分析判断系统是否为稳定系统、因果系统、线性系统?
如何判断一个系统是否为线性系统,时不变系统以及稳定系统?
先线性运算再经过系统=先经过系统再线性运算是线性系统;
先时移再经过系统=先经过系统再时移为时不变系统;
时间趋于无穷大时系统值有界则为稳定的系统,或者对连续系统S域变换,离散系统Z域变换,H(s)极点均在左半平面则稳定,H(z)极点均在单位圆内部则稳定;
一般的常微分差分方程都是LTI,输入输出有关于t的尺度变换则时变,微分差分方程的系数为关于时间t的函数也时变。
怎么判断出系统是因果系统还是非因果系统的?
零状态响应不出现于激励之前的系统(或任一时刻的响应仅决定于该时刻和该时刻以前的输入值,而与将来时刻的输入值无关),称为因果系统。
一般来讲,若f(·)=0,t《t0(或k《k0)
则yzs(·)=T[{0},{f(·)}]=0,t《t0(或k《k0)
就称该系统为因果系统,否则称为非因果系统。
如系统:yzs(t)=3f(t-1)就是因果系统,因为t1时刻的响应是t1-1时刻的激励引起的,这不就是先有激励后有响应吗,有因才有果,这就是因果。
而系统yzs(t)=3f(t+1)就不是因果系统,因为t1时刻的响应是t1+1时刻的激励引起的,先有响应后有激励,这就不是因果的了。
信号与系统第一章习题及作业(1,2)

(2)(余弦序列是否为周期信号,取决于2л/Ω0是正整 (余弦序列是否为周期信号,取决于 Ω 有理数还是无理数。) 数、有理数还是无理数。) 因此, 因此, 2л/Ω0=2л·7/8л=7/4=N/m Ω =2л·7/8л 所以基波周期为N=7; 所以基波周期为N=7; N=7
因为2л/Ω =16л 为无理数, (4) 因为 Ω0=16л,为无理数,则此信号不是周期 信号. 信号. (5) 因为周期信号在[-∞,+∞]的区间上,而本题的重 因为周期信号在[ ∞,+∞]的区间上, 的区间上 复区间是[0, +∞],则此信号为非周期信号 则此信号为非周期信号, 复区间是[0, +∞],则此信号为非周期信号,
f(n) 1 0 3 6 … n
9、判断是否为线性系统?为什么? 、判断是否为线性系统?为什么?
( 3) ( 5) (7 )
y( t ) = ln y( t 0 ) + 3t 2 f ( t ) y( t ) = y( t 0 ) + f 2 ( t ) y( t ) = sin t ⋅ f ( t )
8、一个连续时间系统的输入-输出关系为 、一个连续时间系统的输入 输出关系为
1 t+T y ( t ) = T [ f ( t ) ] = ∫ T2 f (τ )d τ T t− 2 试确定系统是否为线性的?非时变的?因果的? 试确定系统是否为线性的?非时变的?因果的?
解:积分系统是线性的,因此系统是线性系统。 积分系统是线性的,因此系统是线性系统。
sin ω 0 tε ( t )
sin ω 0 ( t − t 0 )ε ( t )tt0 Nhomakorabeat
sin ω 0 tε ( t − t 0 )
《信号与系统》第一章知识要点+典型例题

y() 表示系统的输出。
1、线性系统与非线性系统 若系统满足下列线性性质: (1)可分解性 全响应 y () 可分解为零输入响应 y zi () 与零状态响应 y zs () 之和,即
y() y zi () y zs ()
(2)齐次性 零输入响应 y zi () 满足齐次性,零状态响应 y zs () 满足齐次性,即
( t ) 、 ( t ) 的重要性质
1
( t )dt 1 ,
t
( t )dt 0 , ( t )dt ( t ) ( k ) (k )
f ( k ) ( k ) f (0) ( k ) f ( k ) ( k k 0 ) f ( k 0 ) ( k k 0 )
f ( t ) ( t a )dt f (a )
k
f ( k ) ( k ) f (0)
(at )
5
1 (t ) a
1 b (at b) ( t ) a a f ( t ) ( t ) f (0) ( t ) f (0) ( t ) f ( t ) ( t ) f (0) ( t ) f (0) ( t )
2
。
而对离散的正弦(或余弦)序列 sin( k ) [或 cos( k ) ]( 称为数字角频率,单位为 rad ), 只有当
2
为有理数时才是周期序列,其周期 N M
2
, M 取使 N 为整数的最小整数。
如对信号 cos(6 k ) ,由于
2
2 1 为有理数,因此它是周期序列,其周期 N 1 。 6 3
(完整版)信号与线性系统分析_(吴大正_第四版)习题答案

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))f=rt)(sin(t (7))t(k=f kε)(2(10))f kεk=(k+-((])11[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。
如果是,确定其周期。
(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。
2013《数字信号处理》期末复习(填空选择判断)真题

一、填空、选择、判断:1. 一线性时不变系统,输入为 x (n )时,输出为y (n ) ;则输入为2x (n )时,输出为 2y(n) ;输入为x (n-3)时,输出为 y(n-3) 。
2. 线性时不变系统离散时间因果系统的系统函数为252)1(8)(22++--=z z z z z H ,则系统的极点为 2,2121-=-=z z ;系统的稳定性为 不稳定 。
3.4. 对模拟信号(一维信号,是时间的函数)进行采样后,就是 时域离散信 信号,再进行幅度量化后就是 数字 信号。
5. 单位脉冲响应不变法缺点 频谱混迭 ,适合____低通带通 滤波器设计,但不适合高通带阻 滤波器设计。
6. 请写出三种常用低通原型模拟滤波器特沃什滤波器、切比雪夫滤波器 、 椭圆滤波器。
7. FIR 数字滤波器的单位取样响应为 h(n), 0≤n≤N -1, 则其系统函数 H(z)的极点在 z=0 是 N-1 阶的。
8. 对于N 点(N =2L )的按时间抽取的基2FFT 算法,共需要作 2/NlbN 次复数乘和 _NlbN 次复数加。
9. 从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs 与信号最高频率f max 关系为:fs>=2f max 。
10. 已知一个长度为N 的序列x(n),它的离散时间傅立叶变换为X (e jw ),它的N 点离散傅立叶变换X (K )是关于X(e jw )的 N 点等间隔 采样 。
11. 有限长序列x(n)的8点DFT 为X (K ),则X (K )=()70()nk N n X k x n W ==∑。
12. 用脉冲响应不变法进行IIR 数字滤波器的设计,它的主要缺点是频谱的 交叠 所产生的现象。
13. 若数字滤波器的单位脉冲响应h (n )是奇对称的,长度为N ,则它的对称中心是 (N-1)/2 。
14. 用窗函数法设计FIR 数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较 窄 ,阻带衰减比较 小 。
判断线性系统举例

01
02
03
线性电阻电路
由电阻、电源和开关组成, 遵循欧姆定律和基尔霍夫 定律,是线性电路的典型 代表。
线性动态电路
包含电容、电感等储能元 件,通过一阶或二阶常微 分方程描述,仍为线性系 统。
线性网络电路
由多个线性电路元件组成, 通过网络方程描述其行为, 保持线性特性。
控制系统
线性时不变控制系统
系统输出与输入之间的关系是线性的,且系统参数不随时间变化。这类系统可以通过传递函数或状态空间方 程进行描述和分析。
03 线性系统举例分析
机械振动系统
简单振荡器
01
由弹簧、阻尼器和质量块组成,遵循胡克定律和牛顿第二定律,
是线性系统的典型代表。
复杂振荡器
02
包含多个质量块、弹簧和阻尼器,通过联立方程组描述其运动,
仍为线性系统。
连续体振动
03
如弦振动、板振动等,通过偏微分方程描述,在一定条件下可
简化为线性系统。
电路系统
线性系统性质
• 由于线性系统较容易处理,许多时候会将系统理想化或简化为线性系统。线性系统常应用在自动控制理论、信号处理及电 信上。像无线通讯讯号在介质中的传播就可以用线性系统来模拟。
线性系统分类
• 线性系统按照不同的分类标准可分为 多种类型,如:按系统的输入、输出 信号的数量可分为单输入单输出系统 和多输入多输出系统;按系统参数是 否随时间变化可分为时不变系统和时 变系统;按系统的输入、输出信号是 否为时间的连续函数可分为连续时间 系统和离散时间系统等。
非线性系统特点
不满足叠加原理
非线性系统的输出与输入之间不 存在简单的比例关系,即输出的 变化量与输入的变化量不成正比。
信号与系统 第六章典型例题

∞
e(t) = ∑δ (t − nT), k =−∞
e(t)
+
-
延迟T (a)
n = 0,±1,±2,L,其波形如图(b)所示。
e(t )
rzs (t)
∫
L
(1)
LБайду номын сангаас
-T 0 T 2T
t
(b )
解:系统的单位冲激响应为:
h(t )
=
∫t
−∞
[δ
(τ
)
−
δ
(τ
− T )]dτ
=
u(t) − u(t
−T)
∴ rzi (t) = c1e−t + c2 e−2t
又
rz′ri (zi0()0)==−cc11
+ −
c2 2c
=1 2=
1
∴
cc21
=3 = −2
∴ rzi (t) = (3e −t − 2e−2t )u(t)
2)求冲激响应 h(t)
由特征根及 n > m ,得: h(t) = (k1e−t + k2e−2t )u(t) h′(t) = (k1 + k2 )δ (t) + (−k1e−t − 2k2e−2t )u(t) h′′(t) = (k1 + k2 )δ ′(t) + (−k1 − 2k2 )δ (t ) + (k1e −t + 4k 2e −2t )u(t) 将 e(t) = δ (t) , r (t) = h(t ) 代入微分方程,各系数对应相等,有
∴ r4 (t ) = 2rzi(t) + 0.5rzs (t) = 6e −3tu(t ) − 0.5e−3tu(t ) + 0.5 sin 2t ⋅ u(t) = (5.5e −3t + 0.5sin 2t )u(t )
《数字信号处理》复习思考题、习题(一)

《数字信号处理》复习思考题、习题(一)一、选择题1.信号通常是时间的函数,数字信号的主要特征是:信号幅度取 ;时间取 。
A.离散值;连续值B.离散值;离散值C.连续值;离散值D.连续值;连续值2.一个理想采样系统,采样频率Ωs =10π,采样后经低通G(j Ω)还原,⎪⎩⎪⎨⎧≥Ω<Ω=Ωππ5 05 51)(j G ;设输入信号:t t x π6cos )(=,则它的输出信号y(t)为: 。
A .t t y π6cos )(=; B. t t y π4cos )(=;C .t t t y ππ4cos 6cos )(+=; D. 无法确定。
3.一个理想采样系统,采样频率Ωs =8π,采样后经低通G(j Ω)还原,G j ()ΩΩΩ=<≥⎧⎨⎩14404 ππ;现有两输入信号:x t t 12()cos =π,x t t 27()cos =π,则它们相应的输出信号y 1(t)和y 2(t): 。
A .y 1(t)和y 2(t)都有失真; B. y 1(t)有失真,y 2(t)无失真;C .y 1(t)和y 2(t)都无失真; D. y 1(t)无失真,y 2(t)有失真。
4.凡是满足叠加原理的系统称为线性系统,亦即: 。
A. 系统的输出信号是输入信号的线性叠加B. 若输入信号可以分解为若干子信号的线性叠加,则系统的输出信号是这些子信号的系统输出信号的线性叠加。
C. 若输入信号是若干子信号的复合,则系统的输出信号是这些子信号的系统输出信号的复合。
D. 系统可以分解成若干个子系统,则系统的输出信号是这些子系统的输出信号的线性叠加。
5.时不变系统的运算关系T[·]在整个运算过程中不随时间变化,亦即 。
A. 无论输入信号如何,系统的输出信号不随时间变化B. 无论信号何时输入,系统的输出信号都是完全一样的C. 若输入信号延时一段时间输入,系统的输出信号除了有相应一段时间延时外完全相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f 1态响应为
t ≥ td
y f 1 (t ) = f1 ( 2t ) = f ( 2t − td ) y f (t − td ) = f [2(t − td )] = f ( 2t − 2td ) y f 1 ( t ) ≠ y f ( t − td )
k i = −∞
∑ f (i )
由于任一时刻的零状态响应均与该时刻以后的输入无关, 因此都是因果系统。 而对于输入输出方程为
y f (t ) = f (t + 1)
其任一时刻的响应都将与该时刻以后的激励有关。例如, 令t=1时,就有yf(1)=f(2),即t=1时刻的响应取决于t=2时刻的激 励。响应在先,激励在后,这在物理系统中是不可能的。 因此, 该系统是非因果 非因果的。同理,系统yf(t)=f(2t)也是非因果系统。 非因果系统。 非因果 非因果系统 在信号与系统分析中,常以t=0作为初始观察时刻,在当前 输入信号作用下, 因果系统的零状态响应只能出现在t≥0的时 间区间上,故常常把从t=0时刻开始的信号称为因果信号 因果信号,而把 因果信号 从某时刻t0(t0≠0)开始的信号称为有始信号。 有始信号。 有始信号
解 由于系统(1)不满足分解性; 系统(2)不满足零输入线性; 系统(3)不满足零状态线性,故这三个系统都不是线性系统。 对于系统(4), 如果直接观察y(t)~f(t)关系,似乎系统既不满 足齐次性,也不满足叠加性,应属非线性系统。但是考虑到令 f(t)=0时,系统响应为常数b, 若把它看成是由初始状态引起的零 输入响应时,系统仍是满足线性系统条件的, 故系统(4)是线 性系统。通常,以线性微分(差分)方程作为输入输出描述方程 的系统都是线性系统,而以非线性微分(差分)方程作为输入输 出描述方程的系统都是非线性系统。
判断时不变例题
例 1.6-2 试判断以下系统是否为时不变系统。 (1) yf(t)=acos[f(t)] t≥0 (2) yf(t)=f(2t) t≥0
输入输出方程中f(t)和yf(t)分别表示系统的激励和零状 态响应,a为常数。
解 (1) 已知 设
f (t ) → y f (t ) = a cos[ f (t )] f1 ( t ) = f ( t − t d )
f (t) 1 1
y f(t)
-2
0 (a)
2
t
-1 0 1
(b)
t
f1(t)=f (t -2) 1 1
y f1(t)
0 (c)
4
t
0 (d)
2
t
图 1.6-2 例1.6-2图
因果性例题
例 1.6-3 对于以下系统:
y f (t ) = af (t ) + b y f (t ) = cf (t ) + df (t − 1) y f (k ) =
t ≥ td
则其零状态响应
y f 1 (t ) = a cos[ f1 (t )] = a cos[ f (t − td )] y f 1 ( t ) = y f ( t − td )
故该系统是时不变系统。
(2) 这个系统代表一个时间上的尺度压缩,系统输出yf(t)的 波形是输入f(t)在时间上压缩1/2后得到的波形。直观上看,任 何输入信号在时间上的延迟都会受到这种时间尺度改变的影响。 所以, 这样的系统是时变的。 设
判断是否为线性系统例题
例 1.6-1 在下列系统中,f(t)为激励,y(t)为响应,x(0-)为 初始状态,试判定它们是否为线性系统。 (1) y(t)=x(0-)f(t) (2) y(t)=x(0-)2+f(t) (3) y(t)=2x(0-)+3|f(t)| (4) y(t)=af(t)+b