低渗透油气藏水力压裂工艺技术

合集下载

低渗透油气藏压裂返排一体化工艺技术

低渗透油气藏压裂返排一体化工艺技术


l — N 一 A T U ~ R A L — 一 G A … S A N D O 由 I L l 2 。 3 年 6 月
1 . 2 . 2 特点
增 大 了工 作筒 通 径 ,最 大 限度 减小 过 流 阻力 ; 采
用 双 级 密 封 形式 , 保 证 密 封 的长 期 稳 定 可靠 ; 采 用 等
。 返 排一 体化 工艺 技术 是在 压裂 后不 动管 柱 的情况 下直 图 1
接 转 为抽油 泵抽 汲试 油 的一 种新 工艺 技术 。该 技 术可 减 少起 下 管 柱工 序 , 缩 短 试 油周 期 , 减 少 压裂 后 污 染 ,
1 . 1 . 2 管 柱特 点
实现 不 动 压裂 管 柱直 接 下泵 排 液 , 缩 短转 抽 时 间
1 压 裂 返 排 一体 化 技 术 研 究
低 渗 透 油 气 藏 压 裂 返 排 一 体 化 工 艺 技 术 可 提 高 压裂后排液速度 , 减少地层污染 , 同 时 又 能 抓 住 裂 缝
采 用 常规 管 式抽 油 泵 的试 油 方式 , 必 须 要 首先 起
为减 少 作业 环 节 , 避 免 环境 污染 , 内初 期 高 导流 的 有利 时机 , 最 大 限 度地 联作 抽 油 泵 , 即 酸化 压裂 后 不 动管 柱 的增 产潜 力 , 改善 酸 化 、 压 裂 增产 效果 。 直 接转 抽 的抽油 泵 _ 3 ] 。




3期
OI L AND GAS F I E L D D EV EL O PM ENT
J l 油 与 田 开 发 I 1 5 9
低渗透油气藏压裂返排一体化工艺技术
邵 立 民

水力压裂工艺技术

水力压裂工艺技术

水力压裂工艺技术汇报人:目录•水力压裂工艺技术概述•水力压裂工艺技术流程•水力压裂工艺技术要点与注意事项•水力压裂工艺技术案例与实践•水力压裂工艺技术前景与展望01水力压裂工艺技术概述定义及工作原理水力压裂工艺技术是一种利用高压水流将岩石层压裂,以释放天然气或石油等资源的开采技术。

工作原理通过在地表钻井,将高压水流注入地下岩层,使岩层产生裂缝。

随后,将砂子或其他支撑剂注入裂缝,防止裂缝闭合,从而提高岩层渗透性,便于油气资源流向井口,实现开采。

技术革新随着技术的不断发展,20世纪中后期,水力压裂工艺技术逐渐成熟,并引入了水平钻井技术,提高了开采效率。

初始阶段水力压裂工艺技术在20世纪初开始应用于石油工业,当时技术尚未成熟,应用范围有限。

现代化阶段进入21世纪,水力压裂工艺技术进一步完善,开始采用更精确的定向钻井技术和高性能支撑剂,降低了环境污染,并提高了资源开采率。

技术发展历程水力压裂工艺技术是石油工业中最重要的开采技术之一,尤其适用于低渗透油藏的开采。

石油工业水力压裂工艺技术也广泛应用于天然气领域,通过压裂岩层提高天然气产能。

天然气工业随着非常规油气资源(如页岩气、致密油等)的开采价值日益凸显,水力压裂工艺技术成为实现这些资源商业化开采的关键技术。

非常规资源开采技术应用领域02水力压裂工艺技术流程在施工前,需要对目标地层进行详细的地质评估,包括地层厚度、岩性、孔隙度、渗透率等参数,以确定最佳的水力压裂方案。

地质评估准备水力压裂所需的设备,包括压裂泵、高压管线、喷嘴、砂子输送系统等,确保设备完好、可靠。

设备准备对井口进行清理,确保井口无杂物、无阻碍,为水力压裂施工提供安全的作业环境。

井口准备施工前准备通过压裂泵将大量清水注入地层,使地层压力升高,为后续的压裂创造条件。

注水当地层压力达到一定程度时,通过喷嘴将携带有砂子的高压水射入地层,使地层产生裂缝。

压裂随着高压水的不断注入,砂子被携带进入裂缝,支撑裂缝保持开启状态,提高地层的渗透性。

水力喷射分段压裂技术

水力喷射分段压裂技术

04
技术实施步骤与注意事 项
现场勘察与准备
1 2
现场地质勘察
了解地层构造、岩性、储层物性等情况,为后续 压裂方案制定提供依据。
设备与材料准备
根据勘察结果,准备相应的压裂设备、材料,确 保满足施工需求。
3
施工场地布置
合理规划施工场地,确保作业安全、高效进行。
设备安装与调试
设备检查
对所有设备进行全面检查,确保设备性能良好、无故障。
应用案例二:天然气开采
总结词
水力喷射分段压裂技术在天然气开采中表现出良好的增产效果,尤其在低渗透气藏中具有显著优势。
详细描述
水力喷射分段压裂技术适用于天然气的开采,尤其在低渗透气藏中表现出良好的增产效果。通过高压 水射流对气藏进行分段压裂,可以增加气藏的渗透性和连通性,从而提高天然气的采收率和产量。此 外,该技术还可降低天然气的开采成本,提高经济效益。
的大规模开发提供有力支持。
应用效果对比分析
总结词
水力喷射分段压裂技术在不同领域的应用效果各异, 但均表现出良好的增产和经济效益。
详细描述
水力喷射分段压裂技术在石油、天然气和地热能开发等 领域均表现出良好的应用效果。在石油开采中,该技术 提高了采收率、降低了成本并减少环境污染;在天然气 开采中,它提高了产量和经济效益;在地热能开发中, 该技术则提高了地热资源的利用率和经济效益。总体而 言,水力喷射分段压裂技术在不同领域的应用效果均显 示出其独特的优势和潜力。
原理
利用水力喷射工具产生高速射流,在 井筒内形成高压,使地层产生裂缝, 然后通过砂浆等支撑剂的填充,保持 裂缝开启,提高油气的渗透性。
技术发展历程
起源
当前状况
水力喷射分段压裂技术起源于20世纪 90年代,最初用于水平井的压裂。

水力压裂技术 分类

水力压裂技术 分类

水力压裂技术分类水力压裂技术,又称水力压裂法或液压压裂法,是一种用于增强油气井产能的技术。

它通过注入高压液体,使岩石裂缝扩大并连接,从而增加油气井的渗透性和产能。

本文将从水力压裂技术的原理、应用领域、优缺点以及环境影响等方面进行详细介绍。

一、水力压裂技术的原理水力压裂技术利用高压水将岩石裂缝扩大并连接起来,以增加油气井的渗透性和产能。

具体的操作步骤包括:首先,通过钻井将管道和注水设备安装到油气井中;然后,注入高压液体(通常为水和一些化学添加剂)到井中;随着注水压力的升高,岩石裂缝开始扩大,形成通道;最后,注入的液体通过这些通道进入油气层,将其中的油气释放出来。

二、水力压裂技术的应用领域水力压裂技术主要应用于以下几个领域:1. 油气开采:水力压裂技术可以提高油气井的产能,增加油气的开采量。

特别是对于低渗透性油气层,水力压裂技术可以显著改善渗透性,提高开采效率。

2. 地热能开发:水力压裂技术也可以应用于地热能开发领域。

通过在地下注入高压水,可以扩大裂缝,提高地热井的渗透性,增加地热能的采集量。

3. 存储库容增加:水力压裂技术还可以应用于水库、储气库等储存设施的建设中。

通过扩大岩石裂缝,可以增加储存设施的库容,提高储存效率。

三、水力压裂技术的优缺点水力压裂技术具有以下优点:1. 提高产能:水力压裂技术可以显著增加油气井的产能,提高油气的开采效率。

2. 适用性广泛:水力压裂技术适用于各种类型的油气层,包括低渗透性油气层和页岩气层等。

3. 可控性强:水力压裂过程中的注入压力和液体组成可以根据实际情况进行调整,以达到最佳效果。

然而,水力压裂技术也存在一些缺点:1. 环境影响:水力压裂过程中会产生大量的废水和废液,其中可能含有有害物质。

如果处理不当,可能对地下水和环境造成污染。

2. 能源消耗:水力压裂需要消耗大量的水和能源,特别是在水资源短缺的地区,会对水资源和能源供应造成压力。

3. 地震风险:一些研究表明,水力压裂过程中产生的地下应力改变可能会导致地震活动的增加,增加地震风险。

低渗透油气藏水力压裂工艺技术

低渗透油气藏水力压裂工艺技术
二、水力压裂的产生和发展
第8页/共122页
第一代压裂(1940’-1970’):小型压裂 加砂量较小,在10m3左右,主要是解除近井地带污染 第二代压裂(1970’-1980’):中型压裂 加砂量迅速增加,主要是增加地层深部油流通道, 提高低渗透油层导流能力第三代压裂(1980’-1990’):端部脱砂压裂 将压裂增产措施应用到中、高渗储层,双倍缝宽,主要是大幅度提高储 层导流能力第四代压裂(1990’- ):大型压裂、开发压裂 将压裂作为一种开发方式,从油藏系统出发,应用压裂技术
第28页/共122页
6.岩石力学参数
岩心三轴力学参数测试压裂施工压力资料分析DSI测井
第29页/共122页
动静态杨氏模量对比
第30页/共122页
断裂韧性的测量与预测
岩石断裂韧性是描述裂尖附近的应力场的参数,是应力奇异性的度量。断裂韧性是载荷参数(如缝中压力,原地应力)和岩体参数(如裂缝尺寸)的函数它可以提供裂缝扩展的判据。但是,长期以来,由于测试手段和理论研究的局限,在水力压裂设计中往往只能给出断裂韧性的经验估计。 过建立内压式岩石断裂韧性试验,测量不同围压、不同岩性岩石的断裂韧性,建立了基于声波测井资料的岩石断裂韧性解释模型。
第31页/共122页
为了保证岩样加工的精度,专门开发了岩石断裂韧性测试岩样加工装置。
第32页/共122页
建立了利用测井资料预测岩石断裂韧性的理论模型,从而使断裂韧性的预测走向实用化
第33页/共122页
模拟地层条件下,地层岩石断裂韧性与应力变化规律研究,建立了地层断裂韧性与有效应力的线性方程,并考察了其对裂缝形状的影响。
第45页/共122页
压裂液配制的可操作性
现场配制要求:配制简单,易于操作,配液时间短,劳动强度低,工作时效高;性能可控,便于现场及时调整。经济因素要求:成本低,经济易行;货源广,易于准备。

低渗透油藏挖潜增产技术与应用

低渗透油藏挖潜增产技术与应用

低渗透油藏挖潜增产技术与应用
低渗透油藏是指地下储层渗透率较低的油藏,渗透率一般小于0.1mD。

由于地下储层
的渗透率较低,油井生产能力有限,开采效果不理想。

为了提高低渗透油藏的开采效果,
需要应用挖潜增产技术。

低渗透油藏挖潜增产技术是指通过一系列的措施和方法,提高低渗透油藏的有效渗透率,增强油藏开采能力,从而实现增产的目的。

1. 水平井技术:通过将水平井钻进低渗透油藏的稀油层,利用水平段延长油井与油
层的接触面积,增强有效渗透率,提高油井的生产能力。

水平井还可以采用人工增强采油
措施,如酸化、压裂等,进一步提高油井产能。

2. 插水增效技术:在低渗透油藏中,通过插入高压水驱使油层中的油向油井移动,
增加油井的产能。

插水增效技术可以采用常规的注水井,也可以采用注水井+抽油井的方式。

3. 低渗透油藏改造技术:通过改造低渗透油藏的储集层,提高渗透率。

常用的低渗
透油藏改造技术包括酸化、压裂、注气等。

酸化可以通过注入酸液降低储集岩的酸溶性,
增加孔隙度,提高储集层的渗透率。

4. 油藏压裂技术:通过注入高压液体使低渗透油藏的储集岩产生裂缝,从而增加油
层的渗透率。

油藏压裂技术可以采用水力压裂、气体压裂、化学压裂等不同方式进行。

低渗透油藏挖潜增产技术的应用可以大幅提高低渗透油藏的开采率,增加油井的产量。

挖潜增产技术的应用需要充分考虑地下储层的特点和条件,选择合适的技术手段,进行有
效的实施。

挖潜增产技术的应用还需要与现有的油田开采方案相协调,充分发挥技术的优势,提高整体的开采效果。

水力压裂工艺技术

水力压裂工艺技术

降低压裂液成本方法研究
新型低成本压裂液开发
01Biblioteka 研究开发新型低成本、高性能的压裂液体系,降低压裂液成本

重复利用压裂液
02
通过有效的压裂液回收和再利用技术,降低压裂液成本。
优化施工参数
03
通过优化施工参数,减少压裂液的消耗量,降低压裂液成本。
新型支撑剂材料开发与应用前景展望
高强度支撑剂材料
研究开发高强度、低密度的支撑 剂材料,提高裂缝的支撑能力和
重要性及应用领域
重要性
水力压裂技术对于提高油气藏的 采收率和产能具有重要意义,是 实现油田高效开发的关键技术之 一。
应用领域
水力压裂技术广泛应用于石油、 天然气、煤层气等矿产资源的开 采领域,同时也应用于地质工程 、岩土工程等领域。
02
水力压裂工艺技术原理
裂缝产生机理
01
02
03
岩石破裂
水力压裂通过高压流体作 用在岩石上,克服岩石的 抗拉强度,使其产生破裂 。
应力集中
水力压裂过程中,流体在 岩石中形成应力集中,促 使岩石产生裂缝。
裂缝扩展
一旦岩石产生裂缝,高压 流体将裂缝进一步扩展, 形成更长的裂缝。
裂缝扩展与控制方法
裂缝扩展方向控制
裂缝网络构建
通过调整压裂液的流速、压力等参数 ,控制裂缝的扩展方向。
通过多次压裂,形成复杂的裂缝网络 ,提高储层的渗透性。
03
水力压裂工艺设备与工具
压裂车组设备组成及功能
01
压裂车
用于向地下层注入高压、大排量的 压裂液,使地层产生裂缝。
仪表车
用于监测和控制压裂过程中的各项 参数,如压力、排量等。
03

压裂裂缝测试技术

压裂裂缝测试技术

图 6-1:几种裂缝形态的示意图
1
对于常规储藏压裂,人们希望避免产生多裂缝, 因为在相同的压裂规模情况 下多裂缝会减少主裂缝的有效长度和导流能力。对于页岩油气储藏压裂, 人们希 望产生和尽力诱发非常复杂的网络裂缝, 因为页岩油气储藏的基质渗透率通常非 常低,在人工和天然网络裂缝没有沟通到的区域, 油气资源很难经济效益地开采 出来。近年来,石油工业文献里叙述了有很多水力压裂测试的裂缝实例研究,其 中主要是应用远场的压裂测试技术, 就是把压裂测试的接收器放置在邻井下与压 裂层大致相同的深度,用两种不同的技术:井下微地震和井下倾斜仪测试,获得 裂缝的几何形态。 裂缝实例研究还包括在实验室里建立物理模型对人工裂缝进行 直观和机理研究, 在矿场压裂后通过采矿和取芯的办法研究裂缝形态。远场压裂 测试和压裂后采矿及取芯的实例研究证明有多裂缝和 T 形裂缝(水平和垂直裂 缝并存)等情形。 长庆油田油层分布范围大,产建新区多,地应力分布复杂,多年来在地应力 和裂缝方位测试方面已开展了大量的研究工作。但受地貌条件、 井斜及监测仪器 位置的限制, 使得部分测试技术无法有效应用。 近年来, 通过各种测试方法组合, 形成了适合长庆油田超低渗储层开发的裂缝监测技术。 第一节 裂缝测试方法概述
裂缝特征测试包括裂缝的几何尺寸及方向, 但是要从地下几千米深的地层得 到这些信息,并达到工业测试水平,难度是很大的。目前国内外普遍采用的测试 方法有实验室测试和现场测试两种。 实验室测试包括对不定向岩心的波速的各向 异性、差应变、凯塞效应、古地磁等测试,最后综合分析各测试结果,确定岩心 主应力大小和方向。在进行岩心分析之前需进行古地磁测量, 测取以现在磁北为 零的偏角,进行岩心定向工作。该方法的测试过程相当复杂而且任务艰巨,其测 试结果受各种人为的和测试手段的影响, 不够准确。 根据确定的储层主应力方向, 可以判断水力压裂产生的人工裂缝方位。 实际应用中还可以通过对测井资料处理 得出地应力的分布和天然裂缝发育情况,如井孔崩落、主应力剖面分析等方法。 现场测试有直接测试和间接测试两种方法。间接法包括裂缝模拟(净压力拟 合) 、试井分析、生产数据分析等方法。直接法又包括近井地带和远场的两种直 接法, 近井地带直接法有井温测试、 放射性示踪剂法、 生产测井、 井眼成像测井、 井下电视、井径测井。远场直接法有地层微变形法(倾斜仪监测) 、井下三分量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年探明天然气储量(亿方) 低渗储量比例(%)
中石油年石油探明储量及低渗储量的比例
6.00
5.00
4.00
3.00
2.00
1.00
0.00
1998
1999
2000
2001
年探明石油储量(亿吨)
100
90
80
70
60
50
40
30
20
10
0
2002
2003
2004
2005
低渗储量百分数(%)
中石油年探明天然气储量及低渗储量的比例
一、水力压裂工作原理
主 要
•近井解堵
•地层防砂
用 途
•储层改造
•区块开发
二、水力压裂的产生和发展
•第一次水力压裂试验:1947年,美国Kansas的Houghton油田,4个碳酸 盐储层,压前进行过酸化,采用上、下封隔器逐级分层压裂,每层使用 稠化凝固汽油并接着注入汽油作为破胶剂,不加支撑剂。 •压裂效果较差,结论:压裂不如酸化有效。 •同年,在美国东Teaxs油田Woodbine砂岩层进行水力压裂,使用胶化矿 场原油,16目石英砂,破胶剂,取得了极大的成功。 •1949年Halliburton获得了专利许可证,开始了商业化的水力压裂作业, 使该技术得到迅速推广。 •专利规定了携砂液为通过滤纸的粘度大于30cp的液体。 •其它未获得许可证的公司水和砂进行水力压裂作业。
将压裂增产措施应用到中、高渗储层,双倍缝宽,主要是大幅度提高储
层导流能力
•第四代压裂(1990’- ):大型压裂、开发压裂
将压裂作为一种开发方式,从油藏系统出发,应用压裂技术
三、水力压裂造缝机理
在水力压裂中,了解裂缝 的形成条件、裂缝形态、 方向对有效地发挥压裂在 增产、增注中的作用十分 重要。
在地层中造缝,形成裂缝 的条件与地应力及其分布、 岩石力学性质、压裂液性 质、注入方式等都有密切 关系。
1.近年来,低渗透油气藏储量构成比例逐年提高
截止2005年底,中石油探明低渗透油藏原油储量近100亿吨,低渗油藏占 总探明储量的40%左右。
目前中石油发现的低渗透气藏储量约为3万多亿立方米,低渗气藏占总储 量的55%左右。
近年中石油每年新增探明储量中,约2/3为低渗透储量。
年探明石油储量(亿吨) 低渗储量比例(%)
蒸汽吞吐、蒸汽驱
径向流
裂缝线性流 双线性流 地层线性流 拟径向流
•渗流面积小、渗流阻力大,产量相对较低。
•产量来源于裂缝中流体的弹性膨胀,流动基 本上是线性的,流动时间很短,意义不大。
•流体自地层线性地流入裂缝,同时,裂缝 中的流体再线性地流入井筒。
14000 12000 10000
压裂酸化井次
年增产量(万吨)
1000 900 800 700
8000
600
500
6000
400
4000
300
200 2000
100
0
0
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
1、裂缝形态 2、裂缝方位 3、裂缝尺寸
σZ
垂直裂缝
σY
σX
σZ
当σH >σZ时,产生水平 裂缝。当σX=σY时,平面上 会产生均匀的圆形,当 σX≠σY时,平面上会产生类 似椭圆或呈不规则的分布。
σX
当σZ >σH时,产生垂直 裂缝,此垂直缝的方位又决定 于两个水平应力σX 和σY的大 小,当σY >σX ,则裂缝处 于垂直于最小主应力σX 、平 行于σY的方位;当σZ >σH , 则裂缝处于垂直于最小主应力 σY 、平行于σX的方位。
一般来说,破裂压力梯度小于0.018产生垂直裂缝,大于0.023产生水 平裂缝,0.018-0.023两种情况都有可能。这也是一种统计经验,每个地 区甚至每口井因其它因素的影响会有所不同。
四、水力压裂增产机理
•解除污染 •沟通储层 •提高导流能力 •改变流态
水力压裂
调、补层
Q k h P
注水、注气
低渗透油气藏 水力压裂工艺技术
目录
前言 水力压裂技术概述 压前储层评价技术 压裂材料技术 压裂的优化设计技术 部分实例分析 未来压裂技术的发展趋势分析
目录
前言 水力压裂技术概述 压前储层评价技术 压裂材料技术 压裂的优化设计技术 部分实例分析 未来压裂技术的发展趋势分析
3.压裂酸化技术地位进一步提高
在国际范围内,压裂酸化技术愈来愈受到重视。美国石油学会 已将压裂酸化和钻井、测井、采油工艺等专业并列对待。
地质 测井、录井 钻井、完井 油藏 ……
压裂酸化
试油、试气、投产
目录
前言 水力压裂技术概述 压前储层评价技术 压裂材料技术 压裂的优化设计技术 部分实例分析 未来压裂技术的发展趋势分析
水力压裂技术发展
•第一代压裂(1940’-1970’):小型压裂
加砂量较小,在10m3左右,主要是解除近井地带污染
• 第二代压裂(1970’-1980’):中型压裂
加砂量迅速增加,主要是增加地层深部油流通道,
提高低渗透油层导流能力 •第三代压裂(1980’-1990’):端部脱砂压裂
Mr.哈里伯顿
北美35-40%的井进行了水力压裂,25-30%的石油储量是通过压裂获得的
从1955年至2005年底,国内压裂酸化作业23万井次以上,共增油1.23亿吨以 上(平均单井534吨)。
近10年来,年压裂酸化作业8600井次左右,年增油量近600万吨。
压裂酸化井次(井次) 年增油量(万吨)
压裂酸化在低渗油藏开发中作用
50070
3000
60
50
2000
40
30
1000
20
10
0
0
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
年探明天然气储量(亿方)
低渗储量百分数(%)
2. 压裂酸化技术在低渗透油气藏勘探开发中作用巨大
自1947年首次压裂,至1988年作业总量已超过100万井次以上
水平裂缝
σY
如何判断水力压裂产生的裂缝形态
地应力测试法 通过对三向应力值的测试来判断,这是最科学、最准确的判断方法。
但成本高、速度慢、操作复杂。 深度经验法
一般来说,目的储层中深低于700m产生水平裂缝,超过800m产生垂直 裂缝,700-800m两种情况都有可能。但这只是一种统计经验,每个地区情 况会有所不同,有时差异还较大。 破裂压力梯度经验法
相关文档
最新文档