第2章逻辑和证明
合集下载
第2章 逻辑代数基础

0-1率A· 1=1
A B
冗余律: AB A C BC AB A C
证明: AB A C BC
AB A C ( A A) BC
AB A C ABC A BC
互补率A+A=1 分配率 A(B+C)=AB+AC 0-1率A+1=1
AB(1 C) A C(1 B)
1、并项法
利用公式A+A=1,将两项合并为一项,并消去一个变量。 运用分配律 变并 相 和 包 量成 同 反 含 Y1 ABC A BC BC ( A A ) BC BC 的一 时 变 同 若 因项 , 量 一 两 BC BC B(C C ) B 子, 则 , 个 个 。并 这 而 因 乘 运用分配律 消两其子积 去项他的项 Y2 ABC AB AC ABC A( B C ) 互可因原中 ABC ABC A( BC BC) A 为以子变分 反合都量别 运用摩根定律
(2)反演规则:对于任何一个逻辑表达式Y,如果将表达式 中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”, “1”换成“0”,原变量换成反变量,反变量换成原变量,那么 所得到的表达式就是函数Y的反函数Y(或称补函数)。这个规 则称为反演规则。例如:
Y AB CD E
Y A B C D E
A A B A 吸收率: A ( A B) A
A ( A B) A B A A B A B
证明: A A B ( A A)(A B)
分配率 A+BC=(A+B)(A+C)
1 ( A B)
互补率A+A=1
A B
冗余律: AB A C BC AB A C
证明: AB A C BC
AB A C ( A A) BC
AB A C ABC A BC
互补率A+A=1 分配率 A(B+C)=AB+AC 0-1率A+1=1
AB(1 C) A C(1 B)
1、并项法
利用公式A+A=1,将两项合并为一项,并消去一个变量。 运用分配律 变并 相 和 包 量成 同 反 含 Y1 ABC A BC BC ( A A ) BC BC 的一 时 变 同 若 因项 , 量 一 两 BC BC B(C C ) B 子, 则 , 个 个 。并 这 而 因 乘 运用分配律 消两其子积 去项他的项 Y2 ABC AB AC ABC A( B C ) 互可因原中 ABC ABC A( BC BC) A 为以子变分 反合都量别 运用摩根定律
(2)反演规则:对于任何一个逻辑表达式Y,如果将表达式 中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”, “1”换成“0”,原变量换成反变量,反变量换成原变量,那么 所得到的表达式就是函数Y的反函数Y(或称补函数)。这个规 则称为反演规则。例如:
Y AB CD E
Y A B C D E
A A B A 吸收率: A ( A B) A
A ( A B) A B A A B A B
证明: A A B ( A A)(A B)
分配率 A+BC=(A+B)(A+C)
1 ( A B)
互补率A+A=1
第二章一阶逻辑

本命题符号化为 ┐ x(W(x)→B(x))。
练习2 在一阶逻辑中将下列命题符号化。 ⑴ 兔子比乌龟跑得快。 ⑵ 每个人都有自己喜欢的职业。 ⑶ 不存在同样高的两个人。 ⑷ 存在最小的自然数。 解 ⑴兔子比乌龟跑得快。 令F(x):x是兔子, G(x):x是乌龟, H(x,y):x比y跑得快。 本命题符号化为 x(F(x)→ y(G(y)→H(x,y))), 或 x y(F(x)∧G(y)→H(x,y))。
⑷ 存在着偶素数。
⑸ 在北京工作的人未必都是北京人。
解 ⑴有的有理数是整数。
令Q(x):x是有理数。 P(x):x是整数。 本命题符号化为 x (Q(x)∧P(x))。
⑵每个计算机系的学生都学离散数学。
令P(x):x是计算机系的学生。
R(x):x学离散数学。
本命题符号化为x (P(x)→R(x))。
⑶ 每个人都会犯错误。
令 R(x):x是人。 P(x):x会犯错误。 本命题符号化为 x (R(x)→P(x))。
⑷ 存在着偶素数。
令E(x):x是偶数。
P(x):x是素数。
本命题符号化为 x(E(x)∧P(x))。
⑸在北京工作的人未必都是北京人。
令W(x):x在北京工作。
B(x):x是北京人。
母a, b, c, d 等表示常元。
个体变项(也称个体变元,简称变元):泛指
个体域中个体的符号。一般用小写英文字母x, y,
z 等表示变元。
例
2是有理数。 这是一个简单命题。 “2”是个体词 “…是有理数”是谓词,它表示个体的性 质。 个体词:是表示个体的符号。 谓词:用来刻画个体的性质或个体之间的关 系。一般用大写英文字母表示谓词。 例 张三比李四高。 有两个个体词:张三,李四 “…比…高”是谓词,表示两个体之间的关 系。
练习2 在一阶逻辑中将下列命题符号化。 ⑴ 兔子比乌龟跑得快。 ⑵ 每个人都有自己喜欢的职业。 ⑶ 不存在同样高的两个人。 ⑷ 存在最小的自然数。 解 ⑴兔子比乌龟跑得快。 令F(x):x是兔子, G(x):x是乌龟, H(x,y):x比y跑得快。 本命题符号化为 x(F(x)→ y(G(y)→H(x,y))), 或 x y(F(x)∧G(y)→H(x,y))。
⑷ 存在着偶素数。
⑸ 在北京工作的人未必都是北京人。
解 ⑴有的有理数是整数。
令Q(x):x是有理数。 P(x):x是整数。 本命题符号化为 x (Q(x)∧P(x))。
⑵每个计算机系的学生都学离散数学。
令P(x):x是计算机系的学生。
R(x):x学离散数学。
本命题符号化为x (P(x)→R(x))。
⑶ 每个人都会犯错误。
令 R(x):x是人。 P(x):x会犯错误。 本命题符号化为 x (R(x)→P(x))。
⑷ 存在着偶素数。
令E(x):x是偶数。
P(x):x是素数。
本命题符号化为 x(E(x)∧P(x))。
⑸在北京工作的人未必都是北京人。
令W(x):x在北京工作。
B(x):x是北京人。
母a, b, c, d 等表示常元。
个体变项(也称个体变元,简称变元):泛指
个体域中个体的符号。一般用小写英文字母x, y,
z 等表示变元。
例
2是有理数。 这是一个简单命题。 “2”是个体词 “…是有理数”是谓词,它表示个体的性 质。 个体词:是表示个体的符号。 谓词:用来刻画个体的性质或个体之间的关 系。一般用大写英文字母表示谓词。 例 张三比李四高。 有两个个体词:张三,李四 “…比…高”是谓词,表示两个体之间的关 系。
数字电路第2章逻辑代数基础及基本逻辑门电路

AB+AC+ABC+ABC = = AB+ABC)+(AC+ABC) ( = AB+AC
(5)AB+A B = A (6)(A+B)(A+B )=A 证明: (A+B)(A+B )=A+A B+AB+0 A( +B+B) = 1 JHR A =
二、本章教学大纲基本要求 熟练掌握: 1.逻辑函数的基本定律和定理; 门、 2.“与”逻辑及“与”门、“或”逻辑及“或”
“非”逻辑及“非”门和“与”、“或”、“非” 的基本运算。 理解:逻辑、逻辑状态等基本概念。 三、重点与难点 重点:逻辑代数中的基本公式、常用公式、 基本定理和基本定律。
JHR
难点:
JHR
1.具有逻辑“与”关系的电路图
2.与逻辑状态表和真值表
JHR
我们作如下定义: 灯“亮”为逻辑“1”,灯“灭”为逻辑“0” 开关“通”为逻辑“1”,开关“断”为逻辑 “0” 则可得与逻辑的真值表。 JHR
3.与运算的函数表达式 L=A·B 多变量时 或 读作 或 L=AB L=A·B·C·D… L=ABCD… 1.逻辑表达式 2.逻辑符号
与非逻辑真值表
Z = A• B
3.逻辑真值表
逻辑规律:有0出1 全1 出0
JHR
A 0 0 1 1
B 0 1 0 1
Z 1 1 1 0
二、或非逻辑 1.逻辑表达式 2.逻辑符号
Z = A+ B
先或后非
3.逻辑真值表
JHR
三、与或非逻辑 1.逻辑表达式 2.逻辑符号
1.代入规则 在任一逻辑等式中,若将等式两边出现的同 一变量同时用另一函数式取代,则等式仍然成立。
JHR
代入规则扩大了逻辑代数公式的应用范围。例如摩 根定理 A+B = A ⋅ B 若将此等式两边的B用B+C 取代,则有
(5)AB+A B = A (6)(A+B)(A+B )=A 证明: (A+B)(A+B )=A+A B+AB+0 A( +B+B) = 1 JHR A =
二、本章教学大纲基本要求 熟练掌握: 1.逻辑函数的基本定律和定理; 门、 2.“与”逻辑及“与”门、“或”逻辑及“或”
“非”逻辑及“非”门和“与”、“或”、“非” 的基本运算。 理解:逻辑、逻辑状态等基本概念。 三、重点与难点 重点:逻辑代数中的基本公式、常用公式、 基本定理和基本定律。
JHR
难点:
JHR
1.具有逻辑“与”关系的电路图
2.与逻辑状态表和真值表
JHR
我们作如下定义: 灯“亮”为逻辑“1”,灯“灭”为逻辑“0” 开关“通”为逻辑“1”,开关“断”为逻辑 “0” 则可得与逻辑的真值表。 JHR
3.与运算的函数表达式 L=A·B 多变量时 或 读作 或 L=AB L=A·B·C·D… L=ABCD… 1.逻辑表达式 2.逻辑符号
与非逻辑真值表
Z = A• B
3.逻辑真值表
逻辑规律:有0出1 全1 出0
JHR
A 0 0 1 1
B 0 1 0 1
Z 1 1 1 0
二、或非逻辑 1.逻辑表达式 2.逻辑符号
Z = A+ B
先或后非
3.逻辑真值表
JHR
三、与或非逻辑 1.逻辑表达式 2.逻辑符号
1.代入规则 在任一逻辑等式中,若将等式两边出现的同 一变量同时用另一函数式取代,则等式仍然成立。
JHR
代入规则扩大了逻辑代数公式的应用范围。例如摩 根定理 A+B = A ⋅ B 若将此等式两边的B用B+C 取代,则有
离散数学第2章 谓词逻辑

命题“凡人要死。”符号化为:(x)F (x) ⑵ 令G(x):x是研究生。 命题“有的人是研究生。”符号化为:(x)G(x)
在命题函数前加上量词(x)和(x)分别叫做个体变元x 被全称量化和存在量化。一般地说,命题函数不是命题, 如果对命题函数中所有命题变元进行全称量化或存在量化, 该函数就变成了命题。这一结论在例2.3中得到验证。
为假。 ⑵ 如果5大于3,则2大于6。 解:设G(x,y): x大于y a:5,b:3,c:2,d:6 该命题符号化为:G(a,b)→G(c,d) G(a,b)表示5大于3,它是真命题。G(c,d)表示2大于6,
ห้องสมุดไป่ตู้这是个假命题。所以G(a,b)→G(c,d)为假。
(3) 2 是无理数, 而 3 是有理数 解 :设F(x): x是无理数, G(x): x是有理数 符号化为 F( 2) G( 3) 真值为 0 (4) 如果2>3,则3<4 解:设 F(x,y): x>y, G(x,y): x<y, 符号化为 F(2,3)G(3,4) 真值为1
谓词:刻划个体性质或个体之间相互关系的模式叫做谓词。谓 词常用大写英文字母表示,叫做谓词标识符。
例如可以用F,G,H表示上面三个命题中谓词: F:„是优秀共产党员。 G:„比„高。 H:„坐在„和„的中间。
第2章 谓词逻辑
一元谓词:与一个个体相关联的谓词。如上例中的F。 二元谓词:与两个个体相关联的谓词。如上例中的G。 三元谓词:与三个个体相关联的谓词。如上例中的H。
返回章目录
第2章 谓词逻辑
课外作业
• 教材P59-60页: 练习题(需要做在练习本上) (1) (2) a)、c) 、d)、e)、 f)、i)、k)、l)
返回章目录
在命题函数前加上量词(x)和(x)分别叫做个体变元x 被全称量化和存在量化。一般地说,命题函数不是命题, 如果对命题函数中所有命题变元进行全称量化或存在量化, 该函数就变成了命题。这一结论在例2.3中得到验证。
为假。 ⑵ 如果5大于3,则2大于6。 解:设G(x,y): x大于y a:5,b:3,c:2,d:6 该命题符号化为:G(a,b)→G(c,d) G(a,b)表示5大于3,它是真命题。G(c,d)表示2大于6,
ห้องสมุดไป่ตู้这是个假命题。所以G(a,b)→G(c,d)为假。
(3) 2 是无理数, 而 3 是有理数 解 :设F(x): x是无理数, G(x): x是有理数 符号化为 F( 2) G( 3) 真值为 0 (4) 如果2>3,则3<4 解:设 F(x,y): x>y, G(x,y): x<y, 符号化为 F(2,3)G(3,4) 真值为1
谓词:刻划个体性质或个体之间相互关系的模式叫做谓词。谓 词常用大写英文字母表示,叫做谓词标识符。
例如可以用F,G,H表示上面三个命题中谓词: F:„是优秀共产党员。 G:„比„高。 H:„坐在„和„的中间。
第2章 谓词逻辑
一元谓词:与一个个体相关联的谓词。如上例中的F。 二元谓词:与两个个体相关联的谓词。如上例中的G。 三元谓词:与三个个体相关联的谓词。如上例中的H。
返回章目录
第2章 谓词逻辑
课外作业
• 教材P59-60页: 练习题(需要做在练习本上) (1) (2) a)、c) 、d)、e)、 f)、i)、k)、l)
返回章目录
第二章逻辑代数

性质3:任意两个不同的最小项的乘积必为0。
第2章
(3)最小项的性质
3 变量全部最小项的真值表 A B C m0 m1 m2 m3 m4 m5 m6 m7 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 。 0 1 1 变量 0 ABC 0取值为 0 001情况下,各最小项之和为 1 0 0 0 0 1 0 0 【因为其中只有一个最小项为 0 0 0 0 1 1,其余全为 0 0 0。】 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1
第2章
2.卡诺图的特点
(1)最小项的相邻性
任何两个最小项如果他们只有一个因子不同,其余因子
都相同,则称这两个最小项为相邻最小项。 显然,m0与m1具有相邻性,而
m1 (A BC) 与
m 2 (ABC)不相
邻,因为他们有两个因子不相同。m3与m4也不相邻,而m3与m2
相邻。
相邻的两个最小项之和可以合并成一项,并消去一个变 量。如:
AB1 CDE F AB
运用摩根定律
例2: Y2 A B CD ADB A BCD AD B (A AD) (B BCD) 如果乘积项是另外一个乘 积项的因子,则这另外一 A1 D B1 CD 个乘积项是多余的。 AB
如: Y AB AC ①求出反函数的 最简与或表达式
Y AB AC (A B)( A C) AB AC BC AB AC
②利用反演规则写出函 数的最简或与表达式 最简或与表达式
人工智能导论-第2章 逻辑推理2 - 谓词逻辑

设 是包含变元的公式,是不包含变元的谓词公式,则如下逻辑等价关系成立:
(∀)( ∨ ) ≡ (∀) ∨
(∀)( ∧ ) ≡ (∀) ∧
(∃)( ∨ ) ≡ (∃) ∨
(∃)( ∧ ) ≡ (∃) ∧
谓词逻辑
量词的约束,因此是约束变元;Crown是一个常量符号,表示皇冠; ()是一个一元
谓词,表示是国王,_(Crown, )是一个二元谓词,表示头戴皇冠。
谓词逻辑
定理 2.4 当公式中存在多个量词时,若多个量词都是全称量词或者都是存在量词,
则量词的位置可以互换;若多个量词中既有全称量词又有存在量词,则量词的位
人工智能导论
Introduction of Artificial Intelligence
第2章
逻辑与推理
一、命题逻辑
二、谓词逻辑
三、知识图谱推理
四、因果推理
从 命题逻辑 到 谓词逻辑
命题逻辑的局限性:在命题逻辑中,每个陈述句是最基本的单位(即原子命题),
无法对原子命题进行分解。因此在命题逻辑中,不能表达局部与整体、一般与个
这就是谓词逻辑研究内容。
谓词逻辑
定义2.7 个体:
个体是指所研究领域中可以独立存在的具体或抽象的概念。
定义2.9 谓词:
谓词是用来刻画个体属性或者描述个体之间关系存在性的元素,其
值为真或为假。
包含一个参数的谓词称为一元谓词,表示一元关系。
包含多个参数的谓词称为多元谓词,表示个体之间的多元关系。
存在量词消去(Existential Instantiation, EI): (∃)() → ()
存在量词引入(Existential Generalization, EG): () → (∃)()
(∀)( ∨ ) ≡ (∀) ∨
(∀)( ∧ ) ≡ (∀) ∧
(∃)( ∨ ) ≡ (∃) ∨
(∃)( ∧ ) ≡ (∃) ∧
谓词逻辑
量词的约束,因此是约束变元;Crown是一个常量符号,表示皇冠; ()是一个一元
谓词,表示是国王,_(Crown, )是一个二元谓词,表示头戴皇冠。
谓词逻辑
定理 2.4 当公式中存在多个量词时,若多个量词都是全称量词或者都是存在量词,
则量词的位置可以互换;若多个量词中既有全称量词又有存在量词,则量词的位
人工智能导论
Introduction of Artificial Intelligence
第2章
逻辑与推理
一、命题逻辑
二、谓词逻辑
三、知识图谱推理
四、因果推理
从 命题逻辑 到 谓词逻辑
命题逻辑的局限性:在命题逻辑中,每个陈述句是最基本的单位(即原子命题),
无法对原子命题进行分解。因此在命题逻辑中,不能表达局部与整体、一般与个
这就是谓词逻辑研究内容。
谓词逻辑
定义2.7 个体:
个体是指所研究领域中可以独立存在的具体或抽象的概念。
定义2.9 谓词:
谓词是用来刻画个体属性或者描述个体之间关系存在性的元素,其
值为真或为假。
包含一个参数的谓词称为一元谓词,表示一元关系。
包含多个参数的谓词称为多元谓词,表示个体之间的多元关系。
存在量词消去(Existential Instantiation, EI): (∃)() → ()
存在量词引入(Existential Generalization, EG): () → (∃)()
新教材高中数学第2章常用逻辑用语1命题定理定义2
判断下列各命题中p是q的什么条件: (1)p:x-2=0,q:(x-2)(x-3)=0; (2)p:t≠2,q:t2≠4; (3)p:0<x<3,q:|x-1|<2.
解析 (1)x-2=0⇒(x-2)(x-3)=0, (x-2)(x-3)=0⇒x-2=0或x-3=0. ∴“x-2=0”是“(x-2)(x-3)=0”的充分不必要条件. (2)t≠2 t2≠4(当t=-2时,t2=4), t2≠4⇒t≠2且t≠-2. ∴“t≠2”是“t2≠4”的必要不充分条件. (3)令A={x|0<x<3},B={x||x-1|<2}={x|-1<x<3}. 易知A⫋B,∴p是q的充分不必要条件.
探求充分条件、必要条件的步骤 (1)分清“条件”和“结论”,明确探求的方向; (2)分析题目中的已知条件和隐含条件,进行等价转化,即可得到使结论成立的充要条 件; (3)将得出的充要条件对应的范围扩大或缩小,即可得到结论成立的必要不充分条件 或充分不必要条件.
求方程x2+kx+1=0与x2+x+k=0有一个公共实数根的充要条件. 思路点拨 设两个方程的公共实数根为x0,列方程组求出k的值,再检验k取此值时两个方程是否有 一个公共实数根,从而解决问题.
1 | 命题、定理、定义的概念 1.命题 在数学中,我们将① 可判断真假 的陈述句叫作命题.许多命题可表示为“如果p, 那么q”或“若p,则q”的形式,其中p叫作命题的② 条件 ,q叫作命题的③ 结论 . 2.定理 在数学中,有些已经被证明为真的命题可以作为推理的依据而直接使用,一般称之为 定理. 3.定义 定义是对某些对象标明符号、指明称谓,或者揭示所研究问题中对象的内涵.
2 | 充分条件、必要条件的证明与探求
第二章 命题逻辑[2010](1)
选言支可以同时为真 2. 简单推理: 简单推理: • • • 否定肯定式 添加式 无效式
(二)不相容选言命题
• 不相容选言命题是断定两种事物情况中有且只 有一种情况成立的选言命题。 有一种情况成立的选言命题。 • 或为玉碎,或为瓦全。 或为玉碎,或为瓦全。 • 今天不是星期一,就是星期二。 今天不是星期一,就是星期二。 • 任一个自然数或者是偶数,或者是奇数。 任一个自然数或者是偶数,或者是奇数。
• • • • • • •
并非:并不是,…不成立,…是假的,…不符 并不是, 不成立, 是假的, 并不是 合事实,等等。 合事实,等等。 并且:和;然后;不但,而且;虽然,但是; 和 然后;不但,而且;虽然,但是; 不仅, 等等。 不仅,还;等等。 或者:要么,要么;二者必居其一;等。 要么,要么;二者必居其一; 要么 要么:或者;要么,要么;二者必居其一;等。 或者;要么,要么;二者必居其一; 或者 如果,则:假如,就;倘若,便;只要,就; 假如, 假如 倘若, 只要, 哪怕, 就算, 哪怕,也;就算,也;当…时;等。 只有,才:除非,才;除非,不;不,就不; 除非, 除非 除非, 就不; 仅当, 等等。 仅当,才;等等。 当且仅当:如果…则…并且只有…才…,如 如果… 如果 并且只有… 并且如果非…则非… 等等。 果…则…并且如果非…则非…,等等。
约定: 约定:
• 整个公式外面的括号可以省略; 整个公式外面的括号可以省略; • 各联结词的结合力依下列次序递减: 各联结词的结合力依下列次序递减:
¬;∧;∨;→;↔
• 连续的“→”从后向前结合。 连续的“→”从后向前结合。 从后向前结合
(一)逻辑性质
• 联言命题是判定几种事物同时存在的复合命题 • 只有他的各个联言支都是真的,它本身才是真的 只有他的各个联言支都是真的, 如果由一个支命题为假,则联言命题为假。 ;如果由一个支命题为假,则联言命题为假。 • p∧q
(二)不相容选言命题
• 不相容选言命题是断定两种事物情况中有且只 有一种情况成立的选言命题。 有一种情况成立的选言命题。 • 或为玉碎,或为瓦全。 或为玉碎,或为瓦全。 • 今天不是星期一,就是星期二。 今天不是星期一,就是星期二。 • 任一个自然数或者是偶数,或者是奇数。 任一个自然数或者是偶数,或者是奇数。
• • • • • • •
并非:并不是,…不成立,…是假的,…不符 并不是, 不成立, 是假的, 并不是 合事实,等等。 合事实,等等。 并且:和;然后;不但,而且;虽然,但是; 和 然后;不但,而且;虽然,但是; 不仅, 等等。 不仅,还;等等。 或者:要么,要么;二者必居其一;等。 要么,要么;二者必居其一; 要么 要么:或者;要么,要么;二者必居其一;等。 或者;要么,要么;二者必居其一; 或者 如果,则:假如,就;倘若,便;只要,就; 假如, 假如 倘若, 只要, 哪怕, 就算, 哪怕,也;就算,也;当…时;等。 只有,才:除非,才;除非,不;不,就不; 除非, 除非 除非, 就不; 仅当, 等等。 仅当,才;等等。 当且仅当:如果…则…并且只有…才…,如 如果… 如果 并且只有… 并且如果非…则非… 等等。 果…则…并且如果非…则非…,等等。
约定: 约定:
• 整个公式外面的括号可以省略; 整个公式外面的括号可以省略; • 各联结词的结合力依下列次序递减: 各联结词的结合力依下列次序递减:
¬;∧;∨;→;↔
• 连续的“→”从后向前结合。 连续的“→”从后向前结合。 从后向前结合
(一)逻辑性质
• 联言命题是判定几种事物同时存在的复合命题 • 只有他的各个联言支都是真的,它本身才是真的 只有他的各个联言支都是真的, 如果由一个支命题为假,则联言命题为假。 ;如果由一个支命题为假,则联言命题为假。 • p∧q
第2章逻辑代数基础
自等律:A·1=A
重叠律:A·A=A
A+0=A
A+A=A
互补律:A· A=0
A+A=1
第2章 逻辑代数基础
2. 与普通代数相似的定律 交换律 A·B=B·A 结合律 (A·B)·C=A·(B·C) 分配律 A·(B+C)=AB+AC A+B=B+A (A+B)+C=A+(B+C) A+BC=(A+B)(A+C)
任何逻辑函数式都存在着对偶式。 若原等式成立, 则 对偶式也一定成立。即,如果F=G, 则F′=G′。这种逻辑推
理叫做对偶原理,或对偶规则。
必须注意,由原式求对偶式时,运算的优先顺序不能 改变, 且式中的非号也保持不变。 观察前面逻辑代数基本定律和公式,不难看出它们都 是成对出现的, 而且都是互为对偶的对偶式。 例如,已知乘对加的分配律成立,即A(B+C)=AB+AC, 根据对偶规则有,A+BC=(A+B)(A+C),即加对乘的分配律
第2章 逻辑代数基础
逻辑函数与普通代数中的函数相似,它是随自变量的变 化而变化的因变量。因此,如果用自变量和因变量分别表示
某一事件发生的条件和结果,那么该事件的因果关系就可以
用逻辑函数来描述。 数字电路的输入、输出量一般用高、低电平来表示,高、 低电平也可以用二值逻辑1和0来表示。同时数字电路的输出 与输入之间的关系是一种因果关系, 因此它可以用逻辑函数 来描述,并称为逻辑电路。对于任何一个电路,若输入逻辑 变量A、 B、 C、 … 的取值确定后,其输出逻辑变量F的值也 被惟一地确定了,则可以称F是A、 B、 C、 … 的逻辑函数, 并记为
《逻辑和证明》PPT课件
解 :有许多方法翻译这个句子为逻辑表达式。尽管可以 用一个命题变量,如q来表示这一句子,但在分析其含义或 用其作推理时,这种表示不会有什么作用。
我们的办法是用命题变量表示其中的每一个句子成分, 并找出期间合适的逻辑联结词。具体的说,令a,c和f分别 表示“你可以从校园内访问因特网”、“你主修计算机科学” 和“你是个新生”。注意到“只有……才”是表达蕴含的一 种方式,上述句子可以译为:
7
❖例 太阳从西方升起,则2+2=4。 ❖联结词(运算符)的优先级:,,,,
减少所需的括号数目
❖例 p q s ❖命题符号化是命题演算的基础,符号化过程:
找出命题中的原子命题,分别用小写英文字母表示它 们 将原子命题用适当的联结词联结起来
a
8
❖ 例8 怎样把下面的句子翻译成逻辑表达式? “只有你主修计算机科学或不是新生,才可以从校园内访问 因特网。”
(5)定义6 双蕴涵(等价)联结词 , p q :p与q的等价
a
6
❖ 真值表:给出命题真值之间的关系
❖ 含有n(n>0)个命题变量的命题公式的真值表有2n行
❖ 在数理逻辑中,组成一个复合命题的原子命题在语义可以没 有任何联系 数理逻辑关心复合命题的结构,其真值由组成它的原子命题 的真值唯一确定
பைடு நூலகம்
a
假命题 真命题 真命题 不是命题 不是命题 不是命题 不是命题 不是命题 假命题 不是命题
a
3
❖命命题题(符p、号q化、:r、用s字)母来表示命题,常用小写字母表示原子
❖比较:代数中用字母表示变量
❖例 p:2+4=8 q:水是液体
❖命题的真值:命题的真假性
真命题的真值为真,表示为T 假命题的真值为假,表示为F 比较:命题变量的真值与代数变量的值
我们的办法是用命题变量表示其中的每一个句子成分, 并找出期间合适的逻辑联结词。具体的说,令a,c和f分别 表示“你可以从校园内访问因特网”、“你主修计算机科学” 和“你是个新生”。注意到“只有……才”是表达蕴含的一 种方式,上述句子可以译为:
7
❖例 太阳从西方升起,则2+2=4。 ❖联结词(运算符)的优先级:,,,,
减少所需的括号数目
❖例 p q s ❖命题符号化是命题演算的基础,符号化过程:
找出命题中的原子命题,分别用小写英文字母表示它 们 将原子命题用适当的联结词联结起来
a
8
❖ 例8 怎样把下面的句子翻译成逻辑表达式? “只有你主修计算机科学或不是新生,才可以从校园内访问 因特网。”
(5)定义6 双蕴涵(等价)联结词 , p q :p与q的等价
a
6
❖ 真值表:给出命题真值之间的关系
❖ 含有n(n>0)个命题变量的命题公式的真值表有2n行
❖ 在数理逻辑中,组成一个复合命题的原子命题在语义可以没 有任何联系 数理逻辑关心复合命题的结构,其真值由组成它的原子命题 的真值唯一确定
பைடு நூலகம்
a
假命题 真命题 真命题 不是命题 不是命题 不是命题 不是命题 不是命题 假命题 不是命题
a
3
❖命命题题(符p、号q化、:r、用s字)母来表示命题,常用小写字母表示原子
❖比较:代数中用字母表示变量
❖例 p:2+4=8 q:水是液体
❖命题的真值:命题的真假性
真命题的真值为真,表示为T 假命题的真值为假,表示为F 比较:命题变量的真值与代数变量的值
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(8)零律: A F = F AT=T
(9)一律: A F = A AF=A
(10)排中律:A A = T (11)矛盾律:A A = F (12)蕴涵等值式:A→B = A B (13)假言易位:A→B = B → A (14)等价等值式:AB = (AB) (BA)
3.找一个只含命题p,q和r的复合命题,当p和q为真而r 为假时命题为真,否则为假。
(提示:用各个命题或其否定构造合取。)
例 命题公式A= (p q) ( p q) 的主析取范式与主 合取范式。 真值表:
主析取范式: (p q) ( p q) ( p q) 主合取范式: ( p q)
习题
1.用真值表证明等价关系 ( p q) p q
2.证明 p q和 ( p q) (p q) 等 价 。
ቤተ መጻሕፍቲ ባይዱ
例3 证明命题p∨(q∧r)和(p∨q)∧(p∨r)逻辑等价。这是析 取对合取的分配律。 证明:
表1-11 中构造了这两个命题的真值表。因为p∨(q∧r)的真值 和(p∨q)∧(p∨r)的真值一样,它们是逻辑等价的。
基本的逻辑等价关系
(1)双重否定律: A = A (2)等幂律:A A = A,A A = A (3)交换律:A B = B A, A B = B A (4)结合律:(A B) C = A ( B C)
对偶原理:若两个命题等价,则它们的对偶命题也等价 只含逻辑运算符 、 和的命题的对偶命题: 、
TF 主析取范式和主合取范式
范式:具有某种特殊形式(结构)的命题公式 文字:命题变量或命题变量的否定(如p、p) 主析取范式:析取式,其中的每个析取项都是极小项 极小项: 由文字构成的合取式,且原命题公式中的 每个命题变量都在合取式中出现一次 主合取范式:合取式,其中的每个合取项都是极大项 极大项: 由文字构成的析取式,且原命题公式中的 每个命题变量都在析取式中出现一次
任意命题公式都有与之等价的主析取范式和主析取范式
从真值表构造主析取范式 对应于真值表中为真的每一行,在主析取范式中都有
一个对应的合取式 行中为F的变量在相应的合取式中带有
从真值表构造主合取范式 对应于真值表中为假的每一行,在主合取范式中都有
一个对应的析取式 行中为T的变量在相应的合取式中带有
基本(p1p2…pn ) (p1 p2… pn ) 命题逻辑等价关系与基本的集合恒等式的相似性
的结合律与pqrs的含义 的结合律与p q r s的含义
德摩根律的扩展 (p1 p2… pn ) (p1 p2… pn ) 等值演算:将复合命题中的一个子命题用与它逻辑等 价的另一个命题替换,不会改变原命题的真值,从而 得到新的逻辑等价的命题
例5 证明(p(pq))和pq逻辑等价
证明: 我们有下列等价关系 (p(pq))= p(pq)
= p((p)q) = p(pq) =(pp)(pq) = F(pq)
= pq
由第二得摩根定律 由第一得摩根定律 由双非律 由分配律
定义2 命题逻辑等价:两个复合命题在所有可能的情况下 都有相同真值
p q是永真式
记为 p q
真值表判定法
例2 证明命题 p q和p q 逻辑等价
解 在表2-2 中构造了这两个命题的真值表,由于 p q和 p q的真值相同,它们是逻辑等价的。(接下页)
表2-2 p q和p q的真值表
由 F的恒等律
例6 证明(p∧q)→(p∨q)为永真式。
证明 : 为证明这个命题是永真式,我们将用逻辑等价证明它
逻辑上等价于T。(注意:这也可以用真值表来完成。) (p∧q)→(p∨q) = ¬(p∧q)∨(p∨q) = (¬p∨¬q)∨(p∨q) = ¬(p∨p)∨(¬q∨q) = T∨T =T
(A B) C = A (B C) (5)分配律:(A B) C = (A C) (B C)
(A B) C = (A C) (B C) (6)德.摩根律:(A B) = A B
(A B) = A B
(7)吸收律:A (A B) = A A (A B) = A
(9)一律: A F = A AF=A
(10)排中律:A A = T (11)矛盾律:A A = F (12)蕴涵等值式:A→B = A B (13)假言易位:A→B = B → A (14)等价等值式:AB = (AB) (BA)
3.找一个只含命题p,q和r的复合命题,当p和q为真而r 为假时命题为真,否则为假。
(提示:用各个命题或其否定构造合取。)
例 命题公式A= (p q) ( p q) 的主析取范式与主 合取范式。 真值表:
主析取范式: (p q) ( p q) ( p q) 主合取范式: ( p q)
习题
1.用真值表证明等价关系 ( p q) p q
2.证明 p q和 ( p q) (p q) 等 价 。
ቤተ መጻሕፍቲ ባይዱ
例3 证明命题p∨(q∧r)和(p∨q)∧(p∨r)逻辑等价。这是析 取对合取的分配律。 证明:
表1-11 中构造了这两个命题的真值表。因为p∨(q∧r)的真值 和(p∨q)∧(p∨r)的真值一样,它们是逻辑等价的。
基本的逻辑等价关系
(1)双重否定律: A = A (2)等幂律:A A = A,A A = A (3)交换律:A B = B A, A B = B A (4)结合律:(A B) C = A ( B C)
对偶原理:若两个命题等价,则它们的对偶命题也等价 只含逻辑运算符 、 和的命题的对偶命题: 、
TF 主析取范式和主合取范式
范式:具有某种特殊形式(结构)的命题公式 文字:命题变量或命题变量的否定(如p、p) 主析取范式:析取式,其中的每个析取项都是极小项 极小项: 由文字构成的合取式,且原命题公式中的 每个命题变量都在合取式中出现一次 主合取范式:合取式,其中的每个合取项都是极大项 极大项: 由文字构成的析取式,且原命题公式中的 每个命题变量都在析取式中出现一次
任意命题公式都有与之等价的主析取范式和主析取范式
从真值表构造主析取范式 对应于真值表中为真的每一行,在主析取范式中都有
一个对应的合取式 行中为F的变量在相应的合取式中带有
从真值表构造主合取范式 对应于真值表中为假的每一行,在主合取范式中都有
一个对应的析取式 行中为T的变量在相应的合取式中带有
基本(p1p2…pn ) (p1 p2… pn ) 命题逻辑等价关系与基本的集合恒等式的相似性
的结合律与pqrs的含义 的结合律与p q r s的含义
德摩根律的扩展 (p1 p2… pn ) (p1 p2… pn ) 等值演算:将复合命题中的一个子命题用与它逻辑等 价的另一个命题替换,不会改变原命题的真值,从而 得到新的逻辑等价的命题
例5 证明(p(pq))和pq逻辑等价
证明: 我们有下列等价关系 (p(pq))= p(pq)
= p((p)q) = p(pq) =(pp)(pq) = F(pq)
= pq
由第二得摩根定律 由第一得摩根定律 由双非律 由分配律
定义2 命题逻辑等价:两个复合命题在所有可能的情况下 都有相同真值
p q是永真式
记为 p q
真值表判定法
例2 证明命题 p q和p q 逻辑等价
解 在表2-2 中构造了这两个命题的真值表,由于 p q和 p q的真值相同,它们是逻辑等价的。(接下页)
表2-2 p q和p q的真值表
由 F的恒等律
例6 证明(p∧q)→(p∨q)为永真式。
证明 : 为证明这个命题是永真式,我们将用逻辑等价证明它
逻辑上等价于T。(注意:这也可以用真值表来完成。) (p∧q)→(p∨q) = ¬(p∧q)∨(p∨q) = (¬p∨¬q)∨(p∨q) = ¬(p∨p)∨(¬q∨q) = T∨T =T
(A B) C = A (B C) (5)分配律:(A B) C = (A C) (B C)
(A B) C = (A C) (B C) (6)德.摩根律:(A B) = A B
(A B) = A B
(7)吸收律:A (A B) = A A (A B) = A