北京市海淀区高三第一学期期末考试数学理科16页word
北京市海淀区2024届高三上学期期末练习数学试题含答案

海淀区2023-2024学年第一学期期末练习高三数学2024.01(答案在最后)本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.考试结束后,将本试卷和答题纸一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}1,2,3,4,5,6U =,{}13,5A =,,{}1,2,3B =,则()U A B =ð()A.{}2,4,5,6 B.{}4,6 C.{}2,4,6 D.{}2,5,6【答案】A 【解析】【分析】由集合的交集运算、补集运算即可求解.【详解】由题意集合{}1,2,3,4,5,6U =,{}13,5A =,,{}1,2,3B =,则{}1,3A B = ,(){}2,4,5,6U A B = ð.故选:A.2.如图,在复平面内,复数1z ,2z 对应的点分别为1Z ,2Z ,则复数12z z ⋅的虚部为()A .i- B.1- C.3i - D.3-【答案】D 【解析】【分析】由复数对应的点求出复数1z ,2z ,计算12z z ⋅,得复数12z z ⋅的虚部.【详解】在复平面内,复数1z ,2z 对应的点分别为1Z ,2Z ,则112z i =+,22z i =-+,得()()1212i 2i 43i z z ⋅=+-+=--,所以复数12z z ⋅的虚部为3-.故选:D3.已知直线1:12yl x +=,直线2:220l x ay -+=,且12l l ∥,则=a ()A.1 B.1- C.4D.4-【答案】B 【解析】【分析】由直线平行的充要条件列方程求解即可.【详解】由题意直线1:12yl x +=,直线2:220l x ay -+=,且12l l ∥,所以()11202a ⨯--⨯=,解得1a =-.故选:B.4.已知抛物线2:8C y x =的焦点为F ,点M 在C 上,4MF =,O 为坐标原点,则MO =()A. B.4C.5D.【答案】D 【解析】【分析】先由抛物线的焦半径公式求出点M 的坐标,再利用两点间的距离公式求出MO .【详解】设()00,Mxy ,2008y x =,又因为024MF x =+=,所以2002,16x y ==,故MO ===故选:D.5.在正四棱锥P ABCD -中,2AB =,二面角P CD A --的大小为π4,则该四棱锥的体积为()A.4B.2C.43D.23【答案】C 【解析】【分析】作出辅助线,得到PQH ∠为二面角P CD A --的平面角,所以π4PQH ∠=,从而求出四棱锥的高,由棱锥体积公式求出答案.【详解】连接,AC BD ,相交于点H ,则H 为正方形ABCD 的中心,故PH ⊥底面ABCD ,取CD 的中点Q ,连接,HQ PQ ,则,HQ CD PQ CD ⊥⊥,112HQ AD ==,故PQH ∠为二面角P CD A --的平面角,所以π4PQH ∠=,故1PH HQ ==,所以该四棱锥的体积为21433AB PH ⨯⋅=.故选:C6.已知圆22:210C x x y ++-=,直线()10mx n y +-=与圆C 交于A ,B 两点.若ABC 为直角三角形,则()A.0mn =B.0-=m nC.0m n +=D.2230m n -=【答案】A 【解析】【分析】由直线与圆相交的弦长公式AB =.【详解】因为圆22:210C x x y ++-=,圆心为()1,0C -,半径为r =CA CB ==因为ABC为直角三角形,所以2AB ==,设圆心()1,0C -到直线()10mx n y +-=的距离为d,d ==由弦长公式AB =1d =1=,化简得0mn =.故选:A.7.若关于x 的方程log 0xa x a -=(0a >且1a ≠)有实数解,则a 的值可以为()A.10B.eC.2D.54【答案】D 【解析】【分析】根据反函数的性质以及导数的几何意义,只需函数()xf x a =与直线y x =相交即可.【详解】对比选项可知我们只需要讨论1a >时,关于x 的方程log 0xa x a -=的解的情况,若关于x 的方程log 0xa x a -=(0a >且1a ≠)有实数解,即()xf x a =与()log a g x x =的图像有交点,因为()xf x a =与()log a g x x =互为反函数,所以()xf x a =与()log a g x x =的图像关于直线对称,如图所示:设函数()xf x a =与直线y x =相切,切点为()00,P x y ,()ln xf x a a '=,则有000ln 1xx a a a x ⎧=⎪⎨=⎪⎩,解得:0ex a =⎧⎪⎨=⎪⎩,由图像可知,当(a ∈时,曲线()x f x a =与直线y x =有交点,即()xf x a =与()log a g x x =的图像有交点,即方程log 0xa x a -=有解.故选:D.8.已知直线1l ,2l 的斜率分别为1k ,2k ,倾斜角分别为1α,2α,则“()12cos 0αα->”是“120k k >”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】由题意首项得12ππ,0,,π22αα⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭,再结合必要不充分条件的定义、斜率与倾斜角的关系,两角差的余弦公式即可得解.【详解】由题意两直线均有斜率,所以12ππ,0,,π22αα⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭,若取122ππ,33αα==,则有()1202ππ1332cos cos αα⎛=⎫-= ⎪⎭->⎝,但122ππtan tan 3033k k ==-<;若12121212sin sin tan tan 0cos cos k k αααααα==>,又12sin sin 0αα>,所以12cos cos 0αα>,而()121212cos cos cos sin sin 0αααααα-=+>,综上所述,“()12cos 0αα->”是“120k k >”的必要而不充分条件.故选:B.9.已知{}n a 是公比为()1q q ≠的等比数列,n S 为其前n 项和.若对任意的*N n ∈,11n a S q<-恒成立,则()A.{}n a 是递增数列B.{}n a 是递减数列C.{}n S 是递增数列D.{}n S 是递减数列【答案】B 【解析】【分析】先根据等比数列前n 项和()111nn a q S q-=-,结合11na Sq<-恒成立,得出,a q 的取值范围,得到{}n a 是递减数列.【详解】{}n a 是公比为()1q q ≠的等比数列,n S 为其前n 项和()111nn a q S q-=-,()1111111n n n a q a a S S q q q-<∴=<--- ,恒成立,101n a q q ⨯>-恒成立,若0q <,则n q 可能为正也可能为负,不成立所以10,01na q q>>-,当{}10,01,n a q a ><<是递减数列,当10,1,a q {}n a 是递减数列,故选:B .10.蜜蜂被誉为“天才的建筑师”.蜂巢结构是一种在一定条件下建筑用材面积最小的结构.如图是一个蜂房的立体模型,底面ABCDEF 是正六边形,棱AG ,BH ,CI ,DJ ,EK ,FL 均垂直于底面ABCDEF ,上顶由三个全等的菱形PGHI ,PIJK ,PKLG 构成.设1BC =,10928GPI IPK KPG θ'∠=∠=∠=≈ ,则上顶的面积为()(参考数据:1cos 3θ=-,tan 2θ=A. B.332C.922D.924【答案】D 【解析】【分析】根据蜂房的结构特征,即可根据锐角三角函数以及三角形面积公式求解.【详解】由于10928GPI IPK KPG θ'∠=∠=∠=≈ ,所以10928GHI θ'∠=≈ ,连接G I ,取其中点为O ,连接OH ,所以2224tan2GO OH θ===,由1BC =,且多边形ABCDEF为正六边形,所以2sin 60AC AB == ,由于GI AC =,所以=44OH =,故一个菱形的面积为163222244GHI S GI OH =⨯⨯⋅= =,因此上顶的面积为344⨯=,故选:D第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.在51x x ⎫-⎪⎭的展开式中,x 的系数为__________.【答案】5-【解析】【分析】由二项式的展开式的通项进行求解即可.【详解】51x x ⎫-⎪⎭的展开式的通项为()53521551C 1C rrrr rrr T x x x --+⎛⎫=-=-⋅ ⎪⎝⎭令5312r-=得1r =,所以125C 5T x x =-⋅=-,x 的系数为5-.故答案为:5-.12.已知双曲线221x my -=30y -=,则该双曲线的离心率为__________.【答案】2【解析】【分析】由双曲线方程可得其渐近线方程,从而得关于m 的方程,再结合离心率公式求解即可.【详解】由题意得0m >,易知双曲线221x my -=,即2211y x m-=的渐近线方程为1,y m =13,m=得13,m =所以该双曲线的离心率11 2.c e a m==+=故答案为:2.13.已知点A ,B ,C 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则AB BC ⋅=__________;点C 到直线AB 的距离为__________.【答案】①.1-②.55755【解析】【分析】建立适当的平面直角坐标系,由向量数量积的坐标运算公式以及点到直线的距离公式即可求解.【详解】以B 为原点建立如图所示的平面直角坐标系,由题意()()()2,1,0,0,1,3A B C -,所以()()2,11,3231AB BC ⋅=-⋅=-=-,而直线AB 的表达式为12y x =-,即20x y +=所以点C 到直线AB 的距离为21235512d +⨯==+.故答案为:1-,55.14.已知无穷等差数列{}n a 的各项均为正数,公差为d ,则能使得1n n a a +为某一个等差数列{}n b 的前n 项和()1,2,n = 的一组1a ,d 的值为1a =__________,d =__________.【答案】①.1②.1(答案不唯一)【解析】【分析】设等差数列{}n b 的前n 项和为n S ,根据题意可得123,,b b b .根据2132,b b b =+结合等差数列的通项公式,可得关于1,a d 的方程,解方程即可.【详解】设等差数列{}n b 的前n 项和为n S ,则1,n n n S a a +=112223334,,.S a a S a a S a a ∴===又{}n a 是公差为d 的等差数列,11122212312233234233,2,2,b S a a b S S a a a a da b S S a a a a da ∴===-=-==-=-=2132,b b b =+ 即()()()21231111222,422,da a a da d a d a a d d a d ⨯=+∴+=+++整理得()110,a a d -=由题知110,.a a d >∴=故满足题意的一组1a ,d 的值为11a =,1d =.(答案不唯一)故答案为:1;1(答案不唯一)15.已知函数()cos f x x a =+.给出下列四个结论:①任意a ∈R ,函数()f x 的最大值与最小值的差为2;②存在a ∈R ,使得对任意x ∈R ,()()π2+-=f x f x a ;③当0a ≠时,对任意非零实数x ,ππ22f x f x ⎛⎫⎛⎫+≠- ⎪ ⎪⎝⎭⎝⎭;④当0a =时,存在()0,πT ∈,0x ∈R ,使得对任意Z n ∈,都有()()00f x f x nT =+.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】取0a =可判断①,取1a =化简后可判断②,先化简,取πx =可判断③,取π2T =可判断④.【详解】对于①,当0a =时()cos f x x =,其最大值为1,最小值为0,()f x 的最大值与最小值的差为1,故①错误;对于②,当1a =时,()cos 11cos =+=+f x x x ,()()π-cos π-11cos 1cos =+=-=-f x x x x ,因此对任意x ∈R ,()()π22+-==f x f x a ,故②正确;对于③,ππcos sin 22⎛⎫⎛⎫+=++=- ⎪ ⎪⎝⎭⎝⎭f x x a a x ,ππcos sin 22⎛⎫⎛⎫-=-+=+ ⎪ ⎪⎝⎭⎝⎭f x x a a x ,当πx =时ππ22⎛⎫⎛⎫+=-= ⎪ ⎪⎝⎭⎝⎭f x f x a ,故③错误;对于④,当0a =时()cos f x x =,取π2T =,0π=4x ,使得对任意Z n ∈,都有()()00f x f x nT =+,故正确.故答案为:②④三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在四棱柱1111ABCD A B C D -中,侧面11ABB A 是正方形,平面11ABB A ⊥平面ABCD ,AB CD ∥,12AD DC AB ==,M 为线段AB 的中点,1AD B M ⊥.(1)求证:1//C M 平面11ADD A ;(2)求直线1AC 与平面11MB C 所成角的正弦值.【答案】(1)证明见解析(2)69【解析】【分析】(1)连接1AD ,由四棱柱性质可得11MAD C 为平行四边形,利用线面平行的判定定理即可证得1//C M 平面11ADD A ;(2)由面面垂直的性质以及线面垂直判定定理可求得1,,AD AB AA 三条棱两两垂直,建立空间直角坐标系利用空间向量即可求得结果.【小问1详解】连接1AD ,如下图所示:在四棱柱1111ABCD A B C D -中,侧面11CDD C 为平行四边形,所以11C D CD ∥,11C D CD =,因为AB CD ∥,12CD AB =,M 为AB 中点,所以CD AM ∥,CD AM =,所以11C D AM ∥,11C D AM =,所以四边形11MAD C 为平行四边形,所以11MC AD ∥,因为1C M ⊄平面11ADD A ,所以1//C M 平面11ADD A ,【小问2详解】在正方形11ABB A 中,1AA AB ⊥,因为平面11ABB A ⊥平面ABCD ,平面11ABB A ⊥⋂平面ABCD AB =;所以1AA ⊥平面ABCD ,而AD ⊂平面ABCD ,即可得1AA AD ⊥,因为1AD B M ⊥,11,AA B M ⊂平面11ABB A ,1B M 与1AA 相交,所以AD ⊥平面11ABB A ,而AB ⊂平面11ABB A ,即AD AB ⊥;如图建立空间直角坐标系A xyz -.不妨设1AD =,则()0,0,0A ,()11,2,1C ,()10,2,2B ,()0,0,1M .所以()11,2,1AC = ,()111,0,1C B =- ,()11,2,0MC =.设平面11MB C 的法向量为(),,n x y z =,则111020n C B x z n MC x y ⎧⋅=-+=⎪⎨⋅=+=⎪⎩ ,令2x =,则1y =-,2z =,于是()2,1,2n =-;因为111cos ,9AC n AC n AC n⋅==⋅,所以直线1AC 与平面11MB C所成角的正弦值为9.17.在ABC 中,2cos 2c A b a =-.(1)求C ∠的大小;(2)若c =ABC 存在,求AC 边上中线的长.条件①:ABC的面积为;条件②:1sin sin 2B A -=;条件③:2222b a -=.注:如果选择的条件不符合要求,得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【答案】17.π318.不能选①,选②或③,答案均为1【解析】【分析】(1)由正弦定理及sin sin cos cos sin B A C A C =+得到1cos 2C =,结合()0,πC ∈,得到π3C =;(2)选①,由三角形面积和余弦定理得到2211a b +=,由222a b ab +≥推出矛盾;选②,根据三角恒等变换得到π6A =,ABC 是以AC 为斜边的直角三角形,由正弦定理得到AC ,求出中线;选③,由余弦定理得到223a b ab +-=,设AC 边上的中线长为d ,再由余弦定理得到AC 边上的中线的长为1.【小问1详解】由正弦定理sin sin sin a b c A B C==及2cos 2c A b a =-,得2sin cos 2sin sin C A B A =-.①因为πA B C ++=,所以()sin sin sin cos cos sin B A C A C A C =+=+.②由①②得2sin cos sin 0A C A -=.因为()0,πA ∈,所以sin 0A ≠.所以1cos 2C =.因为()0,πC ∈,所以π3C =.【小问2详解】选①,ABC 的面积为即1sin 2ab C =,即4ab =8ab =,因为c =222cos 2a b c C ab +-=,即2231162a b +-=,解得2211a b +=,由基本不等式得222a b ab +≥,但1128<⨯,故此时三角形不存在,不能选①,选条件②:1sin sin 2B A -=.由(1)知,π33ππ2B A A ∠=--∠=-∠.所以2π1sin sin sin sin sin sin 322B A A A A A A⎛⎫-=--=+-⎪⎝⎭31cos sin 22A A =-πsin 3A ⎛⎫=- ⎪⎝⎭.所以π1sin 32A ⎛⎫-=⎪⎝⎭.因为2π0,3A ⎛⎫∈ ⎪⎝⎭,所以πππ,333A ⎛⎫-∈- ⎪⎝⎭.所以π3π6A -=,即π6A =.所以ABC 是以AC 为斜边的直角三角形.因为c =所以32πsin sin 3AB AC C ===.所以AC 边上的中线的长为112AC =.选条件③:2222b a -=.由余弦定理得223122a b ab +-=,即223a b ab +-=.设AC 边上的中线长为d ,由余弦定理得2222cos 42b ab d a C =+-⋅2242b ab a =+-2222342b a b a +-=+-1=.所以AC 边上的中线的长为1.18.甲、乙、丙三人进行投篮比赛,共比赛10场,规定每场比赛分数最高者获胜,三人得分(单位:分)情况统计如下:场次12345678910甲8101071288101013乙9138121411791210丙121191111998911(1)从上述10场比赛中随机选择一场,求甲获胜的概率;(2)在上述10场比赛中,从甲得分不低于10分的场次中随机选择两场,设X 表示乙得分大于丙得分的场数,求X 的分布列和数学期望()E X ;(3)假设每场比赛获胜者唯一,且各场相互独立,用上述10场比赛中每人获胜的频率估计其获胜的概率.甲、乙、丙三人接下来又将进行6场投篮比赛,设1Y 为甲获胜的场数,2Y 为乙获胜的场数,3Y 为丙获胜的场数,写出方差()1D Y ,()2D Y ,()3D Y 的大小关系.【答案】(1)310(2)分布列见解析,43(3)()()()213D Y D Y D Y >>【解析】【分析】(1)从表格中可以发现甲获胜的场数为3场,从而得到甲获胜的概率;(2)从表格中可以发现在10场比赛中,甲得分不低于10分的场次有6场,分别是第2场,第3场,第5场,第8场,第9场,第10场。
海淀区高三年级第一学期理科数学期末测试及答案

海淀区高三年级第一学期理科数学期末测试一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.已知=-=αα2cos ,53cos 则 ( )A .257 B .257-C .2524 D .2524- 2.已知抛物线的方程为y 2=4x ,则此抛物线的焦点坐标为( )A .(-1,0)B .(0,-1)C .(1,0)D .(0,1)3.设集合1,,},4,3,2,1{22=+∈=ny m x A n m A 则方程表示焦点位于x 轴上的椭圆有( )A .6个B .8个C .12个D .16个4.已知三条不同直线m 、n 、l ,两个不同平面βα,,有下列命题: ①βαββαα////,//,,⇒⊂⊂n m n m②ααα⊥⇒⊥⊥⊂⊂l n l m l n m ,,, ③αββαβα⊥⇒⊥⊂=⋂⊥n m n n m ,,, ④αα//,//m n n m ⇒⊂ 其中正确的命题是( )A .①③B .②④C .①②④D .③5.某台机器上安装甲乙两个元件,这两个元件的使用寿命互不影响.已知甲元件的使用寿命超过1年的概率为,要使两个元件中至少有一个的使用寿命超过1年的概率至少为,则乙元件的使用寿命超过1年的概率至少为 ( )A .B .C .D .6.已知函数),20,0)(sin(πϕωϕω≤<>+=x y且此函数的图象如图所示,则点P (),ϕω的坐 标是 ( ) A .)2,2(πB .)4,2(πC .)2,4(πD .)4,4(π7.已知向量),sin 3,cos 3(),sin ,cos 2(ββαα==b a 若向量a 与b 的夹角为60°,则直线 21)sin ()cos (021sin cos 22=++-=+-ββααy x y x 与圆的位置关系是 ( )A .相交B .相切C .相离D .相交且过圆心8.动点P 为椭圆)0(12222>>=+b a by a x 上异于椭圆顶点(±a ,0)的一点,F 1、F 2为椭圆的两个焦点,动圆C 与线段F 1、P 、F 1F 2的延长线及线段PF 2相切,则圆心C 的轨迹为除去坐标轴上的点的( )A .一条直线B .双曲线的右支C .抛物线D .椭圆二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.已知双曲线1422=-x y ,则其渐近线方程是 ,离心率e= . 10.在复平面内,复数i z i z 32,121+=+=对应的点分别为A 、B 、O 为坐标原点,OB OA OP λ+=.若点P 在第四象限内,则实数λ的取值范围是 .11.等差数列{a n }的公差为3,若a 1,a 3,a 4成等比数列,则a 2= . 12.已知正四棱锥P —ABCD 中,PA=2,AB=2,M 是侧棱PC 的中点,则异面直线PA 与BM 所成角大小为 .13.动点P 在平面区域|)||(|2:221y x y x C +≤+内,动点Q 在曲线1)4()4(:222=-+-y x C上,则平面区域C 1的面积为 ,|PQ|的最小值为 . 14.已知每条棱长都为3的直平行六面体ABCD —A 1B 1C 1D 1中,∠BAD=60°, 长为2的线段MN 的一个端点M 在 DD 1上运动,另一个端点N 在底面ABCD 上运动.则MN 中点P 的轨迹与直平行 六面体表面所围成的几何体中较小体积值 为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题共13分)在三角形ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若B c a C b cos )2(cos -=. (Ⅰ)求∠B 的大小; (Ⅱ)若,4,7=+=c a b 求三角形ABC 的面积.16.(本小题共13分)已知圆C 的方程为:.422=+y x(Ⅰ)直线l 过点P (1,2),且与圆C 交于A 、B 两点,若,32||=AB 求直线l 的方程; (Ⅱ)过圆C 上一动点M 作平行与x 轴的直线m ,设m 与y 轴的交点为N ,若向量 ON OM OQ +=,求动点Q 的轨迹方程,并说明此轨迹是什么曲线.17.(本小题共13分)如图,在直三棱柱ABC —A 1B 1C 1中,,6,3,1,901===︒=∠AA CA CB ACB M 为侧棱CC 1上一点,AM ⊥BA 1 (Ⅰ)求证:AM ⊥平面A 1BC ; (Ⅱ)求二面角B —AM —C 的大小; (Ⅲ)求点C 到平面ABM 的距离.18.(本小题共14分)设函数)1ln(2)1()(2x x x f +-+=. (Ⅰ)求函数f (x )的单调区间;(Ⅱ)当0<a <2时,求函数]30[1)()(2,在区间---=ax x x f x g 的最小值.19.(本小题共14分)设椭圆)0(12222>>=+b a by a x 的焦点分别为F 1(-1,0)、F 2(1,0),右准线l 交x轴于点A ,且.221AF AF = (Ⅰ)试求椭圆的方程;(Ⅱ)过F 1、F 2分别作互相垂直的两直线与椭圆分别交于D 、E 、M 、N 四点(如图所示),试求四边形DMEN 面积的最大值和最小值.20.(本小题共13分)已知函数f (x )的定义域为[0,1],且满足下列条件: ①对于任意;4)1(,3)(],1,0[=≥∈f x f x ,且总有②若.3)()()(,1,0,021212121-+≥+≤+≥≥x f x f x x f x x x x 则有 (Ⅰ)求f (0)的值; (Ⅱ)求证:4)(≤x f ; (Ⅲ)当33)(,...)3,2,1](31,31(1+<=∈-x x f n x n n时,试证明:.参考答案一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分,有两空的小题,第一空3分,第二空2分,共30分)9.x y 2±=,(缺一扣1分)25 10.3121-<<-λ 11.-9 12.4π 13.π48+,122- 14. 92π三、解答题(本大题共6小题,共80分) 15.(共13分)解:(Ⅰ)由已知及正弦定理可得sin B cos C = 2sin A cos B -cos B sin C …………………………………………………2分 ∴2sin A cos B = sin B cos C +cos B sin C = sin(B +C )又在三角形ABC 中,sin (B +C ) = sin A ≠0 ………………………………………3分 ∴2sinAcosB = sinA ,即在△ABC 中,cosB=21,………………………………5分3π=B ………………………………………………………………………………6分(Ⅱ)B ac c a b cos 27222-+==Θac c a -+=∴227………………………………………………………………8分又ac c a c a 216)(222++==+Θ3=∴ac …………………………………………………………………………10分 B ac S ABC sin 21=∴∆ 43323321=⨯⨯=∴∆ABC S …………………………………………………13分 16.(共13分)解:(Ⅰ)①直线l 垂直于x 轴时,直线方程为x =1,l 与圆的两个交点坐标为(1,3)和(1,-3),其距离为32 满足题意………………………………………1分 ②若直线l 不垂直于x 轴,设其方和为)1(2-=-x k y ,即02=+--k y kx …………………………………………………………2分 设圆心到此直线的距离为d ,则24232d -=,得d =1…………………3分 1|2|12++-=∴k k ,43=k ,………………………………………………………4分 故所求直线方程为0543=+-y x ………………………………………………5分 综上所述,所求直线方程为0543=+-y x 或x =1……………………………6分(Ⅱ)设点M 的坐标为)0)(,(000≠y y x ,Q 点坐标为(x ,y )则N 点坐标是),0(0y …7分,+=Θ2,)2,(),(0000yy x x y x y x ===∴即………………………………………………9分又)0(44,4222020≠=+∴=+y y x y x Θ……………………………………………11分 ∴Q 点的轨迹方程是)0(,116422≠=+y y x …………………………………………12分 轨迹是一个焦点在y 轴上的椭圆,除去短轴端点. …………………………………13分 注:多端点时,合计扣1分. 17.(共13分)证明:(Ⅰ)在直三棱柱111C B A ABC -中,易知面⊥11A ACC 面ABC , ︒=∠90ACB Θ,11A ACC BC 面⊥∴,……………………………………………………………2分 11A ACC AM 面⊆Θ AM BC ⊥∴B BA BC BA AM =⊥11I Θ,且BC A AM 1平面⊥∴……………………………………………………………4分解:(Ⅱ)设AM 与A 1C 的交点为O ,连结BO ,由(Ⅰ)可知AM ⊥OB ,且AM ⊥OC ,所以∠BOC 为二面角 B -AM -C 的平面角,…………………………5分在Rt △ACM 和Rt △A 1AC 中,∠OAC+∠ACO=90°, ∴∠AA 1C=∠MAC ∴Rt △ACM~ Rt △A 1AC ∴AC 2= MC ·AA 1 ∴26=MC ……………………………………7分 ∴在Rt △ACM 中,223=AMCO AM MC AC ⋅=⋅2121Θ1=∴CO∴在Rt △BCO 中,1tan ==COBCBOC . ︒=∠∴45BOC ,故所求二面角的大小 为45°………………………………9分 (Ⅲ)设点C 到平面ABM 的距离为h ,易知2=BO ,可知2322232121=⨯⨯=⋅⋅=∆BO AM S ABM ……………………………10分 ABC M ABM C V V --=Θ………………………………………………………………11分 ABC ABM S MC hS ∆∆⋅=∴313122232326=⨯=⋅=∴∆∆ABMABCS S MC h ∴点C 到平面ABM 的距离为22………………………………………………13分 解法二:(Ⅰ)同解法一…………………………4分 (Ⅱ)如图以C 为原点,CA ,CB ,CC 1所在直线 分别为x 轴,y 轴,z 轴,建立空间直角坐标系, 则)0,1,0(),6,0,3(),0,0,3(1B A A ,设 M (0,0,z 1)1BA AM ⊥Θ.01=⋅∴BA AM 即06031=++-z ,故261=z ,所以)26,0,0(M …………………6分 设向量m =(x ,y ,z )为平面AMB 的法向量,则m ⊥AM ,m ⊥AB ,则⎪⎩⎪⎨⎧=⋅=⋅00m m 即,030263⎪⎩⎪⎨⎧=+-=+-y x z x 令x =1,平面AMB 的一个法向量为 m =)2,3,1(,……………………………………………………………………8分显然向量CB 是平面AMC 的一个法向量22||||,cos =⋅⋅>=<CB m m m 易知,m 与CB 所夹的角等于二面角B -AM -C 的大小,故所求二面角的大小为 45°. ………………………………………………………………………………9分2263== 即点C 到平面ABM 的距离为22………………………………………………13分 18.(共14分)解:(Ⅰ).1)2(212)1(2)('++=+-+=x x x x x x f Θ…………………………2分 由0)('>x f 得012>-<<-x x 或;由0)('<x f ,得.012<<--<x x 或 又)(x f Θ定义域为(-1,+∞)∴所以函数f (x )的单调递增区间为(0,+∞),单调递减区间为(-1,0)…5分 (Ⅱ))1(212)(x n ax x x g +--=,定义域为(-1,+∞)1)2(122)('+--=+--=x ax a x a x g ……………………………………………7分 0202,20>->-∴<<aaa a 且Θ由0)('>x g 得a a x ->2,即)(x g 在⎪⎭⎫⎝⎛+∞-,2a a 上单调递增; 由0)('<x g 得a a x -<<-21,即)(x g 在⎪⎭⎫ ⎝⎛--a a 2,1上单调递减…………8分①时 )(,320x g a a <-<在⎪⎭⎫ ⎝⎛-a a 2,0上单调递减,在⎪⎭⎫⎝⎛-3,2a a 上单调递增; ∴在区间[0,3]上,ana a a g x g --=-=2221)2()(min ; (23)0<<a …10分 ②当)(,32,223x g aaa ≥-<≤时在(0,3)上单调递减, ∴在区间[0,3]上,42136)3()(min n a g x g --==…………………………13分 综上可知,当230<<a 时,在区间[0,3]上,an a a a g x g --=-=2221)2()(min ;当223<≤a 时,在区间[0,3]上42136)3()(min n a g x g --==.…14分 19.(共14分)解:(Ⅰ)由题意,),0,(,22||221a A C F F ∴==…………………………………2分212AF AF =Θ 2F ∴为AF 1的中点……………………………………………3分2,322==∴b a即:椭圆方程为.12322=+y x ……………………………………………………5分 (Ⅱ)当直线DE 与x 轴垂直时,342||2==a b DE , 此时322||==a MN ,四边形DMEN 的面积为42||||=⋅MN DE .同理当MN 与x 轴垂直时,也有四边形DMEN 的面积为42||||=⋅MN DE .…7 分 当直线DE ,MN 均与x 轴不垂直时,设DE ∶)1(+=x k y ,代入椭圆方程,消去 y 得:.0)63(6)32(2222=-+++k x k x k设⎪⎪⎩⎪⎪⎨⎧+-=+-=+,3263,326),,(),,(222122212211k k x x kk x x y x E y x D 则…………………………………8分所以,231344)(||222122121++⋅=-+=-k k x x x x x x ,所以,2221232)1(34||1||k k x x k DE ++=-+=,同理,.32)11(34)1(32)1)1((34||2222kk k k MN ++=-++-=………………………………10分 所以,四边形的面积222232)11(3432)1(34212||||kk kk MN DE S ++⋅++⋅=⋅= 13)1(6)21(242222++++=kk k k ,…………………………………12分 令u u u S kk u 61344613)2(24,122+-=++=+=得 因为,2122≥+=kk u当2596,2,1==±=S u k 时,且S 是以u 为自变量的增函数,所以42596<≤S .综上可知,四边形DMEN 面积的最大值为4,最小值为2596.…………………14分20.(共13分)解:(Ⅰ)令021==x x ,由①对于任意]1,0[∈x ,总有3)0(,3)(≥∴≥f x f ……………………………1分 又由②得 3)0(,3)0(2)0(≤-≥f f f 即;……………………………………2分.3)0(=∴f …………………………………………………………………………3分证明:(Ⅱ)任取2121]1,0[,x x x x <∈且设,则3)()()]([)(1211212--+≥-+=x x f x f x x x f x f , 因为1012≤-<x x ,所以03)(,3)(1212≥--≥-x x f x x f 即,).()(21x f x f ≤∴………………………………………………………………5分 .4)1()(,]1,0[=≤∈∴f x f x 时当……………………………………………7分(Ⅲ)先用数学归纳法证明:)(331)31(*11N n f n n ∈+≤--(1)当n =1时,331314)1()31(0+=+===f f ,不等式成立; (2)假设当n=k 时,)(331)31(*11N k f k k ∈+≤--由6)31()31()31(3)3131()31()]3131(31[)31(1-++≥-++≥++=-k k k k k k k k k k f f f f f f f 得≤)31(3k f 9316)31(11+≤+--k k f 331)31(+≤∴k k f即当n=k+1时,不等式成立.由(1)(2)可知,不等式331)31(+≤∴kk f 对一切正整数都成立. 于是,当)31(331331333,...)3,2,1](31,31(111---≥+=+⨯>+=∈n n n n n f x n x 时,,而x ∈[0,1],f (x )单调递增)31()31(1-<∴n n f f 所以33)31()31(1+<<∴-x f f n n ……………………………………13分。
精选北京市海淀区精选第一学期期末练习高三数学(理)

北京市海淀区第一学期期末练习高三数学(理科)学校: 班级: 姓名:一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)设集合{|12},{|}.A x x B x x a ==≤≤≥若A B ⊆,则a 的范围是 ( )(A )1a < (B )1a ≤ (C )2a <(D )2a ≤(2)函数⎪⎭⎫⎝⎛+=34cos πx y 图象的两条相邻对称轴间的距离为 ( )(A )8π (B ) 4π (C )2π(D )π (3的正三角形ABC 中,设,,,AB BC CA ===c a b 则⋅⋅⋅a b+b c +c a 等于( )(A) 3- (B) 0 (C)1 (D) 3(4)设i 为虚数单位,则()41i +展开式中的第三项为( )(A )4 i (B )4i - (C) 6(D) 6-(5)设m 、n 是不同的直线,α、β、γ是不同的平面,有以下四个命题:① 若//,//,αβαγ 则//βγ ②若αβ⊥,//m α,则m β⊥③ 若,//m m αβ⊥,则αβ⊥ ④若//,m n n α⊂,则//m α其中真命题的序号是( )(A) ①④ (B) ②③ (C) ②④ (D) ①③(6)已知点()0,A b ,B 为椭圆22x a+22y b =1()0a b >>的左准线与x 轴的交点,若线段AB的中点C 在椭圆上,则该椭圆的离心率为( )(A(B )(C )(D(7)已知函数)()1f x x =≥,()1f x -为()f x 的反函数,则函数y x =与(A ) (B ) (C ) (D )(8) 已知函数()y f x =是定义在[,]a b 上的增函数,其中,0.a b b a ∈<<-R,且设函数22()[()][()]F x f x f x =--,且()F x 不恒等于0,则对于()F x 有如下说法:①定义域为[,]b b - ②是奇函数 ③最小值为0 ④在定义域内单调递增 其中正确说法的个数有( )(A )4个 (B )3个 (C )2个 (D )1个二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.(9)双曲线22194x y -=的一个焦点到一条渐近线的距离是 . (10)在ABC ∆中, 2A C B +=,5,BC =且ABC ∆的面积为B = ;AB = .(11)已知函数2|1|(0),()1(0),x x f x x x -+⎧=⎨->⎩≤ 那么不等式()0f x <的解集为 .(12)设不等式组||203022x y x y -⎧⎪-⎨⎪-⎩≤≤≤所表示的平面区域为S ,则S 的面积为 ;若A ,B 为S 内的两个点, 则||AB 的最大值为 .(13)已知,,,P A B C 是以O 为球心的球面上的四个点,,,PA PB PC 两两垂直,且2PA PB PC ===,则球O 的半径为 ;球心O 到平面ABC(14)在100,101,102,…,999这些数中,各位数字按严格递增(如“145”)或严格递减(如“321”)顺序排列的数的个数是 个. 把符合条件的所有数按从小到大的顺序排列,则321是第____个数. (用数字作答)三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. (15)(本小题共12分)已知向量(cos 2sin ,sin ),(cos sin ,2cos ),x x x x x x =+=-a b 设函数()f x =⋅a b . (I) 求函数)(x f 的单调递增区间;(II) 求函数)(x f 的最大值及取得最大值时x 的集合.(16)(本小题共14分)如图,在四棱锥S ABCD -中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA AB =, 点M 是SD 的中点,AN SC ⊥,且交SC 于点N .(I ) 求证: //SB 平面ACM ; (II ) 求二面角D AC M --的大小; (III )求证:平面SAC ⊥平面AMN .(17)(本小题共12分)某城市有30﹪的家庭订阅了A 报,有60﹪的家庭订阅了B 报,有20﹪的家庭同时订阅了A 报和B 报,从该城市中任取4个家庭.(Ⅰ)求这4个家庭中恰好有3个家庭订阅了A 报的概率; (Ⅱ)求这4个家庭中至多有3个家庭订阅了B 报的概率; (Ⅲ)求这4个家庭中恰好有2个家庭A,B 报都没有订阅的概率.(18)(本小题共14分)已知抛物线S 的顶点在坐标原点,焦点在x 轴上,ABC ∆的三个顶点都在抛物线上,且ABC ∆的重心为抛物线的焦点,若BC 所在直线l 的方程为4200.x y +-= (I )求抛物线S 的方程;(II )若O 是坐标原点,P 、Q 是抛物线S 上的两动点,且满足PO OQ ⊥.试说明动直线PQ 是否过一个定点.(19)(本小题共14分)设1x 、2x )(21x x ≠是函数)0()(223>-+=a x a bx ax x f 的两个极值点.SNMDCBA(I )若2,121=-=x x ,求函数)(x f 的解析式; (II )若22||||21=+x x ,求b 的最大值;(III )设函数)()(')(1x x a x f x g --=,12(,)x x x ∈,当a x =2时,求证:21()(32)12g x a a +≤.(20)(本小题共14分)已知定义在R 上的函数()f x 满足:,5(1)2f =,且对于任意实数,x y ,总有 ()()()()f x f y f x y f x y =++-成立.(I )求(0)f 的值,并证明函数()f x 为偶函数; (II )定义数列{}n a :2(1)()(1,2,3,)n a f n f n n =+-=,求证:{}n a 为等比数列;(III )若对于任意非零实数y ,总有()2f y >.设有理数12,x x 满足12||||x x <,判断1()f x 和2()f x 的大小关系,并证明你的结论.北京市海淀区2019-2020学年第一学期期末练习高三数学(理科)参考答案及评分标准一、选择题(本大题共8小题,每小题5分,共40分.)二、填空题(本大题共6小题,每小题5分.有两空的小题,第一空3分,第二空2分,共30分)(9)2 (10)3π,8 (11)(,1)(1,1)-∞-- (12)16(13,3(14) 204 ,53三、解答题(本大题共6小题,共80分.) (15) (共12分) 解: (I)由已知可得xx x x x x x f cos sin 2)sin )(cos sin 2(cos )(+-+=1分x x x x x x x x cos sin 2sin 2cos sin 2cos sin cos 22+-+-=x x x x 22sin 2cos sin 3cos -+=)12(cos 2sin 23)2cos 1(21-+++=x x x 21)42sin(22321)2cos 2(sin 23-+=-+=πx x x 6分由224222πππππ+<+<-k x k 得:883ππππ+<<-k x k 8分即函数)(x f 的单调递增区间为)8,83(ππππ+-k k ()k ∈Z . 9分 (II) 由(I) 有21)42sin(223)(-+=πx x f , ∴2123)(max -=x f . 10分所求x 的集合为{|,}8x x k k ππ=+∈Z . 12分(16) (共14分)方法一:(Ⅰ)证明:连结BD 交AC 于E ,连结ME . 1分 A B C D是正方形,∴ E 是BD 的中点. M 是SD 的中点,∴ME 是DSB ∆的中位线.∴//ME SB.2分又∵ME ⊂平面ACM , SB ⊄平面ACM , 3分∴SB //平面A.4分(Ⅱ)解:取AD 中点F ,则MF //SA .作FQ AC ⊥于Q ,连结MQ . 5分∵SA ⊥底面ABCD ,∴MF ⊥底面ABCD . ∴FQ 为MQ 在平面ABCD 内的射影.∵FQ AC ⊥,∴MQ ⊥AC . ∴FQM∠为二面角D AC M--的平面角.7分设SA AB a ==,在Rt MFQ ∆中,11,2224a MF SA FQ DE a ====,∴tan 4aFQM ==∴ 二面角D A C --的大小为a r t a n .9分(III )证明:由条件有,,DC SA DC DA ⊥⊥∴ DC ⊥平面SAD ,∴.A M D C ⊥ 10分又∵ ,SA AD M =是SD 的中点,∴.AM SD ⊥∴AM ⊥平面.S D11分∴.SC AM ⊥由已知,SC MN ⊥ ∴SC ⊥平面.AMN 又SC ⊂平面,S A C∴平面SAC ⊥平面.A M N14分方法二:解:(II )如图,以A 为坐标原点,建立空间直角坐标系O xyz -, 5分由SA AB =故设1AB AD AS ===,则11(0,0,0),(0,1,0),(1,1,0),(1,0,0),(0,0,1),(,0,)22A B C D S M .SA ⊥底面ABCD ,∴AS 是平面ABCD 的法向量,AS (0,0,1)=. 设平面ACM 的法向量为(,,)x y z =n ,11(1,1,0),(,0,)22AC AM ==,7分则0,0.AC AM ⎧⋅=⎪⎨⋅=⎪⎩n n 即00,1100.22x y x z ++=⎧⎪⎨++=⎪⎩ ∴ ,.y x z x =-⎧⎨=-⎩ 令1x =,则(1,1,1)=--n .8分∴cos ,||||AS AS AS ⋅<>===⋅n n n∴二面角D A--的大小为ac c o s 9分 (III)11,0,22AM ⎛⎫= ⎪⎝⎭,()1,1,1CS =--,10分11022AM CS ∴⋅=-+=AM CS∴⊥12分 又SC AN ⊥且AN AM A =.SC AMN ∴⊥平面. 又SC ⊂平面,SAC∴平面SAC⊥平面AMN.14分(17)(共12分)解:(Ⅰ)设“这4个家庭中恰好有3个家庭订阅了A 报”的事件为A , 1分334()(0.3)(0.7)0.0756P A C ==4分答:这4个家庭中恰好有3个家庭订阅了A 报的概率为0.0756.(Ⅱ)设“这4个家庭中至多有3个家庭订阅了B 报”的事件为B , 5分8704.01296.01)6.0(1)(4=-=-=B P8分答:这4个家庭中至多有3个家庭订阅了B 报的概率为0.8704.(III ) 设“这4个家庭中恰好有2个家庭A ,B 报都没有订阅”的事件为C , 9分因为有30﹪的家庭订阅了A 报,有60﹪的家庭订阅了B 报,有20﹪的家庭同时订阅了A 报和B 报.所以两份报纸都没有订阅的家庭有30﹪. 所以()()2224()0.30.70.2646P C C ==12分答:这4个家庭中恰好有2个家庭A ,B 报都没有订阅的概率为0.2646.注:第三问若写出两份报纸都没有订阅的家庭有30﹪,后面计算有误,给到10分.(18)(共14分)解:(I)设抛物线S 的方程为22.y px =1分由24200,2,x y y px +-=⎧⎨=⎩ 可得2220y p y +-=3分由0∆>,有0p >,或160.p <- 设1122(,),(,),B x y C x y 则12,2py y +=-121212(5)(5)1010.4448y y y y p x x +∴+=-+-=-=+5分设33(,)A x y ,由ABC ∆的重心为(,0),2p F 则123123,0323x x x y y y p ++++==, 331110,.82p px y ∴=-=6分∵点A 在抛物线S上,∴2112(10),28p p p ⎛⎫=- ⎪⎝⎭∴8.p =7分∴抛物线S 的方程为216.y x = 8分(II )当动直线PQ 的斜率存在时,设动直线PQ方程为y k x =+,显然0,k b ≠≠9分∵PO OQ ⊥,∴ 1.OP OQ k k ⋅=- 设(,)(,)P P Q Q P x y Q x y∴1,QP P Qy y x x ⋅=- ∴0.P Q P Q x x y y +=10分将y kx b =+代入抛物线方程,得216160,ky y b -+=∴16.P Q by y k=从而22222,16P Q P Q y y b x x k ⋅==∴22160.b b k k+= ∵0,0k b ≠≠,∴16,b k =-∴动直线方程为16(16)y kx k k x =-=-, 此时动直线PQ 过定点(16,0).12分当PQ 的斜率不存在时,显然PQ x ⊥轴,又P O O Q ⊥,∴P O Q 为等腰直角三角形.由216,,y x y x ⎧=⎨=⎩216,,y x y x ⎧=⎨=-⎩得到(16,16),(16,16)P Q -, 此时直线PQ 亦过点(1.13分综上所述,动直线PQ 过定点(16,0)M .14分(19)(共14分)解(I )∵)0()(223>-+=a x a bx ax x f ,∴)0(23)(22>-+='a a bx ax x f1分 依题意有⎩⎨⎧='=-'0)2(0)1(f f ,∴)0(041202322>⎪⎩⎪⎨⎧=-+=--a a b a a b a .2分解得⎩⎨⎧-==96b a ,∴x x x x f 3696)(23-+=. . 4分(II )∵)0(23)(22>-+='a a bx ax x f ,依题意,12,x x 是方程()0f x '=的两个根,且22||||21=+x x ,∴8||22)(2121221=+-+x x x x x x .∴8|3|2)3(2)32(2=-+-⋅--aa ab ,∴)6(322a a b -=. ∵20b ≥,∴06a <≤.6分设2()3(6)p a a a =-,则2()936p a a a '=-+.由()0p a '>得40<<a ,由()0p a '<得4>a .即:函数()p a 在区间(0,4]上是增函数,在区间[4,6]上是减函数, ∴当4=a 时,()p a 有极大值为96,∴()p a 在]6,0(上的最大值是96, ∴b的最大值为64.9分(III ) 证明:∵21,x x 是方程0)('=x f 的两根,∴))((3)('21x x x x a x f --=.10分∵321a x x -=⋅,a x =2,∴311-=x . ∴|]1)(3)[31(||)31())(31(3||)(|--+=+--+=a x x a x a a x x a x g ∵21x x x <<,即1.3x a -<< ∴)133)(31(|)(|++-+=a x x a x g12分∴|()|g x )313)(31(3+-+-=a x x a a a a a x a 3143)2(3232+++--= 323143a a a++≤12)23(2+=a a .14分∴|()|g x 2(32)12aa +≤成立.(20)(共14分)解:(I) 令1,0x y ==()()()()1011f f f f ∴⋅=+5(1)2f =,()02f ∴=.1分令0x =,∴(0)()()()f f y f y f y =+-即2()()()f y f y f y =+-∴()()f y f y =-,对任意的实数y 总成立。
北京市海淀区高三第一学期期末考试数学(理科)共10页word资料

北京市海淀区高三年级第一学期期末练习数学(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知全集U ,A B ⊆,那么下列结论中可能不成立的是( )(A )AB A = (B )A B B =(C )()U A B ≠∅ð (D )()U B A =∅ð(2)抛物线22y x =的准线方程为( ) (A )18y =-(B )14y =- (C )12y =- (D )1y =- (3)将函数cos 2y x =的图象按向量(,1)4a π=平移后得到函数()f x 的图象,那么( )(A )()sin 21f x x =-+ (B )()sin 21f x x =+ (C )()sin 21f x x =-- (D )()sin 21f x x =- (4)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,如果a c 3=,30B =?,那么角C 等于( )(A )120° (B )105° (C )90° (D )75° (5)位于北纬x 度的A 、B 两地经度相差90︒,且A 、B 两地间的球面距离为3R π(R 为地球半径),那么x 等于( )(A )30 (B ) 45 (C ) 60 (D )75 (6)已知定义域为R 的函数()f x ,对任意的R x Î都有1(1)()22f x f x +=-+恒成立,且1()12f =,则(62)f 等于 ( ) (A )1 (B ) 62 (C ) 64 (D )83(7)已知{},1,2,3,4,5αβÎ,那么使得sin cos 0αβ?的数对(),αβ共有( )(A) 9个 (B) 11个 (C) 12个 (D) 13个(8)如果对于空间任意()2n n ³条直线总存在一个平面α,使得这n 条直线与平面α所成的角均相等,那么这样的n ( )(A )最大值为3 (B )最大值为4 (C )最大值为5 (D )不存在最大值 二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. (9)22462limnnn ++++= .(10)如果()1,10,1x f x x ì£ïï=íï>ïî,, 那么()2f f 轾=臌 ;不等式()1212f x -?的解集是 .(11)已知点1F 、2F 分别是双曲线的两个焦点, P 为该双曲线上一点,若12PF F ∆为等腰直角三角形,则该双曲线的离心率为_____________.(12)若实数x 、y 满足20,,,x y y x y x b -≥⎧⎪≥⎨⎪≥-+⎩且2z x y =+的最小值为3,则实数b 的值为 .(13)已知直线0=++m y x 与圆222x y +=交于不同的两点A 、B ,O 是坐标原点,||||OA OB AB +?,那么实数m 的取值范围是 .(14)已知:对于给定的*q N Î及映射*:,N f AB B.若集合C A Í,且C 中所有元素对应的象之和大于或等于q ,则称C 为集合A 的好子集. ① 对于2q =,{},,A a b c =,映射:1,f x x A ,那么集合A 的所有好子集的个数为 ;② 对于给定的q ,{}1,2,3,4,5,6,A π=,映射:f A B ®的对应关系如下表:x12 3 4 5 6π()f x1 1 1 1 1yz若当且仅当C 中含有π和至少A 中2个整数或者C 中至少含有A 中5个整数时,C 为集合A 的好子集.写出所有满足条件的数组(),,q y z : . 三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. (15)(本小题共12分)已知函数22()sin )cos()cos 44f x x x x x ππ=++---. (Ⅰ)求函数)(x f 的最小正周期和单调递减区间;(Ⅱ)求函数)(x f 在25,1236ππ轾犏-犏臌上的最大值和最小值并指出此时相应的x 的值. (16)(本小题共12分)已知函数)(x g 是2()(0)f x x x =>的反函数,点),(00y x M 、),(00x y N 分别是)(x f 、)(x g 图象上的点,1l 、2l 分别是函数)(x f 、)(x g 的图象在N M ,两点处的切线,且1l ∥2l . (Ⅰ)求M 、N 两点的坐标;(Ⅱ)求经过原点O 及M 、N 的圆的方程. (17)(本小题共14分)已知正三棱柱111C B A ABC -中,点D 是棱AB的中点,11,BC AA ==.(Ⅰ)求证://1BC 平面DC A 1; (Ⅱ)求1C 到平面1A DC 的距离; (Ⅲ)求二面角1D AC A --的大小.(18)(本小题共14分)某种家用电器每台的销售利润与该电器的无故障使用时间T (单位:年)有关. 若1≤T ,则销售利润为0元;若31≤<T ,则销售利润为100元;若3>T ,则销售利润为200元. 设每台该种电器的无故障使用时间1≤T ,31≤<T 及3>T 这三种情况发生的概率分别为321,,p p p ,又知21,p p 是方程015252=+-a x x 的两个根,且32p p =.(Ⅰ)求321,,p p p 的值;(Ⅱ)记ξ表示销售两台这种家用电器的销售利润总和,求ξ的分布列; (Ⅲ)求销售两台这种家用电器的销售利润总和的平均值. (19)(本小题共14分)已知点()0,1A 、()0,1B -,P 是一个动点,且直线PA 、PB 的斜率之积为12-. (Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)设()2,0Q ,过点()1,0-的直线l 交C 于M 、N 两点,QMN ∆的面积记为S ,若对满足条件的任意直线l ,不等式tan S MQN λ≤恒成立,求λ的最小值. (20)(本小题共14分)如果正数数列{}n a 满足:对任意的正数M ,都存在正整数0n ,使得0n a M >,则称数列{}n a 是一个无界正数列.(Ⅰ)若()32s i n ()1,2,3,n a n n =+=, 1, 1,3,5,,1, 2,4,6,,2n n nb n n ⎧=⎪⎪=⎨+⎪=⎪⎩分别判断数列{}n a 、{}n b 是D C 1B 1A 1CBA否为无界正数列,并说明理由;(Ⅱ)若2n a n =+,是否存在正整数k ,使得对于一切n k ≥,有1223112n n a a a n a a a ++++<-成立; (Ⅲ)若数列{}n a 是单调递增的无界正数列,求证:存在正整数m ,使得122312009mm m a a a a a a +-+++<. 海淀区高三年级第一学期期末练习 数学(理科)参考答案及评分标准 2009.01一、选择题(本大题共8小题,每小题5分,共40分)CABAB DDA二、填空题(本大题共6小题,每小题5分.有两空的小题,第一空3分,第二空2分,共30分) (9)1 (10)1,[0,1] (111(12)94(13)(2,[2,2)- (14) 4,(5,1,3) 三、解答题(本大题共6小题,共80分) (15)(本小题共12分)解:(Ⅰ)22()sin )cos()cos 44f x x x x x ππ=++-- 2sin(2)6x π=- ………………………………………………4分所以22T ππ==. ………………………………………………5分 由()3222262Z k x k k πππππ+???得所以函数)(x f 的最小正周期为π,单调递减区间为5[,]36k k ππππ++()k ∈Z .………………………………………………7分 (Ⅱ)由(Ⅰ)有()2sin(2)6f x x π=-.因为25,1236x ππ轾犏?犏臌, 所以112,639x πππ轾犏-?犏臌. 因为411sin()sin sin 339πππ-=<,所以当12x π=-时,函数)(x f取得最小值-3x π=时,函数)(x f 取得最大值2.………………………………………………12分(16)(本小题共12分) 解:(Ⅰ)因为2()(0)f x x x =>,所以()0)g x x =>.从而,2)(x x f ='()g x ¢=. ………………………………………………3分所以切线21,l l 的斜率分别为,2)(001x x f k ='=00221)(y y g k ='=.又2000(0)y x x =>,所以2012k x =. ………………………………………………4分 因为两切线21,l l 平行,所以21k k =. ………………………………………………5分从而20(2)1x =.因为00x >, 所以012x =. 所以N M ,两点的坐标分别为)21,41(),41,21(. ………………………………………7分 (Ⅱ)设过O 、M 、N 三点的圆的方程为:220x y Dx Ey F ++++=.因为圆过原点,所以0F =.因为M 、N 关于直线y x =对称,所以圆心在直线y x =上. 所以D E =.又因为11(,)24M 在圆上, 所以512D E ==-. 所以过O 、M 、N 三点的圆的方程为:225501212x y x y +--=. ………………12分 (17)(本小题共14分)(Ⅰ)证明:连结1AC 交1A C 于点G ,连结DG .在正三棱柱111C B A ABC -中,四边形11ACC A 是平行四边形, ∴DG ∥1BC . ………………………………………2分∵DG ⊂平面1A DC ,1BC ⊄平面1A DC ,∴1BC ∥平面1A DC .………………………………………4分解法一:(Ⅱ)连结1DC ,设1C 到平面1A DC 的距离为h .∵四边形11ACC A 是平行四边形,∴1118C A CD V -=. ………………………………………6分在等边三角形ABC 中,D 为AB 的中点, ∵AD 是1A D 在平面ABC 内的射影,∴1CD A D ^. ………………………………………8分∴111313C A DC A DCV h S -∆==. ………………………………………9分 (Ⅲ)过点D 作DE AC ⊥交AC 于E ,过点D 作1DF A C ⊥交1A C 于F ,连结EF .∵平面ABC ⊥平面11ACC A ,DE ⊂平面ABC ,平面ABC平面11ACC A AC =,∴DE ⊥平面11ACC A .∴EF 是DF 在平面11ACC A 内的射影.∴DFE Ð是二面角1D AC A --的平面角. ………………………………………12分 在直角三角形ADC中,AD DC DE AC ×==同理可求:118A D DC DF AC ×==.∴DFE ?………………………………………14分解法二:过点A 作AO BC ⊥交BC 于O ,过点O 作F ED C 1B 1A 1CBAOE BC ⊥交11B C 于E .因为平面ABC ⊥平面11CBB C ,所以AO ⊥平面11CBB C .分别以,,CB OE OA 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.因为11,BC AA ==,ABC ∆是等边三角形,所以O 为BC 的中点.则()0,0,0O ,A ⎛ ⎝⎭,1,0,02C ⎛⎫- ⎪⎝⎭,1A ⎛ ⎝⎭,1(4D ,112C ⎛⎫- ⎪⎝⎭. ………………………………………6分 (Ⅱ)设平面1A DC 的法向量为(),,n x y z =,则取x =1A DC 的一个法向量为()3,1,3n =-. ………………………………………8分∴1C 到平面1A DC 的距离为:13913CC n n⋅=………………………………………10分 (Ⅲ)解:同(Ⅱ)可求平面1ACA 的一个法向量为()13,0,1n =-. …………………………12分设二面角1D AC A --的大小为θ,则1cos cos ,n n θ=<>=∴θ=. ………………………………………14分 (18)(本小题共14分)解:(Ⅰ)由已知得1321=++p p p .21,p p 是方程015252=+-a x x 的两个根, ∴511=p ,5232==p p . ………………………………………3分 (Ⅱ)ξ的可能取值为0,100,200,300,400. ………………………………………4分()400=ξP =2545252=⨯. ………………………………………9分随机变量ξ的分布列为:ξ 0 100 200 300 400P251 254 258 258 254………………………………………11分 (Ⅲ)销售利润总和的平均值为E ξ=2544002583002582002541002510⨯+⨯+⨯+⨯+⨯=240. ∴销售两台这种家用电器的利润总和的平均值为240元.………………………………………14分注:只求出E ξ,没有说明平均值为240元,扣1分. (19)(本小题共14分)解:(Ⅰ)设动点P 的坐标为(),x y ,则直线,PA PB 的斜率分别是11,y y x x-+. 由条件得1112y y x x-+?-. 即()22102x y x +=?. 所以动点P 的轨迹C 的方程为()22102x y x +=?. ………………………………………5分 注:无0x ¹扣1分. (Ⅱ)设点,M N 的坐标分别是()()1122,,,x y x y .当直线l 垂直于x 轴时,21212111,,2x x y y y ==-=-=. 所以()()()1122112,,2,2,QM x y QN x y x y =-=-=--. 所以()22111722QM QNx y ?--=. ………………………………………7分 当直线l 不垂直于x 轴时,设直线l 的方程为()1y k x =+,由221,2(1)x y y k x ìïï+=ïíïï=+ïî得()2222124220k x k x k +++-=. 所以 2122, 21422212221k k x x k k x x +-=+-=+. ………………………………………9分 所以()()()12121212122224QM QNx x y y x x x x y y ?--+=-+++.因为()()11221,1y k x y k x =+=+, 所以()()()()2221212217131712422212QM QNk x x k x x k k ?++-+++=-<+.综上所述⋅的最大值是217. ………………………………………11分 因为tan S MQN λ≤恒成立,即1sin ||||sin 2cos MQN QM QN MQN MQNλ⋅≤恒成立. 由于()2171302212QM QNk ?->+. 所以cos 0MQN >.所以2QM QN λ⋅≤恒成立. ………………………………………13分 所以λ的最小值为174. ………………………………………14分 注:没有判断MQN Ð为锐角,扣1分. (20)(本小题共14分)解:(Ⅰ){}n a 不是无界正数列.理由如下:取M = 5,显然32sin()5n a n =+≤,不存在正整数0n 满足05n a >;{}n b 是无界正数列.理由如下:对任意的正数M ,取0n 为大于2M 的一个偶数,有0012122n n M b M ++=>>,所以{}n b 是无界正数列. ………………………………………4分(Ⅱ)存在满足题意的正整数k .理由如下: 当3n ³时, 因为12231n n a a a n a a a +⎛⎫-+++⎪⎝⎭32121231n nn a a a a a a a a a ++---=+++即取3k =,对于一切n k ≥,有1223112n n a a a n a a a ++++<-成立. ……………………9分 注:k 为大于或等于3的整数即可.(Ⅲ)证明:因为数列{}n a 是单调递增的正数列,所以12231n n a a a n a a a +⎛⎫-+++ ⎪⎝⎭32121231n nn a a a a a a a a a ++---=+++即12123111n n n a a a a n a a a a +++++<-+. 因为{}n a 是无界正数列,取12M a =,由定义知存在正整数1n ,使1112n a a +>. 所以1112123112n n a a a n a a a ++++<-.由定义可知{}n a 是无穷数列,考察数列11n a +,12n a +,13n a +,…,显然这仍是一个单调递增的无界正数列,同上理由可知存在正整数2n ,使得()112112122123112n n n n n n a a a n n a a a ++++++++<--.重复上述操作,直到确定相应的正整数4018n .则401840181212140184017231111222n n a a a n n n n n a a a +⎛⎫⎛⎫⎛⎫+++<-+--++-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即存在正整数4018m n =,使得122312009mm m a a a a a a +-+++<成立. ………………………………………14分。
北京市海淀区2020届高三上学期期末考试数学理试题Word版含答案

北京市海淀区2020届高三上学期期末考试数学理试题本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项.1.双曲线22122x y -=的左焦点坐标为A .(2,0)-B .(C .(1,0)-D . (4,0)-2.已知向量,a b 满足=((t =),,1)a 2,0b , 且a ⋅=a b ,则,a b 的夹角大小为 A .6π B .4π C .3π D .512π3.已知等差数列{}n a 满足1=2a ,公差0d ≠,且125,,a a a 成等比数列,则=d A .1B .2C .3D .44.直线+1y kx =被圆222x y +=截得的弦长为2,则k 的值为A . 0B .12±C .1±D .2±5.以正六边形的6个顶点中的三个作为顶点的三角形中,等腰三角形的个数为A .6B .7C .8D .126.已知函数()=ln af x x x+,则“0a <”是“函数()f x 在区间(1,)+∞上存在零点”的 A 充分而不必要条件 B 必要而不充分条件 C 充分必要条件 D 既不充分也不必要条件7.已知函数()sin cos f x x x =-,()g x 是()f x 的导函数,则下列结论中错误的是 A.函数()f x 的值域与()g x 的值域相同B.若0x 是函数()f x 的极值点,则0x 是函数()g x 的零点C.把函数()f x 的图像向右平移2π个单位,就可以得到函数()g x 的图像 D.函数()f x 和()g x 在区间(,4π-)4π上都是增函数8.已知集合{}(,)150,150,,A s t s t s N t N =≤≤≤≤∈∈.若B A ⊆,且对任意的(,)a b B ∈,(,)x y B ∈,均有()()0a x b y --≤,则集合B 中元素个数的最大值为 A .25B .49C .75D .99二、填空题共6小题,每小题5分,共30分.9.以抛物线24y x =的焦点F 为圆心,且与其准线相切的圆的方程为 .10.执行如下图所示的程序框图,当输入的M 值为15,n 值为4 时,输出的S 值为.11.某三棱锥的三视图如上图所示,则这个三棱锥中最长的棱与最短的棱的长度分别为 , .12.设关于,x y 的不等式组,4,2,y x x y kx ≤⎧⎪≤⎨⎪≥-⎩表示的平面区域为Ω,若点A (1,-2),B (3,0),C (2,-3)中有且仅有两个点在Ω内,则k 的最大值为 . 13.ABC中,b ,且cos2cos A B =,则cos A = .14.正方体1111ABCD A B C D -的棱长为1,动点M 在线段CC 1上,动点P 在平面1111A B C D 上,且AP ⊥平面1MBD .(Ⅰ)当点M 与点C 重合时,线段AP 的长度为 ; (Ⅱ)线段AP 长度的最小值为 .三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 15.(本小题满分13分)已知函数()s()cos22f x aco x x π=-- 其中0>a(Ⅰ)比较()6f π和()2f π的大小;(Ⅱ)求函数()f x 在区间[,]22ππ-的最小值.16.(本小题满分13分)为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记X 表示学生的考核成绩,并规定85X ≥为考核优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:(Ⅰ)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率; (Ⅱ)从图中考核成绩满足[70,79]X ∈的学生中任取3人,设Y 表示这3人重成绩满足8510X -≤的人数,求Y 的分布列和数学期望; (Ⅲ)根据以往培训数据,规定当85(1)0.510X P -≤≥时培训有效.请根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由.17.(本小题满分14分)在四棱锥P ABCD -中,平面ABCD ⊥平面PCD ,底面ABCD 为梯形,//AB CD ,AD PC ⊥ 且01,2,120AB AD DC DP PDC ====∠= (Ⅰ)求证:AD PDC ⊥平面;(Ⅱ)求二面角B-PD-C 的余弦值;(Ⅲ)若M 是棱PA 的中点,求证:对于棱BC 上任意一点F ,MF 与PC 都不平行.18.(本小题满分14分)椭圆2212x y +=的左焦点为F ,过点(2,0)M -的直线l 与椭圆交于不同两点A,B(Ⅰ)求椭圆G 的离心率;(Ⅱ)若点B 关于x 轴的对称点为B ’,求'AB 的取值范围.19. (本小题满分14分)已知函数xe x ax xf 2)(-=.(Ⅰ)当1a =-时,求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)当0a >时,求证:2()f x e>-对任意(0,)x ∈+∞成立.20.(本小题满分13分)设n 为不小于3的正整数,集合{}{}12(,,...)0,1,1,2,...,n n i x x x x i n Ω=∈=,对于集合n Ω中的任意元素12(,,...,)n x x x α=,12(,,...,)n y y y β=记11112222()()...()n n n n x y x y x y x y x y x y αβ*=+-++-+++- (Ⅰ)当3n =时,若(1,1,0)α=,请写出满足3αβ*=的所有元素β (Ⅱ)设n αβ∈Ω,且+n ααββ**=,求αβ*的最大值和最小值;(Ⅲ)设S 是n Ω的子集,且满足:对于S 中的任意两个不同元素αβ,,有1n αβ*≥-成立,求集合S 中元素个数的最大值.北京市海淀区2020届高三上学期期末考试数学理试题参考答案一、选择题:本大题共8小题,每小题5分,共40分.1. A2. B3. D4. A5. C6. C7.C8. D二、填空题:本大题共6小题,每小题5分,共30分.9. 22(1)4x y -+= 10. 24 11. 2 12. 0三、解答题: 本大题共6小题,共80分.15.解:(Ⅰ)因为π1(),622a f =-π()12f a =+所以ππ13()()(1)()262222a a f f a -=+--=+因为0a >,所以3022a +>,所以ππ()()26f f >(Ⅱ)因为()sin cos2f x a x x =-2sin (12sin )a x x =--22sin sin 1x a x =+-设sin ,t x = ππ[,]22x ∈-,所以[1,1]t ∈-所以221y t at =+- 其对称轴为4at =- 当14at =-<-,即 4a >时,在1t =-时函数取得最小值1a - 当14a t =-≥-,即04a <≤时,在4at =-时函数取得最小值218a --16.解:(Ⅰ)设该名学生考核成绩优秀为事件A 由茎叶图中的数据可以知道,30名同学中,有7名同学考核优秀所以所求概率()P A 约为730(Ⅱ)Y 的所有可能取值为0,1,2,3因为成绩[70,80]X ∈的学生共有8人,其中满足|75|10X -≤的学生有5人所以33381(0)56C P Y C ===, 21353815(1)56C C P Y C === 12353830(2)56C C P Y C ===, 353810(3)56C P Y C === 随机变量Y 的分布列为115301015()0123565656568E Y =⨯+⨯+⨯+⨯= (Ⅲ)根据表格中的数据,满足85110X -≤的成绩有16个 所以8516810.5103015X P ⎛-⎫≤==>⎪⎝⎭所以可以认为此次冰雪培训活动有效.17.解:(Ⅰ)在平面PCD 中过点D 作DH DC ⊥,交PC 于H 因为平面ABCD ⊥平面PCD DH ⊂平面PCD平面ABCD I 平面PCD CD = 所以DH ⊥平面ABCD 因为AD ⊂平面ABCD所以 DH AD ⊥ 又AD PC ⊥,且PC DH H =I 所以AD ⊥平面PCD (Ⅱ)因为AD ⊥平面PCD ,所以AD CD ⊥ 又DH CD ⊥,DH AD ⊥以D 为原点,DA DC DH ,,所在直线分别为,,x y z 轴,建立空间直角坐标系所以(,,),(,,),(,(,,),(,,)D A P C B -00020001020210,因为AD ⊥平面PCD ,所以取平面PCD 的法向量为(,,)DA =200uu u r设平面PBD 的法向量为(,,)n x y z =r因为(,(,,)DP DB =-=01210uu u r uu u r ,所以n DP n DB ⎧⋅=⎪⎨⋅=⎪⎩00r uu u rr uu u r所以y x y ⎧-+=⎪⎨+=⎪⎩020令2z =,则y x =-=,所以()n =2r所以cos ,||||AD n AD n AD n ⋅<>===uuu r ruuu r r uuu u r r 由题知B PD C --为锐角,所以B PD C --的余弦值为19(Ⅲ) 法一:假设棱BC 上存在点F ,使得MF PC ,显然F 与点C 不同所以,,,P M F C 四点共面于α所以FC ⊂α,PM ⊂α 所以B FC ∈⊂α,A PM ∈⊂α所以α就是点,,A B C 确定的平面,所以P ∈α这与P ABCD -为四棱锥矛盾,所以假设错误,即问题得证 法二:假设棱BC 上存在点F ,使得MF PC连接AC ,取其中点N在PAC ∆中,因为,M N 分别为,PA CA 的中点,所以MNPC因为过直线外一点只有一条直线和已知直线平行,所以MF 与MN 重合 所以点F 在线段AC 上,所以F 是AC ,BC 的交点C ,即MF 就是MC 而MC 与PC 相交,矛盾,所以假设错误,问题得证 法三:假设棱BC 上存在点F ,使得MFPC ,设BF BC λ=,所以3(1,,(2,1,0)22MF MB BF λ=+=+-因为MFPC,所以(0,3,MF PC μμ==所以有120332λλμ⎧⎪-=⎪⎪+=⎨⎪⎪=⎪⎩,这个方程组无解所以假设错误,即问题得证 18.解:(Ⅰ)因为,a b ==2221,所以,a b c ===11所以离心率c e a ==2(Ⅱ)法一: 设1122(,),(,)A x y B x y显然直线l 存在斜率,设直线l 的方程为(2)y k x =+所以()x y y k x ⎧+=⎪⎨⎪=+⎩22122,所以()k x k x k +++-=222221882028160k ∆=->,所以k <212所以k x x k k x x k ⎧-+=⎪⎪+⎨-⎪=⎪+⎩212221228218221 因为22'(,)B x y -所以|'|AB = 因为22212121222816()()4(21)k x x x x x x k --=+-=+12121224(2)(2)()421ky y k x k x k x x k +=+++=++=+所以|'|AB==因为k ≤<2102,所以|'|AB ∈法二:设1122(,),(,)A x y B x y当直线l 是x轴时,|'|AB =当直线l 不是x 轴时,设直线l 的方程为2x t y =-所以x y x t y ⎧+=⎪⎨⎪=-⎩22122,所以()t y t y ++=-222420,28160t ∆=-> ,所以t >22 所以t y y t y y t ⎧+=⎪⎪+⎨⎪=⎪+⎩1221224222因为22'(,)B x y -所以|'|AB =因为 2222222212121212122216()()()[()4](1)(2)t x x ty ty t y y t y y y y t t -=-=-=+-=++所以|'|AB=22)2t ==-+因为t >22,所以|'|AB ∈ 综上,|'|AB的取值范围是.19.解:(Ⅰ)因为()xax x f x -=e 2所以()'()xx a x af x -++=e22 当a =-1时,'()x x x f x --=e 21所以'()f -=e11,而()f -=e 21曲线()y f x =在(1,(1))f 处的切线方程为21()(1)e ey x --=-- 化简得到11e ey x =-- (Ⅱ)法一:因为()'()xx a x af x -++=e 22,令()'()x x a x a f x -++==e 220得x x ==12当a >0时,x ,'()f x ,()f x 在区间(0,)+∞ 的变化情况如下表:所以()f x 在[,)+∞0上的最小值为(),()f f x 20中较小的值,而2(0)0ef =>-,所以只需要证明()f x >-e22 因为()x a x a -++=22220,所以()x x a f x ax x x -=-=e e 22222222 设()x a x F x -=e 2,其中x >0,所以()()'()x xa x x a F x ----+==e e 2222 令'()F x =0,得a x +=322,当a >0时,x ,'()F x ,()F x 在区间(0,)+∞ 的变化情况如下表:所以()F x 在(,)+∞0上的最小值为()a a F ++-=e 12222,而()a a F ++--=>e e 122222 注意到x =>20, 所以(())fx x F =>-e222,问题得证 法二:因为“对任意的x >0,22e e x ax x ->-”等价于“对任意的x >0,220e ex ax x -+>” 即“x >0,2+12e e()0ex x ax x +->”,故只需证“x >0,22e e()0x ax x +->” 设2()2e e()x g x ax x =+- ,所以'()2e e(2)x g x a x =+- 设()'()h x g x =,'()2e 2e x h x =- 令'()F x =0,得x =31当a >0时,x ,'()h x ,()h x 在区间(0,)+∞ 的变化情况如下表:所以()h x (,)+∞0上的最小值为()h 1,而(1)2e e(2)e 0h a a =+-=> 所以x >0时,'()2e e(2)0x g x a x =+->,所以()g x 在(,)+∞0上单调递增 所以()(0)g x g >而(0)20g =>,所以()0g x >,问题得证 法三:“对任意的x >0,2()e f x >-”等价于“()f x 在(,)+∞0上的最小值大于2e-”因为()'()xx a x af x -++=e22,令'()f x =0得x x ==12当a >0时,x ,'()f x ,()f x 在在(,)∞+0上的变化情况如下表:所以()f x 在[,)+∞0上的最小值为 (),()f f x 20中较小的值,而2(0)0ef =>-,所以只需要证明()f x >-e22因为()x a x a -++=22220,所以()x x x ax x x x x a f =---=>e e e 22222222222 注意到x =2和a >0,所以x =>22 设()xxF x -=e 2,其中x >2 所以()()'()x xx x F x --=-=e e2121 当x >2时,'()F x >0,所以()F x 单调递增,所以()()F x F >=-e242而()--=-->e e e e 2242240 所以()()f x F x >->e222,问题得证法四:因为a >0,所以当x >0时,()x x ax x x f x --=>e e22设()x x F x -=e2,其中x >0所以()'()xx x F x -=e2 所以x ,'()F x ,()F x 的变化情况如下表:所以()F x 在x =2时取得最小值()F =-e 224,而()--=-->e e e e2242240 所以x >0时,2()eF x >-所以()()f x F x >>-e220. 解:(Ⅰ) 满足3αβ*=的元素为(0,0,1),(1,0,1),(0,1,1),(1,1,1) (Ⅱ)记12(,,,)n x x x α=,12(,,,)n y y y β=,注意到{0,1}i x ∈,所以(1)0i i x x -=, 所以11112222()()()n n n n x x x y x x x x x x x x αα*=+-++-+++-12n x x x =+++ 12n y y y ββ*=+++因为n ααββ*+*=,所以1212n n x x x y y y n +++++++=所以1212,,,,,,,n n x x x y y y 中有n 个量的值为1,n 个量的值为0.显然111122220()()()n n n n x y x y x y x y x y x y αβ≤*=+-++-+++-1122n n x y x y x y n ≤++++++=,当(1,1,,1)α=,(0,0,,0)β=时,αβ,满足n ααββ*+*=,n αβ*=.所以αβ*的最大值为n又11112222()()()n n n n x y x y x y x y x y x y αβ*=+-++-+++-1122()n n n x y x y x y =-+++注意到只有1i i x y ==时,1i i x y =,否则0i i x y = 而1212,,,,,,,n n x x x y y y 中n 个量的值为1,n 个量的值为0所以满足1i i x y =这样的元素i 至多有2n个, 当n 为偶数时,22n n n αβ*≥-=. 当22(1,1,,1,0,0,,0)n n αβ==个个时,满足n ααββ*+*=,且2n αβ*=. 所以αβ*的最小值为2n当n 为奇数时,且1i i x y =,这样的元素i 至多有12n -个,所以 1122n n n αβ-+*≥-=. 当1122(1,1,,1,0,0,,0)n n α+-=个个,1122(1,1,,1,0,0,,0)n n β-+=个个时,满足n ααββ*+*=,12n αβ-*=. 所以αβ*的最小值为12n - 综上:αβ*的最大值为n ,当n 为偶数时,αβ*的最小值为2n ,当n 为奇数时,12n αβ-*=.(Ⅲ)S 中的元素个数最大值为222n n ++设集合S 是满足条件的集合中元素个数最多的一个 记1S ={}1212(,,,)|1,n n x x x x x x n S αα=+++≥-∈, {}21212(,,,)|2,n n S x x x x x x n S αα==+++≤-∈显然1212S S S S S ==∅,集合1S 中元素个数不超过1n +个,下面我们证明集合2S 中元素个数不超过2n C 个212,(,,,)n S x x x αα∀∈=,则122n x x x n +++≤-则12n x x x ,,,中至少存在两个元素 0i j x x ==212,(,,,)n S y y y ββ∀∈=,βα≠因为 1n αβ*≥-,所以 ,i j y y 不能同时为0 所以对1i j n ≤<≤中的一组数,i j 而言, 在集合2S 中至多有一个元素12(,,,)n x x x α=满足i j x x ,同时为0所以集合2S 中元素个数不超过2n C 个所以集合S 中的元素个数为至多为2211nn C n n ++=++ 记1T ={}1212(,,,)|1,n n n x x x x x x n αα=+++≥-∈Ω,则1T 中共1n +个元素,对于任意的1T α∈,n β∈Ω,1n αβ*≥-. 对1i j n ≤<≤,记,12(,,,),i j n x x x β= 其中0i j x x ==,1t x =,,t i t j ≠≠记2,{|1}i j T i j n β=≤<≤,显然2,S αβ∀∈,αβ≠,均有1n αβ*≥-. 记12S T T =,S 中的元素个数为21n n ++,且满足,S αβ∀∈,αβ≠,均有1n αβ*≥-.综上所述,S 中的元素个数最大值为21n n ++.。
北京市海淀区高三数学上学期期末考试试题 理

海淀区高三年级第一学期期末练习数学(理科)2016.1本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知(1i)i 1i(b b +=-+∈R),则b 的值为A.1B.1-C. iD.i - 2. 抛物线24xy =的准线与y 轴的交点的坐标为A. 1(0,)2- B.(0,1)- C.(0,2)-D.(0,4)-3. 如图,正方形ABCD 中,E为DC 的中点,若AD AC AE λμ=+u u u r u u u r u u u r,则λμ-的值为A. 3B.2C. 1D.3- 4. 某程序框图如图所示,执行该程序,若输入的a 值为1,则输 出的a 值为A.1B.2C.3D.5 5. 已知数列12345:,,,,A a a a a a ,其中{1,0,1},1,2,3,4,5i a i ∈-=, 则满足123453a a a a a ++++=的不同数列A 一共有A. 15个B.25个C.30个D.35个6. 已知圆22(2)4C x y -+=:, 直线1:3l y x =,2:1l y kx =- 若12,l l 被圆C 所截得的弦的长度之比为1:2,则k 的值为 3 B.1 C. 123EA BCD输出输入开始结束是否7. 若,x y 满足+20,40,0,x y x y y -≥⎧⎪+-≤⎨⎪≥⎩则2||z y x =-的最大值为A.8-B.4-C.1D.28. 已知正方体''''ABCD A B C D -,记过点A 与三条直线,,'AB AD AA 所成角都相等的直线条数为m , 过点A 与三个平面..',,'AB AC AD 所成角都相等的直线的条数为n ,则下面结论正确的是A. 1,1m n ==B. 4,1m n ==C. 3,4m n ==D. 4,4m n == 二、填空题共6小题,每小题5分,共30分。
最新题库年北京市海淀区高三(上)期末数学试卷和参考答案(理科)
第 11 页(共 19 页)
又∵ ω>0,| ∴ ω的最小值是 . 故答案为: , .
14.( 5 分)已知函数 f( x)=e﹣| x|+cosπ,x给出下列命题:
① f(x)的最大值为 2;
② f(x)在(﹣ 10, 10)内的零点之和为 0;
③ f(x)的任何一个极大值都大于 1.
其中,所有正确命题的序号是 ①②③ .
第一周
第二周
第三周
第四周
第一个周期
95%
98%
92%
88%
第二个周期
94%
94%
83%
80%
第三个周期
85%
92%
95%
96%
( 1)计算表中十二周 “水站诚信度 ”的平均数 ;
( 2)分别从表中每个周期的 4 个数据中随机抽取 1 个数据,设随机变量 X 表示
取出的 3 个数据中 “水站诚信度 ”超过 91%的数据的个数, 求随机变量 X 的分布列
.
【解答】 解:①∵由已知可得 2sin φ=,1 可得: sin φ=, ∴可得: φ=2kπ+ ,或 φ=2kπ+ ,k∈Z, ∵ | φ| < ,
∴当 k=0 时, φ= . ②∵ ? x∈R,使 2sin[ ω( x+2)+φ] ﹣2sin( ωx+φ)=4 成立,即: sin( ωx+2ω+φ) ﹣ sin(ωx+φ) =2, ∴ ? x∈ R,使 ωx+2ω+φ=2k1π+ ,ωx+φ =22kπ+ ,k∈ Z, ∴解得: ω=k1π﹣k2π﹣ ,k1, k2∈Z,
11.( 5 分)若一个几何体由正方体挖去一部分得到,其三视图如图所示,则该
北京市海淀实验中学2022-2023学年高三上学期期末考试数学试卷(word版,含答案)
3.下列函数在定义域中既是奇函数又是减函数的是()
A. B.
C. D.
4.某公司为了解用户对其产品 满意度,从甲、乙两地区分别随机调查了100个用户,根据用户对产品的满意度评分,分别得到甲地区和乙地区用户满意度评分的频率分布直方图.
若甲地区和乙地区用户满意度评分的中位数分别为 方差分别为 ,则下面正确的是()
8.过点 的直线 与圆 相交于A, 两点,则 的最小值是()
A B. C. D.4
9.已知函数 , 为 图象的对称中心, 、 是该图象上相邻的最高点和最低点,且 ,则下列结论正确的是()
A.函数 的对称轴方程为
B.若函数 在区间 内有 个零点,则在此区间内 有且只有 个极小值点
C.函数 在区间 上单调递增
【解析】
【分析】
化简集合B,根据并集运算即可.
【详解】 或 ,
,
故选:D
【点睛】本题主要考查了集合并集的运算,属于容易题.
2.【答案】D
【解析】
【分析】由题意可得: ,据此确定复数所在的象限即可.
【详解】由题意可得: ,
则复数z对应的点为 ,位于第四象限.
本题选择D选项.
【点睛】本题主要考查复数的运算法则,各个象限内复数的特征等知识,意在考查学生的转化能力和计算求解能力.
15.如图,已知在四棱锥 中,底面 是菱形,且 底面 , 分别是棱 的中点,对于平面 截四棱锥 所得的截面多边形,有以下几个结论:
①截面的面积等于 ;
②截面是一个五边形且只与四棱锥 四条侧棱中的三条相交;
③截面与底面所成锐二面角为 ;
④截面在底面的投影面积为 .
其中,正确结论的序号是___________.
北京市海淀区高三数学上学期期末考试试题 理(扫描版)新人教A版
北京市海淀区2014届高三数学上学期期末考试试题理(扫描版)新人教A版海淀区高三年级第一学期期末练习数 学 (理)参考答案及评分标准2014.1阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
2.其它正确解法可以参照评分标准按相应步骤给分。
一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分,有两空的小题,第一空3分,第二空2分, 共30分)三、解答题(本大题共6小题,共80分) 15.(本小题共13分)解:(Ⅰ)由sin cos 0x x +≠得ππ,4x k k≠-∈Z . 因为cos2()2sin sin cos xf x x x x =++22cos sin 2sin sin cos x x x x x-=++-----------------------------------2分cos sin x x =+π)4x+,-------------------------------------4分因为在ABC ∆中,3cos 05A =-<,所以ππ2A <<,-------------------------------------5分 所以4sin 5A ==,------------------------------------7分所以431()sin cos 555f A A A =+=-=.-----------------------------------8分9. 2 10.4511. (0,1);412. 13 14.43;①②③(Ⅱ)由(Ⅰ)可得π())4f x x +,所以()f x 的最小正周期2πT =. -----------------------------------10分 因为函数sin y x =的对称轴为ππ+,2x k k =∈Z,-----------------------------------11分又由πππ+,42x k k +=∈Z ,得ππ+,4x k k =∈Z , 所以()f x 的对称轴的方程为ππ+,4x k k =∈Z .----------------------------------13分16.(本小题共13分)解:(Ⅰ)由上图可得0.010.190.290.451a ++++=,所以0.06a =.--------------------------------3分(Ⅱ)由图可得队员甲击中目标靶的环数不低于8环的概率为0.450.290.010.75++=----------------------------------4分由题意可知随机变量X 的取值为:0,1,2,3.----------------------------------5分事件“X k =”的含义是在3次射击中,恰有k 次击中目标靶的环数不低于8环.3333()1(0,1,2,3)44kkk P X k C k -⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭----------------------------------8分 即X 的分布列为所以X 的期望是1927279()0123646464644E X =⨯+⨯+⨯+⨯=.------------------------10分 (Ⅲ)甲队员的射击成绩更稳定.---------------------------------13分17.(本小题共14分)解:(Ⅰ)因为底面ABCD 是菱形,AC BD O =,所以O 为,AC BD 中点.-------------------------------------1分又因为,PA PC PB PD ==,所以,P O A ⊥⊥,---------------------------------------3分所以PO ⊥底面A.----------------------------------------4分 (Ⅱ)由底面ABCD 是菱形可得AC BD ⊥,又由(Ⅰ)可知,PO AC PO BD ⊥⊥. 如图,以O 为原点建立空间直角坐标系O xyz -.由PAC ∆是边长为2的等边三角形,PB PD ==,可得PO OB OD ===所以(1A C-.---------------------------------------5分所以(1CP =,(1AP =-.由已知可得13(,0,44O FOA A =+= -----------------------------------------6分设平面BDF 的法向量为(,,)x y z =n ,则0,0,OB OF ⎧⋅=⎪⎨⋅=⎪⎩n n即0,30.4x ⎧=⎪⎨+=⎪⎩ 令1x =,则z =,所以(1,0,=n .----------------------------------------8分因为1cos 2||||CP CP CP ⋅<⋅>==-⋅n n n ,----------------------------------------9分所以直线CP 与平面BDF 所成角的正弦值为12, 所以直线CP 与平面BDF 所成角的大小为30.-----------------------------------------10分 (Ⅲ)设BMBPλ=(01)λ≤≤,则(1)CM CB BM CB BP λλ=+=+=-.---------------------------------11分若使CM ∥平面B D F ,需且仅需0CM ⋅=n 且CM ⊄平面B D F ,---------------------12分解得1[0,1]3λ=∈,----------------------------------------13分 所以在线段PB 上存在一点M ,使得CM ∥平面BDF .此时BMBP=13.-----------------------------------14分 18.(本小题共13分) 解:(Ⅰ)2e (2)(2)'()(e )e x x xa x a x f x ----==,x ∈R .------------------------------------------2分当1a =-时,()f x ,'()f x 的情况如下表:所以,当1a =-时,函数()f x 的极小值为2e --.-----------------------------------------6分 (Ⅱ)(2)'()'()e xa x F x f x --==. ①当0a <时,(),'()F x F x 的情况如下表:--------------------------------7分因为(F =>,------------------------------8分若使函数()F x 没有零点,需且仅需2(2)10eaF =+>,解得2e a >-,-------------------9分所以此时2e 0a -<<;-----------------------------------------------10分 ②当0a >时,(),'()F x F x 的情况如下表:--------11分 因为(2F F >>,且10110101110e 10e 10(1)0eea aaF a------=<<,---------------------------12分所以此时函数()F x 总存在零点.--------------------------------------------13分 综上所述,所求实数a 的取值范围是2e 0a -<<. 19.(本小题共14分)解:(Ⅰ)由题意得1c =,---------------------------------------1分 由12c a =可得2a =,------------------------------------------2分 所以23b a c =-=,-------------------------------------------3分所以椭圆的方程为22143x y +=. ---------------------------------------------4分 (Ⅱ)由题意可得点3(2,0),(1,)2A M -, ------------------------------------------6分 所以由题意可设直线1:2l y x n =+,1n ≠.------------------------------------------7分 设1122(,),(,)B x y C x y , 由221,4312x y y x n ⎧+=⎪⎪⎨⎪=+⎪⎩得2230x nx n ++-=.由题意可得2224(3)1230n n n ∆=--=->,即(2,2)n ∈-且1n ≠.-------------------------8分21212,3x x n x x n +=-=-.-------------------------------------9分 因为1212332211MB MCy y k k x x --+=+-------------------------------------10分 121212121212131311222211111(1)(2)1()1x n x n n n x x x x n x x x x x x +-+---=+=++-----+-=+-++2(1)(2)102n n n n -+=-=+-, ---------------------------------13分 所以直线,MB MC 关于直线m 对称. ---------------------------------14分20.(本小题共13分)解:(Ⅰ)①②③都是等比源函数. -----------------------------------3分(Ⅱ)函数()2x f x =+不是等比源函数. ------------------------------------4分证明如下:假设存在正整数,,m n k 且m n k <<,使得(),(),()f m f n f k 成等比数列, 2(21)(21)(21)n m k +=++,整理得2122222n n m k m k +++=++,-------------------------5分等式两边同除以2,m 得2122221n m n m k k m --+-+=++.因为1,2n m k m -≥-≥,所以等式左边为偶数,等式右边为奇数,所以等式2122221n m n m k k m --+-+=++不可能成立,所以假设不成立,说明函数()21x f x =+不是等比源函数.-----------------------------8分(Ⅲ)法1:因为*,b n ∀∈N ,都有(1)()g n g n d +-=,所以*,d b ∀∈N ,数列{()}g n 都是以(1)g 为首项公差为d 的等差数列. *,d b ∀∈N ,2(1),(1)(1),(1)(1)g g d g d ++成等比数列,因为(1)(1)(1)((1)11)[(1)1]g d g g d g g +=++-=+,2(1)(1)(1)(2(1)(1)11)[2(1)(1)1]g d g g g d d g g g d +=+++-=++,所以(1),[(1)1],[2(1)(1)1]g g g g g g d +++*{()|}g n n ∈∈N ,所以*,d b ∀∈N ,函数()g x dx b =+都是等比源函数.-------------------------------------------13分(Ⅲ)法2:因为*,b n ∀∈N ,都有(1)()g n g n d +-=,所以*,d b ∀∈N ,数列{()}g n 都是以(1)g 为首项公差为d 的等差数列. 由2()(1)()g m g g k =⋅,(其中1m k <<)可得2[(1)(1)](1)[(1)(1)]g m d g g k d +-=⋅+-,整理得(1)[2(1)(1)](1)(1)m g m d g k -+-=-,令(1)1m g =+,则(1)[2(1)(1)](1)(1)g g g d g k +=-,所以2(1)(1)1k g g d =++,所以*,d b ∀∈N ,数列{()}g n 中总存在三项(1),[(1)1],[2(1)(1)1]g g g g g g d +++成等比数列.所以*,d b ∀∈N ,函数()g x dx b =+都是等比源函数.-------------------------------------------13分。
海淀区高三年级第一学期期末练习数学考试答案
海淀区高三年级第一学期期末练习数学(理)答案及评分参考2011.1第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分, 共30分.有两空的题目,第一空3分,第二空2分) 9. 222x y x += (1,0) 10. 180 11. 512. M P N e e e << 13.① ④ 14. 4 32 (1)2 3 (01)k kk k ⎧+≥⎪⎨⎪+<<⎩ 三、解答题(本大题共6小题,共80分) 15.(共12分)解:(I ) x x x f 2cos )32cos()(--=πx x x 2cos 3sin2sin 3cos2cos -+=ππ .......................................2分x x 2cos 212sin 23-=)62si n(π-=x . .......................................4分)2,0(π∈x Θ,)65,6(62πππ-∈-∴x , .......................................5分]1,21()62sin(-∈-∴πx ,即)(x f 在(0,2π)的值域为]1,21(- . .......................................6分(II )由(I )可知,)62sin()(π-=A A f ,1)62sin(=-∴πA , ......................................7分π<<A 0Θ , 611626πππ<-<-∴A , .....................................8分 3,262πππ==-∴A A . ....................................9分A bc c b a cos 2222-+=Θ , .....................................10分把3a b ==代入,得到2320c c -+=, ..................................11分1=∴c 或2=c . ....................................12分 16.(共13分) 解:(I )方法一设选手甲在A 区投两次篮的进球数为X ,则)109,2(~B X , 故591092)(=⨯=X E , ....................................... 2分 则选手甲在A 区投篮得分的期望为6.3592=⨯ . ....................................... 3分设选手甲在B 区投篮的进球数为Y ,则)31,3(~B Y ,故1313)(=⨯=Y E , ....................................... 5分则选手甲在B 区投篮得分的期望为313=⨯ . ....................................... 6分 36.3>Θ,∴选手甲应该选择A 区投篮. .......................................7分方法二:(I )设选手甲在A 区投篮的得分为ξ,则ξ的可能取值为0,2,4,212291(0)(1)101009918(2)(1)1010100981(4)().10100P P C P ξξξ==-===⋅-====;;所以ξ的分布列为.......................................2分6.3=∴ξE .......................................3分 同理,设选手甲在B 区投篮的得分为η,则η的可能取值为0,3,6,9,3123223318(0)(1);327114(3)(1);339112(6)()(1);33911(9)().327P P C P C P ηηηη==-===⋅-===-====所以η的分布列为:.......................................5分3E η∴=, .......................................6分ηξE E >Θ,∴选手甲应该选择A 区投篮. .......................................7分(Ⅱ)设选手甲在A 区投篮得分高于在B 区投篮得分为事件C ,甲在A 区投篮得2分在B 区投篮得0分为事件1C ,甲在A 区投篮得4分在B 区投篮得0分为事件2C ,甲在A 区投篮得4分在B 区投篮得3分为事件3C ,则123C C C C =U U ,其中123,,C C C 为互斥事件. .......................................9分 则: 12312318881881449()()= ()()()1002710027100975P C P C C C P C P C P C =++=⨯+⨯+⨯=U U 故选手甲在A 区投篮得分高于在B 区投篮得分的概率为4975..................................13分17. (共14分)解:(I )Θ棱柱ABCD —1111A B C D 的所有棱长都为2,∴四边形ABCD 为菱形,AC BD ⊥ . .......................................1分又1A O ⊥平面ABCD, BD ⊂平面ABCD ,1AO BD ∴⊥ . .......................................2分 又1AC AO O =Q I ,1,AC AO ⊂平面11ACC A , ⊥∴BD 平面11ACC A , .......................................3分⊂1AA Θ平面11ACC A ,∴ BD ⊥1AA . .......................................4分(Ⅱ)连结1BCΘ四边形ABCD 为菱形,AC BD O =IABC1B 1C 1A DF1D OO ∴是BD 的中点. ....................................... 5分 又Θ点F 为1DC 的中点,∴在1DBC ∆中,1//BC OF , .......................................6分 ⊄OF Θ平面11BCC B ,⊂1BC 平面11BCC B∴//OF 平面11BCC B .......................................8分(III )以O 为坐标系的原点,分别以1,,OA OB OA 所在直线为,,x y z 轴建立空间直角坐标系. Θ侧棱1AA 与底面ABCD 的所成角为60°,1A O ⊥平面ABCD .ο601=∠∴AO A ,在AO A Rt 1∆中,可得11,AO AO == 在Rt AOB ∆中,OB ===得1(1,0,0),(0,A A D B ...............................10分 设平面D AA 1的法向量为),,(1111z y x n =⎪⎩⎪⎨⎧=⋅=⋅∴0111AD n AA n )0,3,1(),3,0,1(1--=-=Θ111100x x ⎧-+=⎪∴⎨-=⎪⎩ 可设)1,1,3(1-=n .......................................11分 又ΘBD ⊥平面11ACC A所以,平面11A ACC的法向量为2n OB ==u u r u u u r.......................................12分55353,cos 21-=⋅-=>=<∴n n , Θ二面角D —1AA —C 为锐角,故二面角D —1AA —C 的余弦值是55. ....................................14分18. (共13分)解:2211(21)()1(1)(1)a x ax a f x a x x x --+-'=--=+++,1x >-, .......................................2分(I )由题意可得13(1)24af -'==-,解得3a =, ....................................3分 因为(1)ln 24f =-,此时在点(1,(1))f 处的切线方程为(ln24)2(1)y x --=--, 即2ln22y x =-+-,与直线:21l y x =-+平行,故所求a 的值为3. ....................4分 (II ) 令()0f x '=,得到1212,0x x a=-= , 由12a ≥可知120a-≤ ,即10x ≤. ................................5分 ① 即12a =时,12120x x a=-==. 所以,2'2()0,(1,)2(1)x f x x x =-≤∈-+∞+, ................................6分 故()f x 的单调递减区间为(1,)-+∞ . ................................7分 ② 当112a <<时,1120a-<-<,即1210x x -<<=, 所以,在区间1(1,2)a--和(0,)+∞上,'()0f x <; ...............................8分在区间1(2,0)a-上,'()0f x >. .................................9分故 ()f x 的单调递减区间是1(1,2)a --和(0,)+∞,单调递增区间是1(2,0)a -. .........10分③当1a ≥时,1121x a=-≤-, 所以,在区间(1,0)-上()0f x '>; ................................11分在区间(0,)+∞上()0f x '< , ...............................12分 故()f x 的单调递增区间是(1,0)-,单调递减区间是(0,)+∞. ............................13分 综上讨论可得: 当12a =时,函数()f x 的单调递减区间是(1,)-+∞; 当112a <<时,函数()f x 的单调递减区间是1(1,2)a --和(0,)+∞,单调递增区间是1(2,0)a-; 当1a ≥时,函数()f x 的单调递增区间是(1,0)-,单调递减区间是(0,)+∞. 19. (共14分)解:(Ⅰ)抛物线22y px = (0)p >的准线为2px =-, .....................................1分 由抛物线定义和已知条件可知||1()1222p pMF =--=+=,解得2p =,故所求抛物线方程为24y x =. 2880y y b +-= ......................................3分 (Ⅱ)联立2124y x by x⎧=-+⎪⎨⎪=⎩,消x 并化简整理得.依题意应有64320b ∆=+>,解得2b >-. ..............................................4分 设1122(,),(,)A x y B x y ,则12128,8y y y y b +=-=-, .............................................5分 设圆心00(,)Q x y ,则应有121200,422x x y yx y ++===-. 因为以AB 为直径的圆与x 轴相切,得到圆半径为0||4r y ==, ........................6分又||AB =. 所以||28AB r ==, .........................................7分解得85b =-. .........................................8分所以12124822224165x x b y b y b +=-+-=+=,所以圆心为24(,4)5-. 故所求圆的方程为2224()(4)165x y -++=. ............................................9分 方法二:联立2124y x b y x⎧=-+⎪⎨⎪=⎩,消掉y 并化简整理得22(416)40x b x b -++=, 依题意应有2216(4)160b b ∆=+->,解得2b >-. ............................................4分 设1122(,),(,)A x y B x y ,则21212416,4x x b x x b +=+= . .............................................5分 设圆心00(,)Q x y ,则应有121200,422x x y yx y ++===-, 因为以AB 为直径的圆与x 轴相切,得到圆半径为0||4r y ==. .....................................6分又||AB =,又||28AB r ==8, .............................................7分解得85b =-, ..............................................8分所以12485x x +=,所以圆心为24(,4)5-. 故所求圆的方程为2224()(4)165x y -++=. .............................................9分 (Ⅲ)因为直线l 与y 轴负半轴相交,所以0b <,又l 与抛物线交于两点,由(Ⅱ)知2b >-,所以20b -<<,...........................................10分 直线l :12y x b =-+整理得220x y b +-=, 点O 到直线l的距离d , .................................................11分所以1||42AOB S AB d ∆==-= ..................................................12分令32()2g b b b =+,20b -<<,24()343()g b b b b b '=+=+,由上表可得()g b 最大值为432()327g -= . ...............................................13分所以当43b =-时,AOB ∆. ...............................................14分20.(共14分)解:(Ⅰ)当10n =时,集合{}1,2,3,,19,20A =L ,{}{}910,11,12,,19,20B x A x =∈>=L 不具有性质P . ...................................1分因为对任意不大于10的正整数m ,都可以找到该集合中两个元素110b =与210b m =+,使得12b b m -=成立................2分 集合{}*31,C x A x k k N =∈=-∈具有性质P . ................................................3分 因为可取110m =<,对于该集合中任意一对元素112231,31c k c k =-=-,*12,k k N ∈ 都有121231c c k k -=-≠. .....................................................................4分 (Ⅱ)当1000n =时,则{}1,2,3,,1999,2000A =L①若集合S 具有性质P ,那么集合{}2001T x x S =-∈一定具有性质P ....................5分 首先因为{}2001T x x S =-∈,任取02001,t x T =-∈ 其中0x S ∈, 因为S A ⊆,所以0{1,2,3,...,2000}x ∈,从而0120012000x ≤-≤,即,t A ∈所以T A ⊆. ...........................6分 由S 具有性质P ,可知存在不大于1000的正整数m , 使得对S 中的任意一对元素12,s s ,都有12s s m -≠. 对于上述正整数m ,从集合{}2001T x x S =-∈中任取一对元素11222001,2001t x t x =-=-,其中12,x x S ∈, 则有1212t t x x m -=-≠,所以集合{}2001T x x S =-∈具有性质P . .............................8分②设集合S 有k 个元素.由第①问知,若集合S 具有性质P ,那么集合{}2001T x x S =-∈一定具有性质P . 任给x S ∈,12000x ≤≤,则x 与2001x -中必有一个不超过1000, 所以集合S 与T 中必有一个集合中至少存在一半元素不超过1000,不妨设S 中有t 2k t ⎛⎫≥ ⎪⎝⎭个元素12,,,t b b b L 不超过1000.由集合S 具有性质P ,可知存在正整数1000m ≤, 使得对S 中任意两个元素12,s s ,都有12s s m -≠, 所以一定有12,,,t b m b m b m S +++∉L .又100010002000i b m +≤+=,故12,,,t b m b m b m A +++∈L , 即集合A 中至少有t 个元素不在子集S 中, 因此2k k +≤2000k t +≤,所以20002kk +≤,得1333k ≤, 当{}1,2,,665,666,1334,,1999,2000S =L L 时, 取667m =,则易知对集合S 中任意两个元素12,y y , 都有12||667y y -≠,即集合S 具有性质P ,而此时集合S中有1333个元素.因此集合S 元素个数的最大值是1333. .....................................14分说明:其它正确解法按相应步骤给分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市海淀区高三年级第一学期期末练习数学(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知全集U ,A B ⊆,那么下列结论中可能不成立的是( )(A )A B A =I(B )A B B =U (C )()U A B ≠∅I ð (D )()U B A =∅I ð(2)抛物线22y x =的准线方程为( )(A )18y =- (B )14y =- (C )12y =- (D )1y =-(3)将函数cos 2y x =的图象按向量(,1)4a π=r 平移后得到函数()f x 的图象,那么( )(A )()sin 21f x x =-+ (B )()sin 21f x x =+ (C )()sin 21f x x =-- (D )()sin 21f x x =-(4)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,如果a c 3=,30B =?,那么角C 等于( )(A )120° (B )105° (C )90° (D )75°(5)位于北纬x 度的A 、B 两地经度相差90︒,且A 、B 两地间的球面距离为3R π(R为地球半径),那么x 等于 ( )(A )30 (B ) 45 (C ) 60 (D )75(6)已知定义域为R 的函数()f x ,对任意的R x Î都有1(1)()22f x f x +=-+恒成立,且1()12f =,则(62)f 等于 ( )(A )1 (B ) 62 (C ) 64 (D )83(7)已知{},1,2,3,4,5αβÎ,那么使得sin cos 0αβ?的数对(),αβ共有( )(A) 9个 (B) 11个 (C) 12个 (D) 13个 (8)如果对于空间任意()2n n ³条直线总存在一个平面α,使得这n 条直线与平面α所成的角均相等,那么这样的n ( )(A )最大值为3 (B )最大值为4 (C )最大值为5 (D )不存在最大值二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.(9)22462limn nn ++++L = .(10)如果()1,10,1x f x x ì£ïï=íï>ïî,, 那么()2f f 轾=臌 ;不等式()1212f x -?的解集是 .(11)已知点1F 、2F 分别是双曲线的两个焦点, P 为该双曲线上一点,若12PF F ∆为等腰直角三角形,则该双曲线的离心率为_____________.(12)若实数x 、y 满足20,,,x y y x y x b -≥⎧⎪≥⎨⎪≥-+⎩且2z x y =+的最小值为3,则实数b 的值为 .(13)已知直线0=++m y x 与圆222x y +=交于不同的两点A 、B ,O 是坐标原点,||||OA OB AB +?u u u r u u u r u u u r ,那么实数m 的取值范围是 .(14)已知:对于给定的*q N Î及映射*:,N f AB B.若集合C A Í,且C 中所有元素对应的象之和大于或等于q ,则称C 为集合A 的好子集. ① 对于2q =,{},,A a b c =,映射:1,f x xA ,那么集合A 的所有好子集的个数为 ;② 对于给定的q ,{}1,2,3,4,5,6,A π=,映射:f A B ®的对应关系如下表:x1 2 3 4 5 6π()f x 11111yz若当且仅当C 中含有π和至少A 中2个整数或者C 中至少含有A 中5个整数时,C 为集合A 的好子集.写出所有满足条件的数组(),,q y z : .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.(15)(本小题共12分)已知函数22()sin )cos()cos 44f x x x x x ππ=++--.(Ⅰ)求函数)(x f 的最小正周期和单调递减区间;(Ⅱ)求函数)(x f 在25,1236ππ轾犏-犏臌上的最大值和最小值并指出此时相应的x 的值. (16)(本小题共12分)已知函数)(x g 是2()(0)f x x x =>的反函数,点),(00y x M 、),(00x y N 分别是)(x f 、)(x g 图象上的点,1l 、2l 分别是函数)(x f 、)(x g 的图象在N M ,两点处的切线,且1l ∥2l .(Ⅰ)求M 、N 两点的坐标;(Ⅱ)求经过原点O 及M 、N 的圆的方程. (17)(本小题共14分)已知正三棱柱111C B A ABC -中,点D 是棱AB的中点,11,BC AA ==. (Ⅰ)求证://1BC 平面DC A 1;D C 1A 1A(Ⅱ)求1C 到平面1A DC 的距离; (Ⅲ)求二面角1D AC A --的大小. (18)(本小题共14分)某种家用电器每台的销售利润与该电器的无故障使用时间T (单位:年)有关. 若1≤T ,则销售利润为0元;若31≤<T ,则销售利润为100元;若3>T ,则销售利润为200元. 设每台该种电器的无故障使用时间1≤T ,31≤<T 及3>T 这三种情况发生的概率分别为321,,p p p ,又知21,p p 是方程015252=+-a x x 的两个根,且32p p =.(Ⅰ)求321,,p p p 的值;(Ⅱ)记ξ表示销售两台这种家用电器的销售利润总和,求ξ的分布列; (Ⅲ)求销售两台这种家用电器的销售利润总和的平均值. (19)(本小题共14分)已知点()0,1A 、()0,1B -,P 是一个动点,且直线PA 、PB 的斜率之积为12-. (Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)设()2,0Q ,过点()1,0-的直线l 交C 于M 、N 两点,QMN ∆的面积记为S ,若对满足条件的任意直线l ,不等式tan S MQN λ≤恒成立,求λ的最小值. (20)(本小题共14分)如果正数数列{}n a 满足:对任意的正数M ,都存在正整数0n ,使得0n a M >,则称数列{}n a 是一个无界正数列.(Ⅰ)若()32sin()1,2,3,n a n n =+=L , 1, 1,3,5,,1, 2,4,6,,2n n nb n n ⎧=⎪⎪=⎨+⎪=⎪⎩L L 分别判断数列{}n a 、{}n b 是否为无界正数列,并说明理由;(Ⅱ)若2n a n =+,是否存在正整数k ,使得对于一切n k ≥,有1223112n n a a a n a a a ++++<-L 成立; (Ⅲ)若数列{}n a 是单调递增的无界正数列,求证:存在正整数m ,使得122312009m m m a a a a a a +-+++<L . 海淀区高三年级第一学期期末练习 数学(理科)参考答案及评分标准 2009.01一、选择题(本大题共8小题,每小题5分,共40分)CABAB DDA二、填空题(本大题共6小题,每小题5分.有两空的小题,第一空3分,第二空2分,共30分)(9)1 (10)1,[0,1] (111 (12)94(13)(2,2)-U (14) 4,(5,1,3) 三、解答题(本大题共6小题,共80分) (15)(本小题共12分)解:(Ⅰ)22()sin )cos()cos 44f x x x x x ππ=++--2()cos 24x x π=+-2cos 2x x =-2sin(2)6x π=-………………………………………………4分所以22T ππ==. ………………………………………………5分 由()3222262Z k x k k πππππ+???得()536Z k x k k ππππ+#+?所以函数)(x f 的最小正周期为π,单调递减区间为5[,]36k k ππππ++()k ∈Z .………………………………………………7分(Ⅱ)由(Ⅰ)有()2sin(2)6f x x π=-.因为25,1236x ππ轾犏?犏臌, 所以112,639x πππ轾犏-?犏臌. 因为411sin()sin sin 339πππ-=<,所以当12x π=-时,函数)(x f 取得最小值-3x π=时,函数)(x f 取得最大值2.………………………………………………12分(16)(本小题共12分)解:(Ⅰ)因为2()(0)f x x x =>,所以()0)g x x =>.从而,2)(x x f ='()g x ¢=. ………………………………………………3分所以切线21,l l 的斜率分别为,2)(001x x f k ='=00221)(y y g k ='=.又2000(0)y x x =>,所以2012k x =. ………………………………………………4分 因为两切线21,l l 平行,所以21k k =. ………………………………………………5分从而20(2)1x =. 因为00x >, 所以012x =. 所以N M ,两点的坐标分别为)21,41(),41,21(. ………………………………………7分 (Ⅱ)设过O 、M 、N 三点的圆的方程为:220x y Dx Ey F ++++=.因为圆过原点,所以0F =.因为M 、N 关于直线y x =对称,所以圆心在直线y x =上.所以D E =.又因为11(,)24M 在圆上, 所以512D E ==-. 所以过O 、M 、N 三点的圆的方程为:225501212x y x y +--=. ………………12分(17)(本小题共14分)(Ⅰ)证明:连结1AC 交1A C 于点G ,连结DG .在正三棱柱111C B A ABC -中,四边形11ACC A 是平行四边形, ∴1AG GC =.∵AD DB =, ∴DG ∥1BC . ………………………………………2分∵DG ⊂平面1A DC ,1BC ⊄平面1A DC ,∴1BC ∥平面1A DC .………………………………………4分解法一:(Ⅱ)连结1DC ,设1C 到平面1A DC 的距离为h .∵四边形11ACC A 是平行四边形,∴111ACA A CC SS ∆∆=.∴111D ACA D A CC V V --=.∵1111138D ACA A ACD ACD V V S AA --∆==⋅=,∴1118C A CD V -=. ………………………………………6分在等边三角形ABC 中,D 为AB 的中点,∴CD CD AB =^. ∵AD 是1A D 在平面ABC 内的射影, ∴1CD A D ^. ………………………………………8分GDC 1B 1A 1CB A∴1128A DC DC DA S ∆⋅==.∴111313C A DC A DCV h S -∆==. ………………………………………9分 (Ⅲ)过点D 作DE AC ⊥交AC 于E ,过点D 作1DF A C ⊥交1A C 于F ,连结EF .∵平面ABC ⊥平面11ACC A ,DE ⊂平面ABC ,平面ABC I 平面11ACC A AC =, ∴DE ⊥平面11ACC A .∴EF 是DF 在平面11ACC A 内的射影. ∴1EF A C ⊥. ∴DFEÐ是二面角1D AC A--的平面角. ………………………………………12分在直角三角形ADC中,AD DC DE AC ×== 同理可求:11A D DCDF AC ×==∴sin 13DE DFE DF ==. ∵0,2DFE π骣÷ç形÷ç÷ç桫,∴arcsin13DFE?………………………………………14分F ED C 1B 1A 1CB A解法二:过点A 作AO BC ⊥交BC 于O ,过点O 作OE BC ⊥交11B C 于E .因为平面ABC ⊥平面11CBB C ,所以AO ⊥平面11CBB C .分别以,,CB OE OA 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.因为11,BC AA ==,ABC ∆是等边三角形,所以O 为BC 的中点.则()0,0,0O,A ⎛ ⎝⎭,1,0,02C ⎛⎫- ⎪⎝⎭,1A ⎛ ⎝⎭,1(4D,112C ⎛⎫- ⎪⎝⎭. ………………………………………6分 (Ⅱ)设平面1A DC 的法向量为(),,n x y z =r,则10,0.n CD n A C ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r∵3(,0,44CD =u u u r,11(,22A C =--u u u r ,∴30,4410.22x z x z ⎧+=⎪⎪⎨⎪--=⎪⎩取x =,得平面1A DC的一个法向量为)3n =-r. ………………………………………8分∴1C 到平面1A DC的距离为:1CC n n⋅=u u u u r r r………………………………………10分 (Ⅲ)解:同(Ⅱ)可求平面1ACA 的一个法向量为)11n=-u r. …………………………12分设二面角1D AC A--的大小为θ,则1cos cos,n nθ=<>=r u r∵()0,θπ∈,∴θ=. ………………………………………14分(18)(本小题共14分)解:(Ⅰ)由已知得1321=++ppp.Θ32pp=, ∴1221=+pp.Θ21,pp是方程015252=+-axx的两个根,∴5321=+pp.∴511=p,5232==pp. ………………………………………3分(Ⅱ)ξ的可能取值为0,100,200,300,400. ………………………………………4分()0=ξP=2515151=⨯,()100=ξP=25452512=⨯⨯,()200=ξP=258525252512=⨯+⨯⨯,()300=ξP=25852522=⨯⨯,()400=ξP=2545252=⨯. ………………………………………9分随机变量ξ的分布列为:ξ 0100200300400P251 254 258 258 254 ………………………………………11分(Ⅲ)销售利润总和的平均值为E ξ=2544002583002582002541002510⨯+⨯+⨯+⨯+⨯=240. ∴销售两台这种家用电器的利润总和的平均值为240元.………………………………………14分注:只求出E ξ,没有说明平均值为240元,扣1分. (19)(本小题共14分)解:(Ⅰ)设动点P 的坐标为(),x y ,则直线,PA PB 的斜率分别是11,y y x x-+. 由条件得1112y y x x-+?-. 即()22102x y x +=?.所以动点P 的轨迹C 的方程为()22102x y x +=?. ………………………………………5分 注:无0x ¹扣1分.(Ⅱ)设点,M N 的坐标分别是()()1122,,,x y x y .当直线l 垂直于x 轴时,21212111,,2x x y y y ==-=-=. 所以()()()1122112,,2,2,QM x y QN x y x y =-=-=--u u u u r u u u r.所以()22111722QM QNx y ?--=u u u u r u u u r . ………………………………………7分 当直线l 不垂直于x 轴时,设直线l 的方程为()1y k x =+,由221,2(1)x y y k x ìïï+=ïíïï=+ïî得()2222124220k x k x k +++-=. 所以2122, 21422212221kk x x k k x x +-=+-=+. ………………………………………9分 所以()()()12121212122224QM QNx x y y x x x x y y u u u u r u u u r ?--+=-+++.因为()()11221,1y k x y k x =+=+,所以()()()()2221212217131712422212QM QNk x x k x x k k ?++-+++=-<+u u u u r u u u r . 综上所述⋅的最大值是217. ………………………………………11分 因为tan S MQN λ≤恒成立,即1sin ||||sin 2cos MQNQM QN MQN MQNλ⋅≤u u u u r u u u r 恒成立. 由于()2171302212QM QNk ?->+u u u u r u u u r .所以cos 0MQN >. 所以2QM QN λ⋅≤u u u u r u u u r恒成立. ………………………………………13分所以λ的最小值为174. ………………………………………14分 注:没有判断MQN Ð为锐角,扣1分. (20)(本小题共14分)解:(Ⅰ){}n a 不是无界正数列.理由如下:取M = 5,显然32sin()5n a n =+≤,不存在正整数0n 满足05n a >;{}n b 是无界正数列.理由如下:对任意的正数M ,取0n 为大于2M 的一个偶数,有0012122n n M b M ++=>>,所以{}n b 是无界正数列. ………………………………………4分(Ⅱ)存在满足题意的正整数k .理由如下: 当3n ³时, 因为12231n n a a a n a a a +⎛⎫-+++⎪⎝⎭L 32121231n n n a aa a a a a a a ++---=+++L11111114534562n =+++≥++>+L , 即取3k =,对于一切n k ≥,有1223112n n a a a n a a a ++++<-L 成立. ……………………9分注:k 为大于或等于3的整数即可.(Ⅲ)证明:因为数列{}n a 是单调递增的正数列,所以12231n n a a a n a a a +⎛⎫-+++⎪⎝⎭L 32121231n n n a aa a a a a a a ++---=+++L32111211111111n n n n n n n n a a a a a a a a aa a a a a +++++++---->+++==-L .即12123111n n n a a a a n a a a a +++++<-+L . 因为{}n a 是无界正数列,取12M a =,由定义知存在正整数1n ,使1112n a a +>.所以1112123112n n a a a n a a a ++++<-L . 由定义可知{}n a 是无穷数列,考察数列11n a +,12n a +,13n a +,…,显然这仍是一个单调递增的无界正数列,同上理由可知存在正整数2n ,使得()112112122123112n n n n n n a a a n n a a a ++++++++<--L .重复上述操作,直到确定相应的正整数4018n .则401840181212140184017231111222n n a a a n n n n n a a a +⎛⎫⎛⎫⎛⎫+++<-+--++-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L 40182009n =-.即存在正整数4018m n =,使得122312009m m m a a a a a a +-+++<L 成立. ………………………………………14分希望以上资料对你有所帮助,附励志名言3条:1、上帝说:你要什么便取什么,但是要付出相当的代价。