2.2整式的加减练习题及答案

合集下载

人教版七年级上册数学:2.2 整式的加减练习题及答案

人教版七年级上册数学:2.2 整式的加减练习题及答案

2.2 整式的加减(1)◆课前预习1.含有_________的字母,并且_________字母的_______也相同的项,•叫做同类项.2.在合并同类项时,我们把同类项的_______相加,字母和字母的_______不变.◆互动课堂(一)基础热点【例1】下列各题中的两项哪些是同类项?(1)-2m2n与-23m2n;(2)x2y3与-12x3y2;(3)5a2b与5a2bc;(4)23a2与32a2;(5)3p2q与-qp2;(6)53与-33.分析:判断同类项要抓住“两同”:即字母相同,相同字母的指数相同,与系数和字母的排列顺序无关,常数项都是同类项.解:(1),(4),(5),(6).点拨:先判断字母是否相同,再判断相同字母的指数是否相同.【例2】合并同类项:4x2y-8xy2+7-4x2y+10xy2-4.分析:初学时可用不同记号标出各同类项,以防止错漏.解:4x2y-8xy2+7-4x2y+10xy2-4=(4-4)x2y+(-8+10)xy2+(+7-4)=2xy2+3点拨:合并同类项切忌漏项和忘记带上项的符号,两个同类项的系数互为相反数,则合并后结果为0.(二)易错疑难【例3】已知(a+1)2+│b-2│=0,求多项式a2b2+3ab-7a2b2-2ab+1+5a2b2的值.分析:先合并同类项,再求a、b值代入.解:由非负数性质,得a=-1,b=2.原式=(a2b2-7a2b2+5a2b2)+(3ab-2ab)+1=-a2b2+ab+1把a=-1,b=2代入得:原式=-5.点拨:对于多项式求值,有同类项应先合并同类项,再代值计算,可使计算便捷.(三)中考链接【例4】(1)化简:5a-2a=_______;(2)若-4x a y+x2y b=-3x2y,则a+b=_______.答案:(1)3a;(2)3点拨:考查合并同类项及同类项的概念.名师点津1.判断同类项有两个标准,一是字母相同,二是相同字母的指数也相同,•几个常数项也是同类项.2.合并同类项的方法可简记为“一加减两不变”,即合并同类项时,•把系数相加减,其值作为结果的系数,字母和字母的指数不变,同时要特别注意各项系数的符号.◆跟进课堂1.下列各组中的两项,不是同类项的是().A.a2b与-6ab2B.-x3y与2yx3C.2πR与π2R D.35与532.下列计算正确的是().A.3a2-2a2=1 B.5-2x3=3x3C.3x2+2x3=5x5D.a3+a3=2a33.减去-4x等于3x2-2x-1的多项式为().A.3x2-6x-1 B.5x2-1 C.3x2+2x-1 D.3x2+6x-14.若A和B都是6次多项式,则A+B一定是().A.12次多项式B.6次多项式C.次数不高于6的整式D.次数不低于6的多项式5.多项式-3x2y-10x3+3x3+6x3y+3x2y-6x3y+7x3的值是().A.与x,y都无关B.只与x有关C.只与y有关D.与x,y都有关6.如果多项式3x3-2x2+x+│k│x2-5中不含x2项,则k的值为().A.±2 B.-2 C.2 D.07.若2x2y m与-3x n y3是同类项,则m+n________.8.计算:(1)3x-5x=_______;(2)(2008,河北)计算a2+3a2的结果是________.9.合并同类项:-12ab2+23ab2-14ab2=________.10.五个连续偶数中,中间一个是n,这五个数的和是_______.11.若m为常数,多项式mxy+2x-3y-1-4xy为三项式,则12m2-m+2的值是______.12.若单项式-12a2x b m与a n b y-1可合并为12a2b4,则xy-mn=_______.◆漫步课外13.合并下列各式的同类项:(1)-0.8a2b-6ab-3.2a2b+5ab+a2b;(2)5(a-b)2-3(a-b)2-7(a-b)-(a-b)2+7(a-b).14.先化简,再求值:(1)5a2-4a2+a-9a-3a2-4+4a,其中a=-12;(2)5ab-92a2b+12a2b-114ab-a2b-5,其中a=1,b=-2;(3)2a2-3ab+b2-a2+ab-2b2,其中a2-b2=2,ab=-3.15.关于x,y的多项式6mx2+4nxy+2x+2xy-x2+y+4不含二次项,求6m-2n+2的值.◆挑战极限16.商店出售茶壶每只定价20元,茶杯每只定价5元,该店制定了两种优惠办法:(1)买一只茶壶赠送一只茶杯;(2)按总价的92%付款.某顾客需购茶壶4只,茶杯x•只(x≥4),付款数为y(元),试对两种优惠办法分别写出y与x之间的关系,并研究该顾客买同样多的茶杯时,两种方法哪一种更省钱?答案:1.A 2.D 3.A 4.C 5.A 6.A 7.5 8.(1)-2x (2)4a29.-112ab2•10.•5n •11.6 12.-3 13.(1)-3a2b-ab (2)(a-b)214.(1)原式=-2a2-5a,值为2 (2)•原式=94ab-5a2b-5,值为12(3)原式=a2-b2-2ab,值为815.m=16,n=-12.值为416.y1=20×4+5(x-4)=5x+60,y2=(20×4+5x)×92%=4.6x+73.6,由y1=y2,即5x+60=4.6x+73.6,得x=34.故当4≤x<34时,按优惠办法(1)更省钱;当x=34时,•两种办法付款相同;当x>34时,按优惠办法(2)更省钱。

人教七年级数学上册-整式的加减(附习题)

人教七年级数学上册-整式的加减(附习题)
几个常数项也是同类项.
练习1 若单项式-3amb2与单项式1 a3bn 是 3
同类项,则m=__3__,n=_2___.
知识点2 合并同类项的概念和法则
把多项式中的同类项合并成一项,叫做合并 同类项.
合并同类项后,所得项的系数是合并前 各同类项的系数的和,且字母连同它的指数 不变.
例如 4x2 2x 7 3x 8x2 2 4x2 8x2 2x 3x 7 2 (交换律) (4x2 8x2 ) (2 x 3 x) (7 2)(结合律) (4 8)x2 (2 3) x (7 2)(分配律)
(2)若x=5,y=3,求他的卫生间的面积.
解:(1)卧室面积为xy,厨房面积为 xy, 客厅面积为 × xy=xy. ∴卫生间面积为3xy-xy- xy-xy= xy. (2)当x=5,y=3时,
卫生间的面积= ×5×3=5 m2
课堂小结 所含字母相同,并且相同字母的指数也 相同的项叫做同类项.几个常数项也是同类项.
=2x2-2x2-3xy-2xy+5xy+y2-2y+1
=y2-2y+1 当x= 22 ,y=-1时,原式= 4
7
4. 某人购置了一套一室一厅的住宅,总面积为
3xy m2,其中卧室是长为x m,宽为y m的长方形,
客厅的面积为厨房的 3 ,厨房的面积是卧室

2 3
2
,还有一个卫生间.
(1)用x、y表示他的卫生间的面积.
解:7x2-3x2-2x-2x2+5+6x =(7-3-2) x2+(-2+6)x+5 =2x2+4x+5
当x = -2时,原式=2×(-2)2+4×(-2)+5=5

人教版七年级上册数学:2.2《整式的加减》教学设计、例题及练习题(含答案)

人教版七年级上册数学:2.2《整式的加减》教学设计、例题及练习题(含答案)

2.2整式的加减生活中的数学:漫画创意:一群学生在植树,他们觉得要把植树任务分一分,就要计算一下需要植树的面积,地方是一个不规则四边形,可以分割成三角形、长方形等几何图形,先用代数式表示出这块土地的面积,然后再通过度量一些边长,代入代数式求面积。

一、知识频道 概念内涵 概念外延 概念缘由整式加减的有关概念同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

几个常数项也是同类项。

如: 6x 2y 2和-4x 2y 2就是同类项,-3和5也是同类项;但b a 24与23ab 就不是同类项,因为相同字母的指数不相同。

合并同类项:把多项式中的同类项合并成一项,即把同类项的系数相加,字母和字母的指数不变。

如:6x 2y 2+(-4x 2y 2)=2x 2y 2说明:①只有同类项才可合并,不是同类项的不能合并;②合并同类项,只合并系数,字母与字母的指数不变;③合并同类项后若其系数是带分数,要把它化成假分数;④多项式中,如果两同类项的系数互为相反数,合并后这两项互相抵消,结果为0。

去括号法则:括号前面是正号,把括号和括号前的正号去掉后,括号里的各项不改变符号;括号前是负号,把括号和括号前的负号去掉,括号里的各项都要改变符号。

如:A+(5A+3B )—(A —2B )=A+5A+3B-A+2B =5A+5B 。

说明:去括号法则相当于乘法分配律的应用,如:A+(5A+3B )—(A —2B )=A+1×(5A+3B)+(-1)×(A-2B)=A+5A+3B+(-1)A+(-1)×(-2B)=A+5A+3B-A+2B=5A+5B 。

如果括号前面有数字因数,就按乘法分配律去括号。

如:21(3a 2-2a b+4b 2)-2(43a 2-ab-3b 2) =23a 2-ab+2b 2-23a 2+2ab+6b 2=ab+8b 2 添括号法则:给括号前添正号,括在括号里的各项都不改变符号;给括号前添负号,括到括号里的各项都要改变符号。

人教版七年级上册数学课后基础练习第2章:2.2 整式的加减(包含答案)

人教版七年级上册数学课后基础练习第2章:2.2 整式的加减(包含答案)

2.2 整式的加减一.填空题1.去括号:﹣2(m﹣3)=.2.若a3b y与﹣2a x b是同类项,则y x=.3.如果单项式3x a+2y b﹣2与5x3y a+2的和为8x3y a+2,那么2a﹣b=.4.计算(1﹣2a)﹣(2﹣2a)=.5.对于有理数a、b,定义a*b=3a+2b,化简x*(x﹣y)=.6.若﹣3x m y3与2x2y n是同类项,则|m﹣n|的值是7.若mn=m﹣3,则mn+4m+8﹣5mn=.8.已知(a+b)2=7,|ab|=3,则(a2+b2)﹣ab=.9.已知﹣a=5,则﹣[+(﹣a)]=.二.选择题10.与2ab2是同类项的是()A.4a2b B.2a2b C.5ab2D.﹣ab11.如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2B.1C.﹣1D.012.下列去括号正确的是()A.﹣3(b﹣1)=﹣3b﹣3B.2(2﹣a)=4﹣aC.﹣3(b﹣1)=﹣3b+3D.2(2﹣a)=2a﹣413.已知:|a|=2,|b|=3,且|a﹣b|=b﹣a,则(8a2b﹣7b2)﹣(4a2b﹣5b2)=()A.30B.﹣66C.30或﹣66D.﹣30或6614.计算4a2﹣5a2的结果是()A.﹣a2 B.﹣1C.a2 D.9 a215.下列各运算中,计算正确的是()A.4xy+xy=5xyB.x+2x=2x2C.5xy﹣3xy=2D.x+y=xy16.已知A=﹣4x2,B是多项式,在计算B+A时,李明同学把B+A看成了B•A,结果得32x5﹣16x4,则B+A为()A.﹣8x3+4x2B.﹣8x3+8x2C.﹣8x3D.8x317.若m+n=7,2n﹣p=4,则m+3n﹣p=()A.﹣11B.﹣3C.3D.1118.给出下列结论:①单项式﹣的系数为﹣;②x与y的差的平方可表示为x2﹣y2;③化简(x+)﹣2(x﹣)的结果是﹣x+;④若单项式ax2y n+1与﹣ax m y4的差是同类项,则m+n=5.其中正确的结论有()A.1个B.2个C.3个D.4个19.多项式8x2﹣3x+5与3x3﹣4mx2﹣5x+7多项式相加后,不含二次项,则m的值是()A.2B.4C.﹣2D.﹣420.若A=x2y﹣2xy,B=xy2﹣3xy,则计算3A﹣2B的结果是()A.2x2y B.3x2y﹣2xy2C.x2y D.xy221.化简m3+m3的结果等于()A.m6B.2m6C.2m3D.m922.去括号2﹣(x﹣y)=()A.2﹣x﹣y B.2+x+y C.2﹣x+y D.2+x﹣y23.下列各项去括号正确的是()A.﹣3(m+n)﹣mn=﹣3m+3n﹣mnB.﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C.ab﹣5(﹣a+3)=ab+5a﹣3D.x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+424.已知a﹣b=3,c+d=2,则(a+c)﹣(b﹣d)的值为()A.1B.﹣1C.5D.﹣5三.解答题25.先化简,再求值:(1)2x3﹣(7x2﹣9x)﹣2(x3﹣3x2+4x),其中x=﹣1.(2)已知x2﹣2y﹣5=0,求3(x2﹣2xy)﹣(x2﹣6xy)﹣4y的值.26.先化简,再求值:4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y﹣1],其中x=2,y=﹣.27.已知A=3x2+3y2﹣2xy,B=xy﹣2y2﹣2x2,(1)求2A﹣3B;(2)若|2x﹣3|=1,y2=9,且|x﹣y|=y﹣x,求2A﹣3B的值.28.(1)设A=2a2﹣a,B=a2+a,若a=- ,求A﹣2B的值;(2)某公司有甲、乙两类经营收入,去年甲类收入是乙类收入的2倍,预计今年甲类年收入减少9%,乙类收入将增加19%.问今年该公司的年总收入比去年增加了吗?请说明理由.参考答案一.填空题1.﹣2m+6;2.1;3.﹣3;4.﹣1;5.5x﹣2y;6.1;7.20;8.﹣或;9.﹣5;二.选择题10-24:CACAA ACDCA BCCBC三.解答题25.解:(1)原式=2x3-7x2+9x-2x3+6x2-8x=-x2+x,当x=-1时,原式=-1-1=-2;(2)原式=3x2-6xy-x2+6xy-4y=2x2-4y=2(x2-2y),由x2-2y-5=0,得到x2-2y=5,则原式=10.26.解:原式=4x2y-(6xy-12xy+6-x2y-1)=4x2y-(-6xy-x2y+5)=4x2y+6xy+x2y-5=5x2y+6xy-5当x=2,y=−时,原式=5×4×(−)+6×2×(−=-10-6-5=-21;27.解:(1)2A-3B=2(3x2+3y2-2xy)-3(xy-2y2-2x2)=6x2+6y2-4xy-3xy+6y2+6x2=12x2+12y2-7xy;(2)由题意可知:2x-3=±1,y=±3,∴x=2或1,y=±3,由于|x-y|=y-x,∴y-x≥0,∴y≥x,当y=3,x=2时,原式=12(x2+y2)-7xy=12(x2+2xy+y2-2xy)-7xy=12(x+y)2-31xy=12×25-31×6=114,当y=3,x=1时,原式=12×16-31×3=99.28.解:(1)A-2B=(2a2-a)-2(a2+a)=2a2-a-2a2-2a=-3a,当a=−)=1;(2)今年该公司的年总收入是增加.理由如下:设去年乙类收入为a,则甲类收入是2a,去年甲类、乙类两种经营总收入为:a+2a=3a;预计今年甲类年收入为(1-9%)×2a,B种年收入为(1+19%)a,预计今年甲类、乙类两种经营总收入为:(1-9%)×2a+(1+19%)a=3.01a;因为3.01a>3a,所以今年该公司的年总收入是增加.。

七年级2.2 整式的加减(2)(专题课时练含答案)-

七年级2.2 整式的加减(2)(专题课时练含答案)-

2.2 整式的加减(2)◆课前预习去括号法则:•••1.•如果括号外的因数是正数,•去括号后原括号内各项的符号与原来的符号_________.•••2.•如果括号外的因数是负数,•去括号后原括号内各项的符号与原来的符号__________.◆互动课堂(一)基础热点【例1】化简下列各式:(1)a+(5a-3b)-(a-2b);(2)2(3x2-2xy)-4(3x2-4xy+12y2).分析:运用去括号法则进行多项式化简.解:(1)原式=a+5a-3b-a+2b=5a-b;(2)原式=6x2-4xy-12x2+16xy-2y2=-6x2+12xy-2y2.点拨:正确去括号是化简多项式的关键步骤.括号外的因数是负因数时,括号里的各项都要变号.(二)易错疑难【例2】化简求值:5ab2-{2a2b-3[ab2-2(2ab2+a2b)]},其中a,b满足│a+1┃+(b-2)2=0.分析:运用去括号法则先去括号化简,然后代值计算.解:原式=5ab2-{2a2b-3[ab2-4ab2-2a2b]}=5ab2-{2a2b-3ab2+12ab2+6a2b}=5ab2-2a2b+3ab2-12ab2-6a2b=-4ab2-8a2b.∵│a+1│+(b-2)2=0,∴a=-1,b=2.∴原式=-4×(-1)×22-8×(-1)2×2=0.点拨:计算求值的题总是先化简后求值,去括号有三种方法:一是从里向外去;二是从外向里去;三是里外同时去.(三)中考链接【例3】现规定一种运算a*b=ab+a-b,其中a、b为实数,则a*b+(b-a)*b等于().A.a2-b B.b2-b C.b2D.b2-a分析:规定的新运算题,要按题目规定的运算规则进行计算.解:原式=ab+a-b+(b-a)×b+(b-a)-b=ab+a-b+b2-ab+b-a-b=b2-b.选B.点拨:考查学生阅读理解,迁移应用的能力.名师点津1.去括号法则的依据是乘法的分配律.2.去括号是代数变形,是“形变值不变”.3.去括号时,要连同括号前的符号一起去掉,括号前是“-”号,•要注意括号里各项变号.4.添括号与去括号一样,当括号前面添“-”号时,•括进括号的各项符号要全改变.◆跟进课堂1.化简m+n-(m-n)的结果为().A.2m B.-2m C.2n D.-2n2.加上2x-1等于3x2-x-3的多项式是().A.3x2+x-4 B.3x2-3x-4 C.3x2-3x-2 D.3x2+x+23.小明在复习课堂笔记时,发现一道题:(-x2+3xy-12y2)-(-12x2+4xy______)=-12x2-xy+y2,空格的地方被钢笔弄污了,那么空格中的这一项是().A.32y2B.3y2C.-32y2D.-3y24.一个数的13与1的和等于a的3倍,这个数等于().A.a-3 B.3a-1 C.9a-1 D.9a-35.如图是一个正方形和一个直角三角形所拼成的图形,则该图形的面积为().A.m2+12mn B.2222..222mn n m mn m nC D-++6.多项式(xyz2+4yx-1)+(-3xy+z2yx-3)-(2xyz2+xy)的值().A.与x,y,z的大小无关B.与x,y的大小有关,而与z的大小无关C.与x的大小有关与y,z的大小无关D.与x,y,z的大小都有关7.化简:(1)12(2x-4y)+2y=______;(2)(2xy-y)-(-y+xy)=________.8.若m=-8,则-2m2-[-4m2+(-m)2]的值为________.9.如果x-2y=5,则5-3x+6y=_______.10.若a2+2b2=5,则多项式(3a2-2ab+b2)-(a2-2ab-3b2)的值是________.11.三角形的周长为48,第一边长为4a+3b,第二边比第一边的2倍少2a-b,则第三边长为________.12.已知y=ax5+bx3+cx-1,当x=-2时,y=5,那么当x=2时,y=______.◆漫步课外13.先化简,再求值:(1)(3a2-ab+7)-(5ab-4a2+7),其中a=2,b=13;(2)12x-2(x-13y2)+3(-12x+19y2),其中x=-2,y=-23;(3)-5abc-{2a2b-[3abc-2(2ab2-12a2b)]},其中a=-2,b=-1,c=3.14.证明多项式16+a-{8a-[a-9-3(1-2a)]}的值与字母a的取值无关.15.由于看错了符号,某学生把一个多项式减去x2+6x-6误当成了加法计算,结果得到2x2-2x+3,正确的结果应该是多少?◆挑战极限16.某农具厂,第一季度用去电费m元,用去水费比电费的2倍少40元,第二季度电费节约了20%,水费多支出5%,•问该厂第二季度水费和电费比第一季度共节约了多少元?答案:1.C 2.C 3.C 4.D 5.C 6.A7.(1)x (2)xy 8.64 9.-10 10.1011.48-10a-10b 12.-713.(1)原式=7a2-6ab.值为24(2)原式=-3x+y2,值为64 9(3)原式=-2abc-4ab2-a2b,值为014.原式=415.2x2-2x+3-2(x2+6x-6)=-14x+1516.(m+2m-40)-[80%m+(2m-40)×(1+5%)]=0.1m+2(元)。

人教版数学七年级上册第2章2.2整式的加减同步练习(附模拟试卷含答案)

人教版数学七年级上册第2章2.2整式的加减同步练习(附模拟试卷含答案)

人教版数学七年级上册第2章2.2整式的加减同步练习一、选择题1.下列式子正确的是()A.7m+8n=8m+7nB.7m+8n=15mnC.7m+8n=8n+7mD.7m+8n=56mn2.若a-b=2,b-c=-3,则a-c等于()A.1B.-1C.5D.-53.单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2B.3C.4D.54.下列计算正确的是()A.4x-7x=3xB.5a-3a=2C.a2+a=aD.-2a-2a=-4a5.下列各组是同类项的一组是()A.a3与b3B.3x2y与-4x2yzC.x2y与-xy2D.-2a2b与ba26.若-63a3b4与81a x+1b x+y是同类项,则x、y的值为()A. B. C. D.7.去括号正确的是()A.-(3x+2)=-3x+2B.-(-2x-7)=-2x+7C.-(3x-2)=3x+2D.-(-2x+7)=2x-7二、填空题8.计算:2(x-y)+3y= ______ .9.若x+y=3,xy=2,则(5x+2)-(3xy-5y)= ______ .10.若单项式x3y n与-2x m y2是同类项,则(-m)n= ______ .11.若2x3y2n和-5x m y4是同类项,那么m-2n= ______ .三、计算题12.先化简再求值:(2a2b-ab)-2(a2b+2ab),其中a=-2,b=-.13.先化简,再求值:x-(2x-y2+3xy)+(x-x2+y2)+2xy,其中x=-2,y=.14.先化简再求值:4x-3(3x-)+2(x-y),其中x=,y=-.人教版数学七年级上册第2章2.2整式的加减同步练习答案和解析【答案】1.C2.B3.D4.D5.D6.D7.D8.2x+y9.1110.911.-112.解:原式=2a2b-ab-2a2b-4ab=-5ab,当a=-2,b=-时,原式=-5.13.解:原式=x-2x+y2-3xy+x-x2+y2+2xy=-x2+y2-xy,当x=-2,y=时,原式=-4++1=-.14.解:原式=4x-9x+2y2+5x-2y=2y2-2y,当y=-时,原式=2y2-2y=2×(-)2-2×(-)=0.5+1=1.5.【解析】1. 解:7m和8n不是同类项,不能合并,所以,7m+8n=8n+7m.故选C.根据合并同类项法则解答.本题考查了合并同类项,熟记同类项的概念是解题的关键.2. 解:∵a-b=2,b-c=-3,∴a-c=(a-b)+(b-c)=2-3=-1,故选B根据题中等式确定出所求即可.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3. 解:由题意,得m=2,n=3.m+n=2+3=5,故选:D.根据同类项的定义,可得m,n的值,根据有理数的加法,可得答案.本题考查了同类项,利用同类项的定义得出m,n的值是解题关键.4. 解:A、合并同类项系数相加字母及指数不变,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.根据合并同类项系数相加字母及指数不变,可得答案.本题考查了合并同类项,合并同类项系数相加字母及指数不变.5. 解:如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项.且与字母的顺序无关.故选(D)根据同类项的概念即可求出答案.本题考查同类项的概念,注意同类项与字母的顺序无关.6. 解:∵-63a3b4与81a x+1b x+y是同类项,∴x+1=3,x+y=4,∴x=2,y=2,故选D.根据同类项的定义进行选择即可.本题考查了同类项,掌握同类项的定义是解题的关键.7. 解:A、-(3x+2)=-3x-2,故A错误;B、-(-2x-7)=2x+7,故B错误;C、-(3x-2)=-3x+2,故C错误;D、-(-2x+7)=2x-7,故D正确.故选:D.依据去括号法则判断即可.本题主要考查的是去括号,掌握去括号法则是解题的关键.8. 解:原式=2x-2y+3y=2x+y,故答案为:2x+y原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.9. 解:∵x+y=3,xy=2,∴原式=5x+2-3xy+5y=5(x+y)-3xy+2=15-6+2=11.故答案为:11.原式去括号合并后,将已知等式代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.10. 解:由单项式x3y n与-2x m y2是同类项,得m=3,n=2.(-m)n=(-3)2=9,故答案为:9.由同类项的定义可先求得m和n的值,再根据负数的偶数次幂是正数,可得答案.本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.11. 解:∵2x3y2n和-5x m y4是同类项,∴m=3,2n=4.∴n=2.∴m-2n=3-2×2=-1.故答案为:-1.由同类项的定义可知:m=3,2n=4,从而可求得m、n的值,然后计算即可.本题主要考查的是同类项的定义,根据同类项的定义求得m、n的值是解题的关键.12.原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.13.原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.14.原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A.3a+bB.3a-bC.a+3bD.2a+2b2.A 看B 的方向是北偏东21°,那么B 看A 的方向( )A .南偏东69° B.南偏西69° C.南偏东21° D.南偏西21°3.如图,点C 、O 、B 在同一条直线上,∠AOB=90°,∠AOE=∠DOB ,则下列结论:①∠EOD=90°;②∠COE=∠AOD ;③∠COE=∠DOB ;④∠COE+∠BOD=90°.其中正确的个数是( )A.1B.2C.3D.44.下列所给条件,不能列出方程的是( )A.某数比它的平方小6B.某数加上3,再乘以2等于14C.某数与它的12的差 D.某数的3倍与7的和等于29 5.在矩形ABCD 中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE 。

2.2 整式的加减(解析版)

2.2整式的加减一、选择题(共9小题)1.(2022秋•海珠区校级期末)单项式﹣x 3y a 与6x b y 4是同类项,则a +b 等于( )A .﹣7B .7C .﹣5D .5【分析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,据此可得a ,b 的值,再代入所求式子计算即可.【解析】根据题意得,a =4,b =3,∴a +b =4+3=7.故选:B .2.(2022秋•郧西县期末)若代数式﹣5x 6y 3与2x 2n y 3是同类项,则常数n 的值( )A .2B .3C .4D .6【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【解析】由﹣5x 6y 3与2x 2n y 3是同类项,得2n =6,解得n =3.故选:B .3.(2022秋•南召县期末)下列各组代数式中,是同类项的是( )A .5x 2y 与15xy B .﹣5x 2y 与15yx 2C .5ax 2与15yx 2D .83与x 3【分析】所含字母相同,并且相同字母的指数也相同的项叫同类项,且常数项也是同类项.通过该定义来判断是不是同类项.【解析】A 、5x 2y 与15xy 字母x 、y 相同,但x 的指数不同,所以不是同类项;B 、﹣5x 2y 与15yx 2字母x 、y 相同,且x 、y 的指数也相同,所以是同类项;C 、5ax 2与15yx 2字母a 与y 不同,所以不是同类项;D 、83与x 3,对83只是常数项无字母项,x 3只是字母项无常数项,所以不是同类项.故选:B .4.(2022秋•惠州期末)下面运算正确的是( )A .3ab +3ac =6abcB .4a 2b ﹣4b 2a =0C .2x 2+7x 2=9x 4D .3y 2﹣2y 2=y 2【分析】分别利用合并同类项法则进而判断得出即可.【解析】A 、3ab +3ac 无法合并,故此选项错误;B 、4a 2b ﹣4b 2a ,无法合并,故此选项错误;C 、2x 2+7x 2=9x 2,故此选项错误;D 、3y 2﹣2y 2=y 2,故此选项正确;故选:D .5.(2021•罗湖区校级模拟)下列式子计算正确的个数有( )①a 2+a 2=a 4;②3xy 2﹣2xy 2=1;③3ab ﹣2ab =ab ;④(﹣2)3﹣(﹣3)2=﹣17.A .1个B .2个C .3个D .0个【分析】根据合并同类项的法则和有理数的混合运算进行计算即可.【解析】①a 2+a 2=2a 2,故①错误;②3xy 2﹣2xy 2=xy 2,故②错误;③3ab ﹣2ab =ab ,故③正确;④(﹣2)3﹣(﹣3)2=﹣17,故④正确,故选:B .6.(2021秋•招远市期末)下列各式由等号左边变到右边变错的有( )①a ﹣(b ﹣c )=a ﹣b ﹣c②(x 2+y )﹣2(x ﹣y 2)=x 2+y ﹣2x +y 2③﹣(a +b )﹣(﹣x +y )=﹣a +b +x ﹣y④﹣3(x ﹣y )+(a ﹣b )=﹣3x ﹣3y +a ﹣b .A .1个B .2个C .3个D .4个【分析】根据去括号的方法逐一化简即可.【解析】根据去括号的法则:①应为a﹣(b﹣c)=a﹣b+c,错误;②应为(x2+y)﹣2(x﹣y2)=x2+y﹣2x+2y2,错误;③应为﹣(a+b)﹣(﹣x+y)=﹣a﹣b+x﹣y,错误;④﹣3(x﹣y)+(a﹣b)=﹣3x+3y+a﹣b,错误.故选:D.7.(2021秋•云梦县校级期末)下列去括号正确的是( )A.﹣(﹣x2)=﹣x2B.﹣x﹣(2x2﹣1)=﹣x﹣2x2+1C.﹣(2m﹣3n)=﹣2m﹣3n D.3(2﹣3x)=6﹣3x【分析】根据去括号法则解答.【解析】A、﹣(﹣x2)=x2,计算错误,不符合题意;B、﹣x﹣(2x2﹣1)=﹣x﹣2x2+1,计算正确,符合题意;C、﹣(2m﹣3n)=﹣2m+3n,计算错误,不符合题意;D、3(2﹣3x)=6﹣9x,计算错误,不符合题意.故选:B.8.(2022秋•鸡西期中)两个形状大小完全相同的长方形中放入4个相同的小长方形后,得到图①和图②的阴影部分,如果大长方形的长为m,则图②与图①的阴影部分周长之差是( )A.―m2B.m2C.m3D.―m3【分析】设图中小长方形的长为x,宽为y,表示出两图形中阴影部分的周长,求出之差即可.【解析】设图③中小长方形的长为x,宽为y,大长方形的宽为n,根据题意得:x+2y=m,x=2y,即y=14 m,图①中阴影部分的周长为2(n﹣2y+m)=2n﹣4y+2m,图②中阴影部分的周长2n+4y+2y=2n+6y,则图②与图①的阴影部分周长之差是2n+6y﹣(2n﹣4y+2m)=10y﹣2m=52m﹣2m=m2.故选:B.9.(2022秋•沙坪坝区期末)已知x2﹣xy=3,3xy+y2=5,则2x2+xy+y2的值是( )A.8B.2C.11D.13【分析】第一个等式两边乘以2,与第二个等式相加即可求出原式的值.【解析】x2﹣xy=3①,3xy+y2=5②,①×2+②得:2x2﹣2xy+3xy+y2=2x2+xy+y2=11.故选:C.二.填空题(共5小题)10.(2022秋•江夏区期末)若单项式3xy m与﹣x n y3是同类项,则m﹣n的值是 2 .【分析】根据所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,得出m,n的值,进而得出答案.【解析】∵3xy m与﹣x n y3是同类项,∴m=3,n=1,∴m﹣n=3﹣1=2.故答案为:2.11.(2022秋•嘉定区校级期中)去括号:4x3﹣(﹣3x2+2x﹣1)= 4x3+3x2﹣2x+1 【分析】根据去括号法则解答即可.【解析】根据去括号法则可得:4x3﹣(﹣3x2+2x﹣1)=4x3+3x2﹣2x+1.故答案为:4x3+3x2﹣2x+1.12.(2022秋•宁远县期中)化简﹣(﹣x+y)﹣[﹣(x﹣y)]得 2x﹣2y .【分析】先去括号,然后合并同类项.【解析】﹣(﹣x+y)﹣[﹣(x﹣y)]=x﹣y+x﹣y=2x﹣2y.故答案为:2x﹣2y.13.(2021秋•鼓楼区校级期末)a2+ab=3,ab﹣b2=6,则a2+3ab﹣2b2= 15 .【分析】原式进行变形后,利用整体思想代入求值.【解析】原式=a2+ab+2ab﹣2b2,∵a2+ab=3,ab﹣b2=6,∴原式=a2+ab+2(ab﹣b2)=3+2×6=3+12=15,故答案为:15.14.(2021秋•苏州期中)若m2+mn=1,n2﹣2mn=10,则代数式m2+5mn﹣2n2的值为 ﹣19 .【分析】根据整式的加减运算法则即可求出答案.【解析】∵m2+mn=1,n2﹣2mn=10,∴原式=m2+mn+4mn﹣2n2=(m2+mn)﹣2(n2﹣2mn)=1﹣2×10=1﹣20=﹣19,故答案为:﹣19.三.解答题(共4小题)15.(2022秋•济南期中)化简:x2+4﹣2x2+3x﹣5﹣6x.【分析】根据合并同类项法则逐一判断即可,在合并同类项时,系数相加减,字母及其指数不变.【解析】x2+4﹣2x2+3x﹣5﹣6x=(x2﹣2x2)+(3x﹣6x)+(4﹣5)=﹣x2﹣3x﹣1.16.(2022秋•桥西区校级期末)已知一个代数式与﹣2x2+x的和是﹣6x2+x+3.(1)求这个代数式;(2)当x=―12时,求这个代数式的值.【分析】(1)直接利用整式的加减运算法则计算得出答案;(2)直接把x的值代入,进而得出答案.【解析】(1)∵一个代数式与﹣2x2+x的和是﹣6x2+x+3,∴这个代数式为:﹣6x2+x+3﹣(﹣2x2+x)=﹣6x2+x+3+2x2﹣x=﹣4x2+3;(2)当x=―12时,原式=﹣4×(―12)2+3=﹣1+3=2.17.(2022秋•西城区校级期中)化简:4x2﹣8xy2﹣2x2+3y2x+1.【分析】直接合并同类项进而得出答案.【解析】4x 2﹣8xy 2﹣2x 2+3y 2x +1=(4x 2﹣2x 2)+(﹣8xy 2+3xy 2)+1=2x 2﹣5xy 2+1.18.(2021秋•沙坡头区校级期末)化简:(1)5(mn ﹣2m )+3(4m ﹣2mn );(2)﹣3(x +2y ﹣1)―12(﹣6y ﹣4x +2).【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可.【解析】(1)5(mn ﹣2m )+3(4m ﹣2mn )=5mn ﹣10m +12m ﹣6mn=﹣mn +2m ;(2)﹣3(x +2y ﹣1)―12(﹣6y ﹣4x +2)=﹣3x ﹣6y +3+3y +2x ﹣1=﹣x ﹣3y +2.一.选择题(共5小题)1.(2022•河源模拟)若42m a b -与225n a b +是同类项,则n m 的值是( )A .2B .0C .4D .1【分析】依据同类项的相同字母指数相同列方程求解即可.【解析】单项式42m a b -与225n a b +是同类项,2m \=,24n +=,2m \=,2n =.224n m \==.故选:C .2.(2022秋•杭州期中)如关于x ,y 的多项式234756x y mxy y xy +-+化简后不含二次项,则(m = )A .47-B .67-C .57D .0【分析】先化简多项式234756x y mxy y xy +-+,再根据多项式不含二次项即可求解.【解析】234756x y mxy y xy+-+234(76)5x y m xy y =++-Q 多项式234756x y mxy y xy +-+化简后不含二次项,760m \+=,解得:67m =-,故选:B .3.(2022秋•海港区校级期末)化简:()a b c d ---+的结果是( )A .a b c d --+B .a b c d ---+C .a b c d ++-D .a b c d-++-【分析】根据去括号的法则去括号即可.【解析】去括号得,a b c d -++-.故选D .4.(2023•开福区校级三模)已知有2个完全相同的边长为a 、b 的小长方形和1个边长为m 、n 的大长方形,小明把这2个小长方形按如图所示放置在大长方形中,小明经过推理得知,要求出图中阴影部分的周长之和,只需知道a 、b 、m 、n 中的一个量即可,则要知道的那个量是( )A .aB .bC .mD .n【分析】先用含a 、b 、m 、n 的代数式表示出阴影矩形的长宽,再求阴影矩形的周长和即可.【解析】由图和已知可知:AB a =,EF b =,AC n b =-,GE n a =-.阴影部分的周长为:2()2()AB AC GE EF +++2()2()a nb n a b =+-+-+222222a n b n a b=+-+-+4n =.\求图中阴影部分的周长之和,只需知道n 一个量即可.故选:D .5.(2021秋•运城期中)若代数式22(3)x ax bx x +---的值与字母x 无关,则a b -的值为( )A .0B .2-C .2D .1【分析】原式去括号合并后,根据结果与字母x 无关,确定出a 与b 的值,代入原式计算即可求出值.【解析】22222(3)3(1)(1)3x ax bx x x ax bx x b x a x +---=+-++=-+++Q ,且代数式的值与字母x 无关,10b \-=,10a +=,解得:1a =-,1b =,则112a b -=--=-,故选:B .二.填空题(共3小题)6.(2023春•南岗区校级期中)当k = 19 时,多项式221(33)(8)3x kxy y xy --+-不含xy 项.【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【解析】222211(33)(8)(3)3833x kxy y xy x k xy y --+-=+---,Q 多项式不含xy 项,\1303k -=,解得19k =.故答案为:19.7.(2022秋•任城区校级期末)若222(91)x ax bx x y +--++-的值与x 的取值无关,则a b = 14 .【分析】将原式进行化简得2(12)(2)192b x a x y ++--+,再令含有x 的项的系数为0,求出a 、b 的值代入计算即可.【解析】222(91)x ax bx x y +--++-Q 2222192x ax bx x y =++--+2(12)(2)192b x a x y =++--+,又222(91)x ax bx x y +--++-Q 的值与x 的取值无关,120b \+=,20a -=,解得2a =,12b =-,211()24a b \=-=,故答案为:14.8.(2021春•罗湖区校级期末)若多项式2237x x ++的值为10,则多项式2697x x +-的值为 2 .【分析】由题意得2233x x +=,将2697x x +-变形为23(23)7x x +-可得出其值.【解析】由题意得:2233x x +=226973(23)72x x x x +-=+-=.三.解答题(共6小题)9.(2022秋•香坊区校级月考)若单项式114m n x y -+-与233523m n x y --是同类项,求n m 的值.【分析】根据同类项的定义可求出m 、n 的值,再代入计算即可.【解析】114m n x y -+-Q 与233523m n x y --是同类项,123m m \-=-,135n n +=-,解得2m =,3n =,328n m \==.10.(2022秋•惠城区期末)已知:22321A a ab a =+--,21B a ab =-+-(1)求4(32)A A B --的值;(2)若2A B +的值与a 的取值无关,求b 的值.【分析】(1)先化简,然后把A 和B 代入求解;(2)根据题意可得523ab a --与a 的取值无关,即化简之后a 的系数为0,据此求b 值即可.【解析】(1)4(32)2A A B A B--=+22321A a ab a =+--Q ,21B a ab =-+-,\原式2A B=+2223212(1)a ab a a ab =+--+-+-523ab a =--;(2)若2A B +的值与a 的取值无关,则523ab a --与a 的取值无关,即:(52)3b a --与a 的取值无关,520b \-=,解得:25b =即b 的值为25.11.(2014•咸阳模拟)已知221A x x =-+,2263B x x =-+.求:(1)2A B +.(2)2A B -.【分析】(1)根据题意可得222212(263)A B x x x x +=-++-+,去括号合并可得出答案.(2)2222(21)(263)A B x x x x -=-+--+,先去括号,然后合并即可.【解析】(1)由题意得:222212(263)A B x x x x +=-++-+,22214126x x x x =-++-+,25147x x =-+.(2)2222(21)(263)A B x x x x -=-+--+,22242263x x x x =-+-+-,21x =-.12.(2021秋•泉州期末)先化简,再求值:223(2)[33()]a ab a b ab b ---++,其中3a =-,13b =.【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【解析】原式22(36)[3(33)]a ab a b ab b =---++2236(333)a ab a b ab b =---++2236333a ab a b ab b=--+--229a ab =-,当3a =-,13b =时,原式212(3)9(3)189273=´--´-´=+=.13.(2022秋•揭西县期末)先化简,再求值:222233[22()]32x y xy xy x y xy xy ---+-,其中3x =,13y =-.【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【解析】原式2222232233x y xy xy x y xy xy xy xy =-+-+-=+,当3x =,13y =-时,原式12133=-=-.14.(2021秋•颍东区期末)先化简,再求值:2223[23(2)]x y x y xy x y xy ----,其中12x =-,2y =.【分析】去小括号,去中括号,合并同类项,最后代入求出即可.【解析】2223[23(2)]x y x y xy x y xy ----2223[263]x y x y xy x y xy =--+-2223263x y x y xy x y xy=-+-+227x y xy=-+当12x =-,2y =时,原式2112()27()222=-´-´+´-´8=-.一.填空题(共1小题)1.当13m <…时,化简|1||3|m m ---= 24m - .【分析】先根据绝对值的性质把原式化简,再去括号即可.【解析】根据绝对值的性质可知,当13m <…时,|1|1m m -=-,|3|3m m -=-,故|1||3|(1)(3)24m m m m m ---=---=-.二.解答题(共4小题)2.(2022秋•香坊区校级月考)若单项式114m n x y -+-与233523m n x y --是同类项,求n m 的值.【分析】根据同类项的定义可求出m 、n 的值,再代入计算即可.【解析】114m n x y -+-Q 与233523m n x y --是同类项,123m m \-=-,135n n +=-,解得2m =,3n =,328n m \==.3.(2022秋•二道区校级期中)若多项式3232243366mx x x x x nx -+--+-+化简后不含x 的三次项和一次项,回答下列问题:(1)直接写出m = 3 ,n = ;(2)求代数式2021()m n -的值.【分析】(1)将关于x 的多项式合并同类项.由于其不含三次项及一次项,即系数为0,可以求得m ,n ;(2)将(1)中的m 和n 的值代入2021()m n -进行计算,即可得出答案.【解析】(1)323232243366(3)4(4)3mx x x x x nx m x x n x -+--+-+=-++-+,Q 该多项式化简后不含x 的三次项和一次项,30m \-=,40n -=,3m \=,4n =;故答案为:3,4;(2)20212021()(34)1m n -=-=-.4.(2021秋•元阳县期末)有一道题目,是一个多项式减去2146x x +-,小强误当成了加法计算,结果得到223x x -+,正确的结果应该是多少?【分析】先按错误的说法,求出原多项式,原多项式是:222(23)(146)159x x x x x x -+-+-=-+;再用原多项式减去2146x x +-,运用去括号,合并同类项即可得到正确的结果.【解析】这个多项式为:222(23)(146)159x x x x x x -+-+-=-+所以22(159)(146)2915x x x x x -+-+-=-+正确的结果为:2915x -+.5.已知2231A x xy y =++-,2B x xy =-.(1)若2(2)|3|0x y ++-=,求2A B -的值;(2)若2A B -的值与y 的值无关,求x 的值.【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【解析】(1)222(231)2()A B x xy y x xy -=++---2223122x xy y x xy=++--+331xy y =+-.2(2)|3|0x y ++-=Q ,2x \=-,3y =.23(2)3331A B -=´-´+´-1891=-+-10=-.(2)2A B -Q 的值与y 的值无关,即(33)1x y +-与y 的值无关,330x \+=.解得1x =-.。

2.2整式的加减练习题及答案

2.2整式的加减练习题及答案整式的加减测试卷⼀、选择题(每⼩题3分,共30分)1、下列各组中,不是同类项的是()A 、2235.0ab b a 与B 、y x y x 2222-与C 、315与 D 、m m x x 32--与2、若七个连续整数中间的⼀个数为n ,则这七个数的和为()A 、0B 、7nC 、-7nD 、⽆法确定3、若a 3与52+a 互为相反数,则a 等于()A 、5B 、-1C 、1D 、-54、下列去括号错误的共有()①c ab c b a +=++)(;②d c b a d c b a +--=-+-)(;③c b a c b a -+=-+2)(2;④b a a b a a b a a +-=+--+---222)]([A 、1个B 、2个C 、3个D 、4个5、计算:[2()]m n m m n ----等于()A 、2n -B 、m 2C 、n m 24-D 、m n 22-6、式⼦223a b -与22b a +的差是()A 、22aB 、2222b a -C 、24aD 、2224b a -7、a b c -+-的相反数是()B 、c b a +-C 、c b a +--D 、c b a ---8、减去3m -等于5352--m m 的式⼦是()9、如果多项式322325x x x k x -++-中不含2x 项,则k 的值为().2A ± .2B - .2C .0D10、⽕车站和机场都为旅客提供打包服务,如果长、宽、⾼分别为,,x y z 的箱⼦按如图所⽰的⽅式打包,则打包的绳长⾄少为()A .4410x y z ++B .23x y z ++C .246x y z ++D .686x y z ++⼆、填空题(每⼩题3分,共30分)11、若2434n m a b a b 与是同类项,则m =____,n =____。

12、在x x x x 6214722+--+-中,27x 与__同类项,x 6与__是同类项,-2与__是同类项。

人教版七年级数学上册整式的加减(3)


2.2 整式的加减
题型二 同类项的概念的综合运用
例题2 [凉山州中考] 如果单项式

么a, b的值分别为( C).
A.a=2, b=3
B.a=1, b=2
C.a=1, b=3
D.a=2, b=2
是同类项, 那
2.2 整式的加减
2.2 整式的加减
锦囊妙计
利用同类项的概念求未知字母的值的方法 当已知所给的两个单项式是同类项, 或已 知两个单项式 可以合并, 或已知两个单项式的 和(或差)仍然是单项式时, 可抓 住同类项的定义 中的两个“相同”, 即“所含字母相同, 相同 字 母的指数相同” , 运用它们构造方程,求出单项 式中待定字 母的值, 从而解决问题.
第二章 整式的加减
2.2 整式的加减
第二章 整式的加减
2.2 整式的加减
考场对接
2.2 整式的加减
考场对接
题型一 辨认同类项
例题1 [上海中考] 下列单项式中, 与a²b是同 类项的是( A ).
A.2a²b
B.A²b²
C.Ab²
D.3ab
2.2 辨认同类项的两个关键条件 (1)所含字母相同;(2)相同字母的指数相同.
2.2 整式的加减
锦囊妙计
新定义问题的解题方法 (1)认真审题, 深刻理解新定义的内容, 了解 新定义的变换法 则;(2)排除干扰, 按新定义的 变换法则去掉新运算符号, 化新为旧, 将它们转 化成我们熟悉的加、减、乘、除、乘方等运算.
谢 谢 观 看!
2.2 整式的加减
锦囊妙计
多项式加减运算中加括号的方法 在多项式加法运算中, 整式可以不加括 号;在多项式减 法运算中, 被减式可以不加括 号, 但减式必须加上括号.

2.2 整式的加减同步练习测试卷

2.2 整式的加减第1课时合并同类项【课前预习】1.所含________相同,并且相同字母的________也相同的项叫做同类项.几个常数项也是________.2.通常我们把一个多项式的各项按照某个字母的指数从________到________(升幂)或者从________到________(降幂)的顺序排列.3.把多项式中的________合并成一项,叫做合并同类项.4.合并同类项后,所得项的系数是合并前各同类项的__________,且字母连同它的指数__________.【当堂演练】1.下列选项中属于同类项的一组是( )A.2ab3与-8a3bB.4abc与4abC.3m2n与-3nmD.-5与32.小亮说x2y3与x3y2是同类项;小贝说2x2y3与-2x2y3是同类项;小莉说3x2y3z与zy3x2是同类项,他们三人中说法正确的是( )A.小亮、小贝 B.小亮、小莉C.小贝、小莉 D.三人都正确3.合并同类项正确的是( )A.4a+b=5ab B.6xy2-6y2x=0C.6x2-4x2=2 D.3x2+2x3=5x54.若-5x2y m与x n y是同类项,则m+n的值为( )A.1 B.2 C.3 D.45.计算2m2n-3nm2的结果为( )A.-1 B.-5m2n C.-m2n D.不能合并6.在多项式x2+6xy-4xy-5xy2+3x2中,没有同类项的项是________.7.若3x m+5y2与x3y n的和是单项式,则m n=________.8.合并下列各式中的同类项:(1)3m2n-2mn2+5m2n-4mn2;(2)4x2-6x-3+5x+2-6x2.9.先合并同类项,再求值:(1)2x2-3x+7x2+6x-1,其中x=-1;(2) a 3-a 2b +ab 2+a 2b -ab 2+b 3,其中a =1,b =-3.【课后巩固】一、选择题1.下列各选项的两个单项式不是同类项的是( )A .-3和13B .-12a 2b 和ba 2 C .8mn 和-5nm D .2ab 和2b2.把多项式-y 2+2y 3+1-y 按照字母y 的升幂排列,正确的是( )A .2y 3-y 2-y +1B .-y -y 2+2y 3+1C .1+2y 3-y 2-yD .1-y -y 2+2y 33.下列各式计算结果正确的是( )A .3a +2b =5abB .5y 2-2y 2=3C .2ab -2ba =0D .3x 2y -5xy 2=-2x 2y4.关于x 的多项式ax +bx 合并同类项后的结果是0,则下列说法中正确的是( )A .a ,b 都必为0B .a ,b ,x 都必为0C .a ,b 必相等D .a ,b 必互为相反数5.已知多项式3a 2+2ab -a 2-3ab -2a 2,其中a =-2 017,b =12 017,则多项式的值等于( )A .1B .-1C .2 016D .-12 0166.若-3x 2m y 3与2x 4y n 是同类项,则|m -n|的值是( )A .0B .1C .7D .-1二、填空题7.写出一个与-8x 2y 是同类项的单项式:________.8.若5x 2y 3与-ax 2y 3合并同类项后为22x 2y 3,则a =______.9.当k =______时,单项式-8x 3k y 与5x 6y 可以合并成一项.10.已知单项式2x 3yn +2与-34x m y 4是同类项,则(m -n)2 017=______. 11.如果多项式-3x 2+mx +nx 2-x +3的值与x 的取值无关,那么m =______,n =______.三、解答题12.化简:(1)x 2+43-5x -13-3x -x 2;(2)4a 2b +5ab 2-5+6a 2b -8ab 2+9.13.有一道题:“先化简,再求值:10x 2-3x -4x 2+3-6x 2+7x -1-4x ,其中x =-12 017.”有人指出,题目中给出的条件x =-12 017是多余的,这种说法有道理吗?为什么?14.已知(a +1)2+|b -2|=0.求代数式a 2b 2+3ab -7a 2b 2-52ab +1+5a 2b 2的值.15.某商场1月份营业收入为a 万元,2月份营业收入比1月份的3倍少9万元,3月份营业收入比1月份的2倍多6万元,该商场第一季度营业总收入是多少?当a =10时,求该商场第一季度营业总收入.第2课时 去括号【课前预习】1.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号________.2.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号________.【当堂演练】1.下列去括号正确的是( )A .-(a +b -c )=-a +b -cB .-2(a +b -3c )=-2a -2b +6cC .-(-a -b -c )=-a +b +cD .-(a -b -c )=-a +b -c2.下面四道去括号的题目是从小马虎的作业本上摘录下来的,其中正确的是( )A .2(x -y )=2x -yB .-(m -n )=-m +nC .2⎝ ⎛⎭⎪⎫a +16=2a +112 D .-(3x 2+2y )=-3x 2+2y 3.化简(x -3y)-(-3x -2y)的结果是( )A .4x -5yB .4x -yC .-2x -5yD .-2x -y4.化简:-[+(-5)]=________;+2(a +b -1)=____________.5.当x=2 017时,式子(x2-x)-(x2-2x-1)的值为________.6.-x+y-1的相反数是__________.7.比4x2-3x+1少x2+x-2的多项式是____________.8.先去括号,再合并同类项.(1)2x-(5a-7x-3a);(2)(3x2+4x-1)-3(x2+3x).9.三角形的周长为26,第一条边的长为2a-3,第二条边的长比第一条边的2倍少1,求第三条边的长.10.若a2-2a+1=0,求2a2-4a+5的值.【课后巩固】一、选择题1.给-2(a-b)去括号,正确的是( )A.-2a-b B.-2a+bC.-2a-2b D.-2a+2b2.在“去括号、添括号”练习课上,小强做了5道题,如下:①x-(y-z)=x-y-z;②(2a-3b)+(-2a+b)=2a-3b+2a+b=4a-2b;③a-(b+c)+(c-a)=a-b-c+c-a=-b;④a-2b-c=a+(2b-c);⑤2xy-x2-y2=2xy-(x2+y2).他做对了( )A.2道 B.3道 C.4道 D.5道3.化简x-[y-2x-(x-y)]等于( )A.-2x B.2x C.4x-2y D.2x-2y4.下列变形中,错误的是( )A .-x +y =-(x -y )B .-x -y =-(y +x )C .a +(b -c )=a +b -cD .a -(b -c )=a -b -c5.已知⎝ ⎛⎭⎪⎫2x 2+ax -13y +15-⎝ ⎛⎭⎪⎫12x -2y +1-bx 2的值与字母x 的取值无关,则( ) A .a =12,b =-2 B .a =-12,b =2 C .a =-2,b =12 D .a =-2,b =-12二、填空题6.化简:(1)3(2x +y)-12(x -y)=_______________; (2)a -[a 2+(3a -b)]=__________.7.在括号内填上适当的项:(a +b -c)(a -b +c)=[a +(________)][a -(________)].8.已知下列多项式:x 2-4,x 2-2x ,x 2+4x +4.请你选出两个多项式填在下图所示跷跷板的括号里,使跷跷板保持平衡.( )-( )=4x +8△9.长方形的一边长为a -3b ,一邻边比这一边长2a +b ,则这个长方形的周长为_______.三、解答题10.计算:(1)4(x 2-xy)-3(2x 2+xy -2);(2)(a 2-2a +3)-[3(a 2+a -4)-2(4a 2+3a -1)].11.当a =-112时,求式子15a 2-{-4a 2+[5a -8a 2-(2a 2-a)+9a 2]-3a}的值.12.贝贝和晶晶两人共同化简:2(m 2n +mn)-3(m 2n -mn)-4m 2n ,他们的化简过程分别如下:贝贝:2(m 2n +mn)-3(m 2n -mn)-4m 2n =2m 2n +2mn -3m 2n -3mn -4m 2n =-5m 2n -mn.晶晶:2(m 2n +mn)-3(m 2n -mn)-4m 2n =2m 2n +mn -3m 2n -mn -4m 2n =-5m 2n.如果你和他们是同一个学习小组,你会支持谁?为什么?若你认为他们的计算都不正确,请把你认为正确的化简过程写下来.第3课时 整式的加减【课前预习】整式加减的运算法则:一般地,几个整式相加减,如果有括号就先________,然后再______________.【当堂演练】1.化简m-n-(m+n)的结果是( )A.0 B.2m C.-2n D.2m-2n2.已知一个多项式与3x2+9x的和为3x2+4x-1,则这个多项式是( )A.5x+1 B.-5x-1 C.-13x-1 D.13x+13.减去-6a等于4a2-2a+5的式子是( )A.4a2-8a+5 B.4a2-4a+5C.4a2+4a+5 D.-4a2-8a+54.三个植树队,第一队植树x棵,第二队植树的棵数比第一队的2倍少25棵,第三队植树的棵数比第一队的一半多42棵,则三个队共植树的棵数为( )A.72x+17 B.72x-17C.72x-42 D.72x+425.某校组织若干师生进行社会实践活动.若学校租用45座的客车x辆,则余下20人无座位;若租用60座的客车则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )A.200-60x B.140-15xC.200-15x D.140-60x6.三个连续偶数,若中间的一个数记为2n-2,则这三个连续偶数的和是________.7.填空:3a2-2a-5+__________=a2-7a+9.8.若A=x-2y,B=4x-y,则2A-B=________.9.计算:(1)(x2y-5xy2+1)-(3x2y-2)+2(4-3xy2);(2)(4a2-3b2)-[2(a2-1)+2b2-3].10.已知M=x-3x2+1,N=2x2-x-2,计算当x=-2时,2M-3N的值.11.已知三角形第一条边的长为(2a+b)cm,第二条边比第一条边长(b-a)cm,第三条边比第一条边短a cm.(1)求第二条边和第三条边的长度.(2)求该三角形的周长.【课后巩固】一、选择题1.若多项式3x2-2xy-y2减去多项式M,所得的差是-5x2+xy-2y2,则多项式M是( )A.8x2-3xy+y2 B.2x2+xy+3y2C.-8x2+3xy-y2 D.-2x2-xy-3y22.式子(xyz2+4yz-1)+(-3xy+z2xy-3)-(2xyz2+xy)的值( )A.与x,y,z的大小无关 B.与x,y,z的大小有关C.仅与x的大小有关 D.与x,y的大小有关3.已知某学校有(5a2+4a+1)名学生正在参加植树活动,为了支援兄弟学校植树,决定从该校抽调(5a2+7a)名学生前往帮忙,则剩余的学生人数是( )A.-3a-1 B.-3a+1C.-11a+1 D.11a-14.如图,设A,B分别为天平左、右盘中物体的质量,且A=a2+a+3,B=a2+2a+3,当a>0时,天平( )A.向左边倾斜B.向右边倾斜C.平衡D.无法判断二、填空题5.如果一个长方形的周长为4m+6n,一边长为m-n,则另一边长为________.6.已知a2+2ab=-10,b2+2ab=16,则多项式a2+4ab+b2=________,a2-b2=__________.7.一个个位上的数字是a,十位上的数字是b,百位上的数字是c的三位数与把该三位数的个位数字、百位数字对调位置后所得的三位数的差为________.8.扑克牌游戏:小明背对着小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步:从左边一堆牌中拿出两张,放入中间一堆牌中;第三步:从右边一堆牌中拿出一张,放入中间一堆牌中;第四步:左边一堆牌中有几张牌,就从中间一堆牌中拿几张放入左边一堆牌中.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是______.三、解答题9.(1)3(2x2-y2)-2(3y2-2x2);(2)2(3x2y+5xy2)-9x2y-(6x2y+2xy2-12x2y).10.已知A=2x2+3xy-2x-1,B=-x2+xy-1.(1)求A+2B;(2)若3A+6B与x的值无关,求y的值.11.有这样一道题:“当a=2 016,b=-2 017时,求多项式7a3-3(2a3b-a2b-a3)+(6a3b-3a2b-10a3)的值.”小明说:“本题中a=2 016,b=-2 017是多余的条件.”小强马上反对说:“不可能,多项式中每一项都含有a或b,不给出a,b的值怎么能求出多项式的值呢?”你同意哪位同学的观点?请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册第2.2整式的加减
一、选择题(每小题3分,共24分)
1、下列各组中,不是同类项的是( )
A 、2235.0ab b a 与
B 、y x y x 2222-与
C 、315与
D 、m m x x 32--与
2、若七个连续整数中间的一个数为n ,则这七个数的和为( )
A 、0
B 、7n
C 、-7n
D 、无法确定
3、若a 3与52+a 互为相反数,则a 等于( )
A 、5
B 、-1
C 、1
D 、-5
4、下列去括号错误的共有( )
①c ab c b a +=++)(;②d c b a d c b a +--=-+-)(;③c b a c b a -+=-+2)(2;④b a a b a a b a a +-=+--+---222)]([
A 、1个
B 、2个
C 、3个
D 、4个
5、计算:)](2[n m m n m ----等于( )
A 、n 2-
B 、m 2
C 、n m 24-
D 、m n 22-
6、式子223b a -与22b a +的差是( )
A 、22a
B 、2222b a -
C 、24a
D 、2224b a -
7、c b a -+-的相反数是( )
A 、c b a +--
B 、c b a +-
C 、c b a +--
D 、c b a ---
8、减去m 3-等于5352
--m m 的式子是( )
A 、)1(52-m
B 、5652--m m
C 、)1(52+m
D 、)565(2-+-m m 二、填空题(每小题3分,共24分)
1、若4243b a b a m n 与是同类项,则m =____,n =____。

2、在x x x x 6214722+--+-中,27x 与___同类项,x 6与___是同类项,-2与__是同类项。

3、单项式ab b a ab ab b a 3,4,3,2,3222--的和为____。

4、把多项式3223535y x y x xy +--按字母x 的指数从大到小排列是:____
5、若4)13(22+-=+--a a A a a ,则A =_____。

6、化简:_______77_______,6
53121
_________,5722=+-=+-=-ba b a a a a x x 7、去括号:__________)(32________;)2(2=-+-=-+-d c b a y x
8、已知:_______2,3,2=-+=-=-c b a c b c a 则
三、解答题(52分)
1、去括号并合并同类项
①)22(--a a ; ②)32(3)5(y x y x --+-;
③)(2)(2b a b a a +-++; ④)32(2[)3(1yz x x xy +-+--
2、计算
①22222323xy xy y x y x -++-;
②)32(3)23(4)(5b a b a b a -+--+;
③)377()5(322222a b ab b ab a a ---+--
3、化简求值
①2),45()54(3223-=--++-x x x x x 其中
②4
3,32),12121()3232(==+----y x xy x y xy 其中
4、试用含x 的多项式表示如图所示中阴影部分的面积。

5、已知2
22222324,c b a B c b a A ++-=-+=,且A +B +C =0。

求(1)多项式C 。

(2)若3,1,1=-==c b a ,求A +B 的值。

6、三个队植树,第一队种a 棵,第二队种的比第一队种的树的2倍还多8棵,第三队种的比第二队种的树的一半少6棵,问三个队共种多少棵树?并求当100=a 棵时,三个队种树的总棵数。

参考答案:
一、
1、A
2、B
3、B
4、C
5、C
6、B
7、B
8、B
二、
1、2,4
2、1,4,2x x --
3、2235ab ab b a -+-
4、5533
223-++-xy y x y x 5、12
+-x 6、2x,a,0 7、d c b a y x 3332,42+---+- 8、-1 三、
1、
解:①原式=a a a -=+-222
②原式=y x y x y x 811965+-=+---
③原式=b a b a b a a -=--++222
④原式=yz x xy yz x x xy 63316431---=--+-
2、
解:①原式=222222)23()23(xy y x xy xy y x y x +-=-++-
②原式=b a b b b a a a b a b a b a 4)985()6125(9681255+-=-+++-=-++-+ ③原式=22222226637753b ab a a b ab b ab a a +-=++--+-
3、
(1) 721434554233223--=++=--++-=时,原式=当解:原式x x x x x x x
(2)
4
743,32121213232时,原式=-,解:原式==-+---
=y x xy x y xy 4、 x x x x x x x x x 2432.3)2(S 222+=++=++=解:阴影
5、
解:(1)因为A +B +C =0,所以
2
22222222222233)233()324()(c b a c b a c b a c b a B A C --=++--=++--+-=+-=(2)3,1,1=-==c b a ,A +B =18
6、
解:第二队种树的棵数为82+a ,第三队种树的棵数为2646)82(2
1-=-+=-+a a a ,三个队共种的棵数为64)2()82(+=-+++a a a a ,当100=a 时,三队种树的总棵数为
+
⨯(棵)。

406
4=
100
6。

相关文档
最新文档