小学四年级奥数10大类型题精讲(附训练题)

合集下载

四年级奥数思路导航例题精讲及答案(全四十讲例题集汇)

四年级奥数思路导航例题精讲及答案(全四十讲例题集汇)

第1讲找规律(一)一、知识要点观察是解决问题的根据。

通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。

二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。

1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。

根据这一规律,括号里应填的数为:10+3=13或16-3=13。

像上面按照一定的顺序排列的一串数叫做数列。

练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。

(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【答案】(1)18(2)15(3)18,8(4)37,25(5)24,96(6)54,486(7)16,4(8)13,3【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。

1,2,4,7,(),16,22【思路导航】在这列数中,前4个数每相邻的两个数的差依次是1,2,3。

由此可以推算7比括号里的数少4,括号里应填:7+4=11。

经验证,所填的数是正确的。

应填的数为:7+4=11或16-5=11。

练习2:先找出下列数排列的规律,然后在括号里填上适当的数。

(1)10,11,13,16,20,(),31(2)1,4,9,16,25,(),49,64(3)3,2,5,2,7,2,(),(),11,2(4)53,44,36,29,(),18,(),11,9,8(5)81,64,49,36,(),16,(),4,1,0(6)28,1,26,1,24,1,(),(),20,1(7)30,2,26,2,22,2,(),(),14,2(8)1,6,4,8,7,10,(),(),13,14【答案】(1)25(2)36(3)9,2(4)23,14(5)25,9(6)22,1(7)18,2(8)10,12【例题3】先找出规律,然后在括号里填上适当的数。

小学四年级奥数全册精品讲义

小学四年级奥数全册精品讲义
6.如下图,一个三角形分成 36 个小三角形.把每个小三角形涂上红色或蓝色, 两个有公共边的小三角形要涂上不同的颜色,已知涂成红色的三角形比涂成蓝色 的三角形多,那么多_____个.
7.把一条长 15cm 的线段截为三段,使每条线段的长度是整数,用这三条线 段可以组成多少个不同的三角形?(当且仅当两三角形的三条边可以对应相等 时,我们称这两个三角形是相同的.)
如果 M 位上放置标有数码“3”的纸片,一共有_____种不同的放置方法.
M
4.如下图,在 2×2 方格中,画一条直线最多可穿过 3 个方格,在 3×3 方格中, 画一条直线最多可穿过 5 个方格.那么 10×10 方格中,画一条直线最多可穿过 _____个方格.
5. 有一批长度分别为 1,2,3,4,5,6,7,8,9,10 和 11 厘米的细木条,它们的 数量都足够多,从中适当选取 3 根木条作为三条边.可围成一个三角形,如果规定 底边是 11 厘米长,你能围成多少个不同的三角形?
第一讲 加乘原理
加法原理:完成一件工作共有 N 类方法。在第一类方法中有 m1种不同的方法,在第二 类方法中有 m2种不同的方法,……,在第 N 类方法中有 mn 种不同的方法,那么完成这件工 作共有 N=m1+m2+m3+…+mn 种不同方法。
运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以 独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任 何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不 同的问题,分类的标准往往不同,需要积累一定的解题经验。
这两个基本原理是排列和组合的基础,教学时要先通过生活中浅显的实例,如购物问题、 行程问题、搭配问题等,帮助孩子理解两个原理,再让孩子学习运用原理解决问题。

2024奥数综合训练:差倍问题(专项)小学四年级数学竞赛通用版全解析

2024奥数综合训练:差倍问题(专项)小学四年级数学竞赛通用版全解析

奥数综合训练:差倍问题(专项训练)小学四年级数学竞赛通用版全解析一.解答题(共17小题)1.同学们去参观历史博物馆,三年级比二年级多去了60人,三年级去的人数是二年级的3倍,两个年级分别去了多少人?2.路灯队第一天比第二天多运进电线杆120根,第一天运进的根数是第二天运进根数的3倍,两天各运进电线杆多少根?3.一个分数如果分子加上1,就等于1;如果分母加上1,就等于.原来这个分数是多少?4.饲养场鹅的只数比鸭的只数多82,鹅的只数比鸭的只数的4倍多1只.鹅有多少只?5.学校举行冬季跳踢比赛.参加跳绳比赛的人数比踢毽子人数的3倍少12人.跳绳人数比踢毽子人数多148人.参加跳绳和踢毽子比赛的各有多少人?6.有大小两个桶原来水一样多,如果从小桶倒8千克水到大桶,则大桶中水是小桶的3倍,求原来大桶有水多少千克?7.甲桶里的油比乙桶里的油的2倍多40千克,若甲、乙两桶里的油各倒出20千克,则甲桶里的油是乙桶里油的4倍,甲、乙两桶原来各有油多少千克?8.一桶油连桶重19千克,用了一半油以后,再连桶一称,共重12千克.求原来油和桶各重多少?9.已知两个数的商是4,而这两个数的差是39,那么这两个数中较小的一个是多少?10.用一个杯子向空瓶里倒牛奶,如果倒进去2杯牛奶,连瓶共重450克;如果倒进去5杯牛奶,连瓶共重750克.一杯牛奶和一个空瓶各重多少克?11.甲、乙两瓶油同样重,如果从乙瓶中倒50千克油到甲瓶中,那么甲瓶的油是乙瓶的3倍,甲瓶原有多少千克油?12.甲、乙两数的差是7.92,把乙数的小数点向右移动一位正好等于甲,甲、乙两个数各是多少?13.如图所示,EF=20厘米,DE=14厘米,三角形CDE的面积比三角形ABC的面积大30平方厘米,求AB的长度.14.零售店运来两桶酒,大桶有酒120千克,小桶有酒90千克,卖出同样多的酒后,大桶剩的酒刚好是小桶剩的酒的4倍,小桶卖出多少酒?15.把数字9写到一个三位数的左边,得到一个四位数,再把这个四位数加上这个三位数,所得的和是原三位数的17倍,求原三位数是多少?16.四年级三个班开展读好书活动.二班比一班多读20本书,三班读的书比二班的2倍多3本,比一班多读56本书,三个班一共读多少本书?17.袋子里有红、黑两种球,红球比黑球的3倍多2个,每次从袋子里取出4个红球和2个黑球,若干次后,袋子里剩下12个红球和2个黑球,袋子里黑球原有多少个?奥数综合训练:差倍问题(专项训练)小学四年级数学竞赛通用版全解析参考答案与试题解析一.解答题(共17小题)1.同学们去参观历史博物馆,三年级比二年级多去了60人,三年级去的人数是二年级的3倍,两个年级分别去了多少人?【分析】三年级去的人数是二年级的3倍,那么三年级比二年级多去的60人,就相当于二年级人数的(3﹣1)倍,用除法求出二年级人数,再进一步求出三年级去的人数即可.【解答】解:60÷(3﹣1)=60÷2=30(人)30×3=90(人)答:二年级去了30人,三年级去了90人.2.路灯队第一天比第二天多运进电线杆120根,第一天运进的根数是第二天运进根数的3倍,两天各运进电线杆多少根?【分析】第一天比第二天多运进电线杆120根,即数量差是120根,相当于第二天运进根数的3﹣1=2倍,由此用除法即可求出第二天运进根数,再进一步解答即可.【解答】解:120÷(3﹣1)=120÷2=60(根)60+120=180(根)答:第一天运进180根,第二天运进60根.3.一个分数如果分子加上1,就等于1;如果分母加上1,就等于.原来这个分数是多少?【分析】根据题意,分子+1与分母相等,即分母比分子多1,分母加上1,此时分母比分子多2,分数为,分母比分子多1份,所以每份为2,对应的分子为16,分母为18,然后分母﹣1可以求出原分母.【解答】解:根据题意(1+1)÷(9﹣8)=2÷1=22×9﹣1=1717﹣1=16所以原分数是.4.饲养场鹅的只数比鸭的只数多82,鹅的只数比鸭的只数的4倍多1只.鹅有多少只?【分析】由题意知:82﹣1=81只正好是鸭的3倍,这样可求出鸭的只数,之后便可求得鹅的只数.【解答】解:(82﹣1)÷(4﹣1)=27(只)82+27=109(只)答:鹅有109只.5.学校举行冬季跳踢比赛.参加跳绳比赛的人数比踢毽子人数的3倍少12人.跳绳人数比踢毽子人数多148人.参加跳绳和踢毽子比赛的各有多少人?【分析】由“参加跳绳比赛的人数比踢毽子人数的3倍少12人.跳绳人数比踢毽子人数多148人”得出:跳绳的比踢毽子的多148人再加上12人的话,正好是踢毽子人数的3﹣1=2倍,这样便可求出踢毽子的人数,进而再求得跳绳人数.【解答】解:(148+12)÷(3﹣1)=80(人)80+148=228(人)答:参加跳绳比赛的有228人,踢毽子比赛的有80人.6.有大小两个桶原来水一样多,如果从小桶倒8千克水到大桶,则大桶中水是小桶的3倍,求原来大桶有水多少千克?【分析】由题意知,当从小桶倒8千克水到大桶,此时大桶里的水比小桶的多8+8=16千克,进而得知“16千克是小桶此时有水的3﹣1=2倍”,至此便可求出此时小桶有水16÷2=8千克,然后再加上倒出的8千克就是小桶原来水的千克数,当然也是大桶原来有水的千克数.【解答】解:(8+8)÷(3﹣1)=8(千克)8+8=16(千克)答:原来大桶有水16千克.7.甲桶里的油比乙桶里的油的2倍多40千克,若甲、乙两桶里的油各倒出20千克,则甲桶里的油是乙桶里油的4倍,甲、乙两桶原来各有油多少千克?【分析】由题意,中两次减少的都是40千克,两桶的和不变,是和倍问题,求出乙桶占两桶总数的比例,可得两桶总数及原来两桶总数,即可得出结论.【解答】解:先将乙桶倒出40 千克,则甲桶是乙桶的 2 倍;此时乙桶占两桶总数的=;再将甲、乙两桶里的油各倒出20千克,则甲桶里的油是乙桶里油的4倍;此时乙桶占两桶总数的=;则两桶总数为20÷()=150 千克,原来两桶总数是150+40=190 千克;最后乙桶是150×=30 千克,甲桶是150﹣30=120 千克;原来甲桶是120+20=140 千克,乙桶是190﹣140=50 千克.答:甲、乙两桶原来各有油140 千克、50千克8.一桶油连桶重19千克,用了一半油以后,再连桶一称,共重12千克.求原来油和桶各重多少?【分析】一桶油连桶重19千克,用去一半油后连桶重12千克,则油的一半为19﹣12=7千克,那么用7乘2就是油的总重量,因此桶重=连桶重19千克﹣油的总重量,据此解答即可.【解答】解:(19﹣12)×2=7×2=14(千克);19﹣14=5(千克);答:原来桶里有油14千克,油桶重5千克.9.已知两个数的商是4,而这两个数的差是39,那么这两个数中较小的一个是多少?【分析】两个数的商是4,即大数是较小数的4倍,因为这两个数的差是39,即较小数的(4﹣1)倍是39,根据已知一个数的几倍是多少,求这个数,用除法即可求出较小数.【解答】解:39÷(4﹣1)=39÷3=13,答:较小数是13;故答案为:13.10.用一个杯子向空瓶里倒牛奶,如果倒进去2杯牛奶,连瓶共重450克;如果倒进去5杯牛奶,连瓶共重750克.一杯牛奶和一个空瓶各重多少克?【分析】由题意可知3杯牛奶的重量是750﹣450=300克,由此可以求出一杯牛奶的重量,进而求出一个空瓶的重量.【解答】解:(750﹣450)÷(5﹣2)=100(克)450﹣100×2=250(克)答:一杯牛奶的重量是100克,一个空瓶的重量是250克.11.甲、乙两瓶油同样重,如果从乙瓶中倒50千克油到甲瓶中,那么甲瓶的油是乙瓶的3倍,甲瓶原有多少千克油?【分析】由“甲、乙两瓶油同样重,如果从乙瓶中倒50千克油到甲瓶中”说明这时甲瓶比乙瓶多了50×2=200千克油;再结合“甲瓶的油是乙瓶的3倍”得知“100千克油是乙瓶油的3﹣1=2倍”,这样可求出此时乙瓶中有油50千克,之后再加上倒出的50千克就是乙瓶原有油的千克数,这也是甲瓶原有油的千克数.【解答】解:50×2÷(3﹣1)=50(千克)50+50=100(千克)答:甲瓶原来有100千克油.12.甲、乙两数的差是7.92,把乙数的小数点向右移动一位正好等于甲,甲、乙两个数各是多少?【分析】把乙数的小数点向右移动一位正好等于甲,说明甲是乙的10倍,根据甲、乙两数的差是7.92,可得结论.【解答】解:乙数:7.92÷(10﹣1)=0.88甲数:0.88×10=8.8答:甲数是8.8,乙数是0.88.13.如图所示,EF=20厘米,DE=14厘米,三角形CDE的面积比三角形ABC的面积大30平方厘米,求AB的长度.【分析】三角形CDE的面积比三角形ABC的面积大30平方厘米,即长方形BDEF的面积比三角形AEF的面积大30平方厘米,然后根据长方形和三角形的面积公式解答即可.【解答】解:(20×14﹣30)×2÷20=500÷20=25(厘米)答:AB的长是25厘米.14.零售店运来两桶酒,大桶有酒120千克,小桶有酒90千克,卖出同样多的酒后,大桶剩的酒刚好是小桶剩的酒的4倍,小桶卖出多少酒?【分析】由题意知,两桶的差120﹣90=30千克一直没变;由“卖出同样多的酒后,大桶剩的酒刚好是小桶剩的酒的4倍“可知,30千克是卖后小桶酒的4﹣1=3倍,这样便可求出此时小桶里酒的千克数为30÷3=10千克,这说明小桶卖掉了90﹣10=80千克.【解答】解:(120﹣90)÷(4﹣1)=10(千克)90﹣10=80(千克)答:小桶卖出了80千克.15.把数字9写到一个三位数的左边,得到一个四位数,再把这个四位数加上这个三位数,所得的和是原三位数的17倍,求原三位数是多少?【分析】根据题意,把数字9写到一个三位数的左边,得到一个四位数,即相当于原来这个三位数+9000+原来这个三位数=原来的三位数×17,因此这个三位数=9000÷(17﹣2)=600,据此回答.【解答】解:根据题意得9000÷(17﹣1﹣1)=9000÷15=600答:原来这个数是600.16.四年级三个班开展读好书活动.二班比一班多读20本书,三班读的书比二班的2倍多3本,比一班多读56本书,三个班一共读多少本书?【分析】根据“二班比一班多读20本书,三班读的书比一班多读56本书”可得三班读的书比二班多读56﹣20=36本书,那么36﹣3=33本相当于二班的2﹣1=1倍,然后根据差倍公式数量:差÷(倍数﹣1)=较小数进一步解答即可.【解答】解:(56﹣20﹣3)÷(2﹣1)=33(本)33﹣20=13(本)33×2+3=69(本)33+13+69=115(本)答:三个班一共读115本书.17.袋子里有红、黑两种球,红球比黑球的3倍多2个,每次从袋子里取出4个红球和2个黑球,若干次后,袋子里剩下12个红球和2个黑球,袋子里黑球原有多少个?【分析】运用倒推的方法,即可得出结论.【解答】解:由题意,12+4+4=20,2+2+2=6,20÷6=3…2,即取2次后,袋子里剩下12个红球和2个黑球,所以袋子里黑球原有6个.答:袋子里黑球原有6个.。

四年级下册数学试题-奥数专题讲练:第10讲 乘法原理与加法原理 精英篇(解析版)全国通用

四年级下册数学试题-奥数专题讲练:第10讲 乘法原理与加法原理 精英篇(解析版)全国通用

第十讲乘法原理与加法原理乘法原理一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有m n种不同的方法,则完成这件事一共有N=m1×m2×…×m n种不同的方法.乘法原理运用的范围:这件事要分几个彼此互不影响的独立步骤来完成,这几步是完成这件任务缺一不可的,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关。

”【例1】①有5个人排成一排照相,有多少种排法?②5个人排成两排照相,前排2人,后排3人,共有多少种排法?③5个人排成一排照相,如果某人必须站在中间,有多少种排法?④5个人排成一排照相,某人必须站在两头,共有多少种排法分析:①5个人排成一排照相,从左到右共5个位置。

第一个位置可从5个人中任选一人,有5种选法;第二个位置只能从剩下的4个人中任选一人,有4种选法,同理,第三、第四、第五个位置分别有3种、2种、1种选法。

每个位置上站了一人就是一种排法。

根据乘法原理,共有5×4×3×2×1=120种排法。

②5个人排成两排照相,可先排前排、再排后排,依次也有5个位置,类似①的方法可得共有5×4×3×2×1=120种排法。

③这里,限定某人必须站在中间,他的位置固定了,而其余4人可以任意站位,类似①的分析可知共有4×3×2×1=24种排法。

④这里,限定某人必须站在两头,这件事分两步完成,第一步,安排限定的人,有2种方法;第二步,安排其它的4人,类①的分析,有4×3×2×1=24种方法,根据乘法原理,共有2×(4×3×2×1)=24×2=48种排法.【例2】(小数报数学竞赛初赛)某沿海城市管辖7个县,这7个县的位置如右图.现用红、黑、绿、蓝、紫五种颜色给右图染色,要求任意相邻的两个县染不同颜色.共有多少种不同的染色方法?分析:用红、黑、绿、蓝、紫五种颜色依次染色,根据乘法原理,共有5×4×3×3×3×3×3=4860种不同的染色方法.【例3】(1)(迎春杯决赛)如右图(1)是中国象棋盘,如果双方准备各放一个棋子,要求它们不在同一行,也不在同一列,那么总共有多少种不同的放置方法?(2)(兴趣杯少年数学邀请赛决赛)在右图(2)中放四个棋子“兵”,使得每一列有一个“兵”,每一行至多有一个“兵”.有多少种不同的放法?分析:(1)设甲方先放棋子,乙方后放棋子.那么甲方可以把棋子放在棋盘的任意位置,故甲方有:10×9=90种不同的放置方法.对应甲方的第一种放法,乙方按规定必须去掉甲方棋子所在的行与列,而放置在剩下的任意位置,所以乙方有:9×8=72种不同的放置方法.因此,总共有:72×90=6480种不同的放置方法.(2)第一列有2种放法.第一列放定后,第二列又有2种放法.…如此下去,共有2×2×2×2=16种不同的放法.【例4】有10块糖,每天至少吃一块,吃完为止。

小学四年级奥数题集及解析(四)

小学四年级奥数题集及解析(四)

小学四年级奥数题集及解析(四)【篇一】小学四年级奥数经典题型(四位数问题):如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的,那么这样的四位数最多能有多少个?四位数答案:四位数的千位数字是1,百位数字(设为a)可在0、2、3、4、5、6、7中选择,这时三位数的百位数字是9-a;四位数字的十位数字设为b,可在剩下的6个数字中选择,三位数的十位数字是9-b.四位数的个位数字c可以在剩下的4个数字中选择,三位数的个位数字是9-c.因此,所说的四位数有7×6×4=168个。

一台晚会上有6个演唱节目和4个舞蹈节目。

问:(1)如果4个舞蹈节目要排在一起,有多少种不同的排列顺序?(2)如果要求每两个舞蹈节目之间至少安排一个演唱节目,一共有多少种不同的安排顺序?舞蹈节目答案:4个舞蹈节目排在一起,现将4个舞蹈节目排序,有种方法,再将这4个舞蹈节目*在一起,视为1个节目,加上6个演唱节目那么就变成7个节目混排,有种方法,所以共有种排列顺序。

AB间距问题:甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇。

相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇。

求A、B两地间的距离?AB间距答案:第一次相遇意味着两车行了一个A、B两地间距离,第二次相遇意味着两车共行了三个A、B两地间的距离。

当甲、乙两车共行了一个A、B两地间的距离时,甲车行了95千米,当它们共行三个A、B两地间的距离时,甲车就行了3个95千米,即95×3=285(千米),而这285千米比一个A、B两地间的距离多25千米,可得:95×3?25=285?25=260(千米)。

【篇二】李明买回4个篮球5个排球一共用185元,一个篮球比一个排球贵8元,篮球的单价是________元。

答案与解析:25元。

解析:(185-4×8)÷(5+4)+8=25(元)。

小学奥数全国推荐四年级奥数通用学案附带练习题解析答案11最值问题(一)

小学奥数全国推荐四年级奥数通用学案附带练习题解析答案11最值问题(一)

年级四年级学科奥数版本通用版课程标题最值问题(一)在日常生活中,我们常常考虑“最”字,如走路尽可能使所行的路程最短,用时最少或车费最省;做一件工作,尽可能使效率最高,工时最短;学习则尽可能使所用的时间最短而收获最大……,一句话,都是考虑一个“最”字的问题,即最值问题。

最值问题涉及的知识面较为广泛,但在国内外的历届数学竞赛中,一般都带有某种限制条件,因而解决问题的方法和策略常常因题而异,归纳起来有以下几种常用的方法:(1)从极端情况入手我们在分析某些数学问题时,不妨考虑一下把问题推向“极端”。

因为当某一问题被推向“极端”后,往往能排除许多枝节问题的干扰,使问题的“本来面目”清楚地显露出来,从而使问题迅速获解。

(2)枚举比较根据题目的要求,把可能得出的答案一一枚举出来,使题目的条件范围逐步缩小,进而筛选比较出答案。

(3)分析推理根据两个事物在某些属性上相同,猜测它们在其他属性上也有可能相同的推理方法。

(4)构造在寻求解题途径时,构造出新的式子或图形,往往可以取得出奇制胜的效果。

(5)应用求最大值和最小值的结论和一定的两个数,差越小,积越大。

积一定的两个数,差越小,和越小。

两点之间线段最短。

例1一把钥匙只能打开一个房间的门,现有20把钥匙和20个房间,但不知哪把钥匙能开哪个房间的门,如要打开所有房间的门,最多要开几次?分析与解:考虑极端情况,开第一个房间的门最多需20次。

开第二个房间的门最多需19次,……,开最后一个房间的门需1次,共需20+19+18+…+1=210(次)。

例2小明去听报告,发现报告厅只有最后一排没坐满,但他无论坐在哪个位子,都会和另一听众相邻,已知每排均有19个位子,问最后一排最少坐了多少个人?分析与解:将最后一排座位编号,由题意可知,没有连续3个的空位,而最后一排最少坐了的人数也就是已经坐下的每一个人两旁尽可能都是空位,即极端情形:2,5,8,11,14,17,19这几个编号的座位上坐着人,其余座位空着,故最少坐7人。

四年级上册奥数专题(第3版修订)

四年级上册奥数专题(第3版修订)

时,6*5=3×6—2×5=8 (1)计算(5*4)*2
(2)已知 x*(4*1)=7,求 x。
试一试:规定 A*B=B×B+A,计算(2*3)*(4*1)。
例 3:如果 2△3=2+3+4,5△4=5+6+7+8,请按此规律计算 3△5=?
17
四年级上册奥数专题
例 4:规定 a△b=a+(a+1)+(a+2)+…+(a+b—1),其中 a,b 表示自然数。
知 3 年后哥哥的年龄将是弟弟年龄的 2 倍。今年父亲的年龄是多少岁?哥哥呢? 弟弟呢?
试一试:今年,丹丹和父亲,母亲,弟弟的年龄和是 120 岁。当父亲的年龄是
丹丹年龄的 3 倍时,母亲的年龄恰好是弟弟年龄的 3 倍。当时弟弟年龄是 12 岁, 那么丹丹今年多少岁?
例 2:在一个家庭里,现在所有成员的年龄加在一起是 73 岁,家庭成员里有父
4、计算:38 82 18 38
5、计算:347 31 652 31 31
6、计算:1 -3 5 - 7 9 -11 13-15
-39
41
5
7、计算: (2 4 6 1999)
四年级上册奥数专题
1998 2000)(- 1 3 5
1997
8、计算:99999 77778 33333 66666
9、计算: 2008 2006 2007 2005 2007 2006 2008 2005 10、计算:7 77 777 7777 77777
2
四年级上册奥数专题
1、速算与巧算(1)
知识要点:
在三年级时,我们已经学习了速算与巧算的一种方法——凑整,本讲重点讲 解如何利用乘法运算定律进行速算和巧算。

小学四年级奥数110题附答案

小学四年级奥数110题附答案

小学四年级奥数 110 题附答案小学孩子学习数学思维(奥数)的意义在于对全脑的开发。

奥数应用题一向是师生家长非常关注的一类题型,要做好奥数应用题需要学生多思考多做练习。

小编整理了四年级小学四年级奥数110 题(含答案)内容,希望能帮助到您。

小学四年级奥数 110 题1、6 辆大卡车 5 趟可以运走 50 吨沙,9 辆小卡车 4 趟可以运走48 吨沙。

现在有大小卡车一共 60 辆,这些卡车一起运送 3 趟可以运走沙261 吨。

那么有多少辆大卡车?2、某处楼梯一共有 10 级台阶,若每步走 1 级或 2 级台阶,8 步正好走完。

那么,走此楼梯有多少种不同的走法?3、 3、A 和 B 两个同学同时从甲地出发到乙地,A 每分钟行 50 米,B 每分钟行 60 米,B 到达乙地后立即返回,若两人从出发到相遇用了 10分钟,则甲乙两地相距多少米?4、君君和大伟早晨 8 点整从甲地出发去乙地,君君开车,速度每小时 60 千米;大伟步行,速度为每小时 4 千米;如果君君到底乙地后停留 1 小时立即返回,恰好在 10 点整遇到正在前往乙地的大伟。

那么甲乙两地之间的距离是多少千米?5、在后面写一串数字,从第5 个数字开始,每个数字都是它前面两个数字乘积的个位数字。

这样得到一串数字:1,9,8,9,2,8,6,8,8,4,2……那么这串数字中,前 2005 个数字和是多少?6、A、B 两地相距40 千米,甲乙两人同时分别从A、B 两地出发,相向而行,8 小时后相遇。

如果两人同时从 A 地出发前往 B 地,5 小时后甲在乙前方5 千米处。

问:甲每小时行多少千米?7、甲乙两人从相距 2400 米的 AB 两地同时出发,相向而行,甲每分钟走 30米,乙每分钟走 50 米,那么相遇时,乙比甲多走多少米?8、某批货物若每次运 90 箱,则 5 次运完,运 6 次不够运;若每次运75 箱,则 7 次运不完,8 次又不够运。

如每次运 28 箱,运若干次正好运完,那么这批货物一共有多少箱?9、2018 小学四年级奥数练习:需要多少小时?轮船在静水中的速度是每小时21 千米,轮船自甲港逆水航行8小时,到达相距144 千米的乙港口,再从乙港口返回甲港需要多少小时?10、甲乙两个机器人分别从AB 两点同时、同向出发,甲到达B 点的时候,乙走了 288 米,甲追上乙时候,乙走了 336 米,则 AB 两点之间的距离是多少米?11、2018 小学四年级奥数练习:距离地面多少米?一个物体从高空落下,已知第一秒下落的距离是 5 米,以后每秒落下的距离都比前一秒多10 米,10秒末物体离地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学四年级奥数10大类型题精讲(附训练题)
例题1:一包巧克力的重量等于两袋饼干的重量,4袋牛肉干的重等于一包
巧克力的重量,一袋饼干等于几袋牛肉干的重量?
解析:根据“一包巧克力的重量=两袋饼干的重量”与“4袋牛肉干的重量=
一包巧克力的重量”可推出:两袋饼干的重量=4袋牛肉干的重量。

因此,一袋饼
干的重量=两袋牛肉干的重量。

练习1:
1、一只菠萝的重量等于4根香蕉的重量,两只梨子的重量等于一只菠萝的
重量,一只梨子的重量等于几根香蕉的重量?
2、3包巧克力的重量等于两袋糖的的重量,12袋牛肉干的重量等于3包巧
克力的重量,一袋糖的重量等于几袋牛肉干的重量?
3、一只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量。


只小猪的重量等于几只鸭的重量?
例2:一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量。

一头象的重量等于几头小猪的重量?
解析:根据“一头象的重量等于4头牛的重量”与“一头牛的重量等于3匹
小马的重量”可推出:“一头象的重量等于12匹小马的重量”,而“一匹小马
的重量等于3头小猪的重量”,因此,一头象的重量等于36头小猪的重量。

练习2:
1、一只西瓜的重量等于两个菠萝的重量,1个菠萝的重量等于4个苹果的重量,1个苹果的重量等于两个橘子的重量。

1只西瓜的重量等于几个橘子的重量?
2、一头牛一天吃草的重量和一只兔子9天吃草的重量相等,也和6只羊一
天吃草的重量相等。

已知一头牛每天吃青草18千克,一只兔子和一只羊一天共
吃青草多少千克?
3、一只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量,两只鸭的重量等于6条鱼的重量。

问:两只小猪的重量等于几条鱼的重量?
例3:根据下面两个算式,求○与□各代表多少?○+○+○=18 ○+□=10
解析:在第一个算式中,3个○相加的和是18,所以○代表的数是:18÷
3=6,又由第二个算式可求出□代表的数是:10-6=4.
练习3:
1、根据下面两个算式,求□与△各代表多少?
□+□+□+□=32 △-□=20
2、根据下面两个算式,求○与□各代表多少?○+○+○=15 ○+○+□
+□+□=40
3、根据下面两个算式,求○与△各代表多少?○-△=8 △+△+△=○
例4:根据下面两个算式,求○与△各代表多少?
△-○=2 ○+○+△+△+△=56
解析:由第一个算式可知,△比○多2;如果将第二个算式的○都换成△,那么5个△=56+2×2,△=12,再由第一个算式可知,○=12-2=10.
练习4:
1、根据下面两个算式求□与○各代表多少?
□-○=8 □+□+○+○=20
2、根据下面两个算式,求△与○各代表多少?
△+△+△+○+○=78 △+△+○+○+○=72
3、根据下面两个算式,求△与□各代表多少?
△+△+△-□-□=12 □+□+□-△-△=2
例5:甲、乙、丙三人分别是一小、二小和三小的学生,在区运动会上他们
分别获得跳高、跳远和垒球冠军。

已知:二小的是跳远冠军;一小的不是垒球冠军,甲不是跳高冠军;乙既不是二小的也不是跳高冠军。

问:他们三个人分别是
哪个学校的?获得哪项冠军?
解析:由“二小的是跳远冠军”可知垒球、跳高冠军是一小或三小的;因
为“一小的不是垒球冠军”,所以一小一定是跳高冠军,三小的是垒球冠军;由“甲不是跳远冠军”,“乙既不是二小的也不是跳高冠军”可知,一小的甲是跳
高冠军,二小的丙是跳远冠军,三小的乙是垒球冠军。

练习5:
1、有三个女孩穿着崭新的连衣裙去参加游园会。

一个穿花的,一个穿白的,一个穿红的。

但不知哪一个姓王、哪一个姓李、哪一个姓刘。

只知道姓刘的不喜
欢穿红的,姓王的既不是穿红裙子,也不是穿花裙子。

你能猜出这三个女孩各姓
什么吗?
2、小兔、小猫、小狗、小猴和小鹿参加100米比赛,比赛结束后小猴说:“我比小猫跑得快。

”小狗说:“小鹿在我前面冲过终点线。

”小兔说:“我们
的名次排在小猴前面,小狗在后面。

”请根据它们的回答排出名次。

3、五个女孩并排坐着,甲坐在离乙、丙距离相等的座位上,丁坐在离甲、丙距
离相等的座位上,戌坐在她两个姐姐之间。

请问谁是戌的姐姐?
例6:今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。

问鸡、兔各有多少只?
解析::鸡兔同笼问题往往用假设法来解答,即假设全是鸡或全是兔,脚
的总数必然与条件矛盾,根据数量上出现的矛盾适当调整,从而找到正确答案。

假设全是鸡,那么相应的脚的总数应是2×35=70只,与实际相比,减少了
94-70=24只。

减少的原因是把一只兔当作一只鸡时,要减少4-2=2只脚。

所以
兔有24÷2=12只,鸡有35-12=23只。

练习六
1、鸡与兔共有30只,共有脚70只。

鸡与兔各有多少只?
2、鸡与兔共有20只,共有脚50只。

鸡与兔各有多少只?
3、鸡与兔共有100只,鸡脚比兔脚多80只。

鸡与兔各有多少只?
例7:面值是2元、5元的人民币共27张,全计99元。

面值是2元、5元的
人民币各有多少张?
解析:这道题类似于“鸡兔同笼”问题。

假设全是面值2元的人民币,那
么27张人民币是2×27=54元,与实际相比减少了99-54=45元,减少的原因是
每把一张面值2元的人民币当作一张面5元的人民币,要减少5-2=3元,所以,面值是5元的人民币有45÷3=15张,面值2元的人民币有 27-15=12张。

练习七
1、孙佳有2分、5分硬币共40枚,一共是1元7角。

两种硬币各有多少枚?
2、50名同学去划船,一共乘坐11只船,其中每条大船坐6人,每条小船坐
4人。

问大船和小船各几只?
3、小明参加猜谜比赛,共20道题,规定猜对一道得5分,猜错一道倒扣3
分(不猜按错算)。

小明共得60分,他猜对了几道?
例8:一批水泥,用小车装载,要用45辆;用大车装载,只要36辆。

每辆
大车比小车多装4吨,这批水泥有多少吨?
解析:求出大车每辆各装多少吨,是解题关键。

如果用36辆小车来运,
则剩4×36=144吨,需45-36=9辆小车来运,这样可以求出每辆小车的装载量
是144÷9=16吨,所以,这批水泥共有16×45=720吨。

练习八
1、一批货物用大卡车装要16辆,如果用小卡车装要48辆。

已知大卡车比
小卡车每辆多装4吨,问这批货物有多少吨?
2、有一堆黄沙,用大汽车运需运50次,如果用小汽车运,要运80次。


辆大汽车比小汽车多运3吨,这堆黄沙有多少吨?
3、一批钢材,用小车装,要用35辆,用大车装只用30辆,每辆小车比大
车少装3吨,这批钢材有多少吨?
例9:某玻璃杯厂要为商场运送1000个玻璃杯,双方商定每个运费为1元,
如果打碎一个,这个不但不给运费,而且要赔偿3元。

结果运到目的地后结算时,玻璃杯厂共得运费920元。

求打碎了几个玻璃杯?
解析:假设1000个玻璃杯全部运到并完好无损,应得运费1×1000=1000元,实际上少得1000-920=80元,这说明运输过程中打碎了玻璃杯。

每打碎一个,不但不给运费还要赔偿3元,这样玻璃杯厂就少收入1+3=4元。

又已求出
共少收入80元,所以打碎的玻璃杯数为80÷4=20个。

练习九
1、搬运1000玻璃瓶,规定安全运到一只可得搬运费3角。

但打碎一只,不
仅不给搬运费还要赔5角。

如果运完后共得运费260元,那么,搬运中打碎了多
少只?
2、某次数学竞赛共20道题,评分标准是每做对一题得5分,每做错一题倒
扣1分。

刘亮参加了这次竞赛,得了64分。

刘亮做对了多少道题?
3、某校举行化学竞赛共有15道题,规定每做对一题得10分,每做错一道
或不做倒扣4分。

小华在这次竞赛中共得66分,他做对了几道题?
例10:某场乒乓球比赛售出30元、40元、50元的门票共200张,收入
7800元。

其中40元和50元的张数相等,每种票各售出多少张?
解析:因为“40元和50元的张数相等”,所以可以把40元和50元的门票都看作45元的门票,假设这200张门票都是45元的,应收入 45×200=9000元,比实际多收入9000-7800=1200元,这是因为把30元的门票都当作45元来计算了。

因此30元的门票有1200÷(45-30)=80张,40元和50元的门票各有(200-80)÷2=60张。

练习十
1、某场球赛售出40元、30元、50元的门票共400张,收入15600元。

其中40元和50元的张数相等,每种门票各售出多少张?
2、数学测试卷有20道题,做对一题得7分,做错一题倒扣4分,不做得0分。

红红得了100分,她几道题没做?
3、有甲、乙、丙三种练习簿,价钱分别为7角、3角和2角,三种练习簿一共买了47本,付了21元2角。

买乙种练习簿的本数是丙种练习簿的2倍,三种练习簿各买了多少本?。

相关文档
最新文档