数学公理与定理
初中数学-教材上的定义、公理、定理及推论

教材上的定义、公理(基本事实)、定理及推论1、直线、射线、线段定义;点动成线,线动成面,面动成体2、两点确定一条直线,两点之间线段最短3、两条直线有3种关系:重合、平行、相交4、过直线外一点,有且只有一条直线与已知直线平行5、同一平面,过一点有且只有一条直线与已知直线垂直6、垂线段最短7、两直线平行的判定定理1同一平面内,不想交的两直线平行2同位角相等,两直线平行3内错角相等,两直线平行4同旁内角互补,两直线平行5两直线与第三条直线平行,则这两直线平行6两直线与第三条直线垂直,则这两直线平行8、同角、等角、余角、补角、互补、互余定义9、邻补角定义和性质10、外角定义和性质11、对顶角相等12、角平分线定义、性质、判定1定义:从一个角的顶点引一条射线,把这个角分成两个相同的角,这条射线叫做角平分线2性质:角平分线上的点到角两边的距离相等3判定:角内部到角两边距离相等的点在这个角的平分线上13、垂直平分线(中垂线)定义、性质、判定1定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线2性质:垂直平分线上的点到线段两端点的距离相等3判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上14、三角形任意两边之和大于第三边,即最短的两条边之后大于第三边;如果三角形三条边a、b、c,则有|a-b|<c<a+b15、N边形内角和:(n-2)180,N边形外角和:360°,N边形对角线总数:n(n--3)/216、直角三角形中,30°所对的直角边是斜边的一半;直角三角形中,如果直角边是斜边的一半,那么其所对的角为30°17、三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半18、勾股定理:直角三角形中,两条直角边的平方和等于斜边平方19、勾股定理逆定理:三角形中如果两条边的平方和等于另一边的平方则该三角形为直角三角形20、三角形“四心”1三条中线的交点是重心2三边垂直平分线的交点是外心3三条内角平分线的交点为内心4三角形三条高线的交点为垂心。
初中几何证明的所有公理和定理

初中几何证明的所有公理和定理几何学是数学的一个分支,研究平面和空间中的图形、形状、大小以及它们之间的关系。
在几何学中,有一些基本的公理和定理被广泛应用于证明其他几何结论。
以下是初中几何中常用的公理和定理。
一、公理1.尺规公理:任意两点可以用直尺连接,任意一点可以用剪刀间距来复原。
2.同位角公理:同位角互等。
3.平行公理:通过点外一条直线的直线,与这条直线平行的直线只有唯一一条。
4.直线偏转公理:过直线和不在直线上的一点,有且只有一条直线与该直线相交。
二、定理1.垂直平分线定理:平分一条线段的直线必垂直于该线段。
2.三角形内角和定理:三角形内角的和为180°。
3.直角三角形定理:在直角三角形中,两个直角三角形的边长和斜边相等。
4.点到直线的距离定理:点到直线的距离等于点到该直线上垂线的距离。
5.等腰三角形定理:等腰三角形的底边中点到顶点的距离等于底边的一半。
6.等边三角形定理:等边三角形的三条边相等。
7.三角形外角定理:三角形外角等于其对应内角的和。
8.直角三角形的勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。
9.海伦公式:已知三角形的三边长,可以通过海伦公式求解其面积。
10.等周定理:等周的两角相等,反之亦成立。
11.三角形中位线定理:三角形两边中点连线中位线,且平分第三边。
12.周长定理:四边形周长等于各边长的和。
13.三角形周长定理:三角形的周长等于三边长的和。
14.三角形中线定理:三角形中线等分中位线,且平分第三边。
15.三角形终边定理:一个角的终边上的点,到另一个角所在的直线的距离永远相等。
16.五边形内角和定理:五边形的内角和是540°。
17.钝角三角形的边长关系:钝角三角形两边长的平方和小于斜边长的平方。
18.三角形的相似性定理:对应角等价、对应边成比例的两个三角形为相似三角形。
19.平行线的性质定理:平行条边分别过枚角且长度成正比,则连线为平行线。
20.重叠三角形定理:如果两个角和一个边分别相等,则两个三角形相等。
公理定理定律的区别与联系

公理定理定律的区别与联系
公理、定理、定律是数学中常用的概念,它们分别表示不同的含义。
公理是数学中最基础的概念之一,也被称为公设或公公理公设,是不需要证明的基础性命题,是数学推理的起点。
公理是从人们对客观事物的感性认识中抽象出来的基本原理,是所有其他定理的前提。
定理是在公理的基础上通过推理得出的结论,是在严格的逻辑推理下,由已知的命题推导出新的命题的过程。
定理需要证明,证明过程需要遵循数学严谨的证明方法,经过推理、演绎、归纳等步骤,最终得出结论。
定律是在数学和自然科学中经验和实践的基础上总结出来的一
般规律,是经过反复验证、具有普遍适用性的规律性描述。
定律是经验归纳的结果,不需要证明,但需要经过实验验证。
公理、定理、定律之间存在着密切的联系和区别。
公理是一切数学理论的基础,没有公理就没有数学;定理是在公理的基础上通过推理得出的结论,是数学理论的重要组成部分;定律是在实践和经验的基础上总结出来的规律性描述,是数学和自然科学的重要内容。
总的来说,公理、定理、定律都是数学中重要的概念,它们相互联系,相互依存,共同构成了数学体系的重要组成部分。
- 1 -。
初中数学有关三角形的公理和定理

初中数学有关三角形的公理和定理
一、一般性质
1、三角形内角和定理:三角形的内角和等于180°
2、三角形外角的性质:
①三角形的一个外角等于与它不相邻的两个内角的和;
②三角形的一个外角大于任何一个与它不相邻的内角;③三角形的外角和等于360°
3、三边关系:
(1)两边之和大于第三边;
(2)两边之差小于第三边
4、三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
5、三角形的三边的垂直平分线交于一点(外心),这点到三个顶点的距离(外接圆半径)相等。
6、三角形的三条角平分线交于一点(内心),这点到三边的距离(内切圆半径)相等。
二、特殊性质:
7、等腰三角形、等边三角形
(1)等腰三角形的两个底角相等.(简写成“等边对等角”)(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)
(3)“三线合一”定理:等腰三角形的顶角平分线、底边上的中线
和底边上的高互相重合
(4)等边三角形的三个内角都相等,并且每一个内角都等于60°.(5)三个角都相等的三角形是等边三角形。
(6)有一个角是60°的等腰三角形是等边三角形
8、直角三角形:
(1)直角三角形的两个锐角互余;
(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方;(3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.
(4)直角三角形斜边上的中线等于斜边的一半.
(5)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
(6)三角形一边的中线等于这边的一半,这个三角形是直角三角形。
数学中 公理 定理 定义 命题的区别

数学中公理定理定义命题的区别摘要:一、公理与定理的区别1.公理:不需要证明,实践得出的结论2.定理:由公理推导出来,需要证明二、定义与命题的区别1.定义:对事物的概括性描述,用于明确概念的含义2.命题:对某个事物的陈述或判断,可以是真或假三、定理、公理、定义、命题在数学中的实际应用1.定理:作为数学推理的基础,用于证明其他定理或命题2.公理:构建数学体系的基础,无需证明3.定义:为数学概念赋予意义,便于交流与理解4.命题:用于表述数学问题,可以是真或假正文:在数学领域,公理、定理、定义和命题是构建数学知识体系的重要元素。
它们之间的区别在于:公理与定理的区别:公理是不需要证明的基本事实或结论,通常是数学体系的基础。
它们是通过实践和观察得出的结论,被认为是真实的,无需进一步证明。
例如,欧几里得的公理体系是几何学的基础,其中包括诸如“直线可以无限延伸”和“两个直线可以在一个点相交”等公理。
定理则是从公理或其他已知的定理中推导出来的结论,需要通过逻辑推理和证明来证实。
例如,勾股定理就是一个著名的定理,它通过公理和已知定理的推导得出。
定义与命题的区别:定义是对某个数学概念的描述,用于明确概念的含义。
定义通常包含概念的本质特征、属性以及与其他概念的区别。
例如,直角的定义是“90度的角”。
命题是对某个事物的陈述或判断,可以是真或假。
命题可以用来描述数学关系、性质或事实。
例如,“三角形的三条边之和等于180度”就是一个真命题。
在数学中,定理、公理、定义和命题的实际应用:定理作为数学推理的基础,用于证明其他定理或命题。
定理的证明过程通常包括逻辑推理、数学证明和实例验证。
公理是构建数学体系的基础,无需证明。
公理的存在保证了数学体系的完整性和一致性。
定义为数学概念赋予意义,便于交流与理解。
定义明确了概念的内涵和外延,有助于数学家们在研究中达成共识。
命题用于表述数学问题,可以是真或假。
命题是数学研究的基本单位,真命题反映了数学世界的规律,而假命题则揭示了数学知识的不完备性。
初中数学公理和定理

初中数学公理和定理一、公理(不需证明)1、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2、两条平行线被第三条直线所截,同位角相等;3、两边和夹角对应相等的两个三角形全等; (SAS)4、角及其夹边对应相等的两个三角形全等; (ASA)5、三边对应相等的两个三角形全等; (SSS)6、全等三角形的对应边相等,对应角相等.7、线段公理:两点之间,线段最短。
8、直线公理:过两点有且只有一条直线。
9、平行公理:过直线外一点有且只有一条直线与已知直线平行10、垂直性质:经过直线外或直线上一点,有且只有一条直线与已知直线垂直以下对初中阶段所学的公理、定理进行分类:一、直线与角1、两点之间,线段最短。
2、经过两点有一条直线,并且只有一条直线。
3、同角或等角的补角相等,同角或等角的余角相等。
4、对顶角相等二、平行与垂直5、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
6、经过已知直线外一点,有且只有一条直线与已知直线平行。
7、连接直线外一点与直线上各点的所有线段中,垂线段最短。
8、夹在两平行线间的平行线段相等9、平行线的判定:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)垂直于同一条直线的两条的直线互相平行.(5)如果两条直线都和第三条直线平行,那么这两条直线也平行10、平行线的性质:(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
三、角平分线、垂直平分线、图形的变化(轴对称、平称、旋转)11、角平分线的性质:角平分线上的点到这个角的两边的距离相等.12、角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.13、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等.14、线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.15、轴对称的性质:(1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分.(2)对应线段相等、对应角相等。
公理和定理的区别原理

公理和定理的区别原理
公理和定理都是数学领域中重要的概念,二者有明确的区别。
公理一般被认为是数学上的一些基本假设或前提。
在数学领域中,公理可以引出更深刻的结论和推论。
公理在数学研究中是不可缺少的,因为它们是理解和推导数学定理的基石。
公理被认为是基于直觉或经验的,它们通常没有证明过程,而是需要被接受为真。
公理是数学中的基石,是不可证明的前提。
换句话说,公理是基础,定理是建筑。
而定理则是基于公理之上,由约束和证明过程推导出的结论。
在数学中,定理是最重要的概念之一,它是数学推理的理论基础。
定理是任何数学分支的核心产物。
定理是可以通过其他定理、定义和公理推导证明的,因此它们具有严格的证明过程。
不同于公理,定理需要证明,才能被认为是正确的。
为了更好地理解二者之间的差异,我们可以以欧几里得几何学为例。
欧几里得几何学中,公理是一组基本的假设,由这组假设可以引出许多定理,例如平行线公设,等边三角形的角相等,等腰三角形的底角相等等。
这些定理是基于公理证明出来的,它们是欧几里得几何学体系中的重要组成部分。
总的来说,公理是前提,定理是结论。
公理是所有推导过程的基础,而定理是从公理中推导出的结论,在数学研究和推理中,无论是公理还是定理,都是非常重
要的概念。
初中数学公式定理公理大全

初中数学公式大全1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180 °18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学公理和定理一、公理(不需证明)1、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2、两条平行线被第三条直线所截,同位角相等;3、两边和夹角对应相等的两个三角形全等; (SAS)4、角及其夹边对应相等的两个三角形全等; (ASA)5、三边对应相等的两个三角形全等; (SSS)6、全等三角形的对应边相等,对应角相等.7、线段公理:两点之间,线段最短。
8、直线公理:过两点有且只有一条直线。
9、平行公理:过直线外一点有且只有一条直线与已知直线平行10、垂直性质:经过直线外或直线上一点,有且只有一条直线与已知直线垂直以下对初中阶段所学的公理、定理进行分类:一、直线与角1、两点之间,线段最短。
2、经过两点有一条直线,并且只有一条直线。
3、同角或等角的补角相等,同角或等角的余角相等。
4、对顶角相等二、平行与垂直5、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
6、经过已知直线外一点,有且只有一条直线与已知直线平行。
7、连接直线外一点与直线上各点的所有线段中,垂线段最短。
8、夹在两平行线间的平行线段相等9、平行线的判定:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)垂直于同一条直线的两条的直线互相平行.(5)如果两条直线都和第三条直线平行,那么这两条直线也平行10、平行线的性质:(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
三、角平分线、垂直平分线、图形的变化(轴对称、平称、旋转)11、角平分线的性质:角平分线上的点到这个角的两边的距离相等.12、角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.13、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等.14、线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.15、轴对称的性质:(1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分. (2)对应线段相等、对应角相等。
16、平移:经过平移,图形上的每个点都沿着相同方向移动了相同的距离,平移后,新图形和原图形的形状和大小都没有发现改变,即它们是全等图形。
即对应线段平行且相等,对应角相等,对应点所连的线段平行且相等17、旋转对称:(1)图形中每一点都绕着旋转中心旋转了同样大小的角度(2)对应点到旋转中心的距离相等; (3)对应线段相等、对应角相等18、中心对称:(1)具有旋转对称的所有性质:(2)中心对称图形上的每一对对应点所连成的线段都被对称中心平分四、三角形:(一)一般性质19、三角形内角和定理:三角形的内角和等于180°20、三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;②三角形的一个外角大于任何一个与它不相邻的内角;③三角形的外角和等于360°21、三边关系:(1)两边之和大于第三边;(2)两边之差小于第三边22、三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.23、三角形的三边的垂直平分线交于一点(外心),这点到三个顶点的距离(外接圆半径)相等。
24、三角形的三条角平分线交于一点(内心),这点到三边的距离(内切圆半径)相等。
(二)特殊性质:25、等腰三角形、等边三角形(1)等腰三角形的两个底角相等.(简写成“等边对等角”)(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”)(3)“三线合一”定理:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(4)等边三角形的三个内角都相等,并且每一个内角都等于60°.(5)三个角都相等的三角形是等边三角形。
(6)有一个角是60°的等腰三角形是等边三角形26、直角三角形:(1)直角三角形的两个锐角互余;(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方;(3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.(4)直角三角形斜边上的中线等于斜边的一半.(5)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.(6)三角形一边的中线等于这边的一半,这个三角形是直角三角形。
五、四边形27、多边形中的有关公理、定理:(1)四边形的内角和为360°(2)N边形的内角和:( n-2)×180°.(3)任意多边形的外角和都为360°28、平行四边形的性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等;(3)平行四边形的对角线互相平分。
29、平行四边形的判定:(1)两组对边分别平行的四边形是平行四边形;(2)一组对边平行且相等的四边形是平行四边形;(3)两组对边分别相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.30、矩形的性质:(1)具有平行四边形的所有性质(2)矩形的四个角都是直角;(3)矩形的对角线相等且互相平分.31、矩形的判定:(1)有一个角是直角的平行四边形是矩形。
(2)有三个角是直角的四边形是矩形.(3)对角线相等的平行四边形是矩形。
32、菱形的性质:(1)具有平行四边形的所有性质(2)菱形的四条边都相等;(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角.33、菱形的判定:(1)四条边相等的四边形是菱形.(2)一组邻边相等的平行四边形是菱形。
(3)对角线互相垂直的平行四边形是菱形。
34、正方形的性质:(1)具有矩形、菱形的所有性质(2)正方形的四个角都是直角;(3)正方形的四条边都相等;(4)正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角.35、正方形的判定:(证明既是矩形又是菱形)(1)有一个角是直角的菱形是正方形;(2)有一组邻边相等的矩形是正方形.(3)对角线相等的菱形是正方形(4)对角线互相垂直的矩形是正方形36、等腰梯形的判定:(1)同一条底边上的两个内角相等的梯形是等腰梯形;(2)两条对角线相等的梯形是等腰梯形.37、等腰梯形的性质:(1)等腰梯形的同一条底边上的两个内角相等;(2)等腰梯形的两条对角线相等.38、梯形的中位线平行于梯形的两底边,并且等于两底和的一半.四、相似形与全等形39、全等多边形的对应边、对应角分别相等.40、全等三角形的判定:(1)如果两个三角形的三条边分别对应相等,那么这两个三角形全等(SSS.). (2)如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.(SAS.)(3)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等(ASA).(4)有两个角及其中一个角的对边分别对应相等的两个三角形全等(AAS.)(5)如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等.(H.L.)41、相似三角形的性质:对应边、周长、对应线段的比均等于相似比,面积比等于相似比的平方42、相似三角形的判定:(类似于全等判定)(1)平行于三角形的一边的直线和其他两边相交所构成的三角形与原三角形相似。
(2)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似;(3)如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;(4)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似.43、相似多边形的性质:同相似三角形44、相似多边形的判定:对应边成比例且对应角相等五、圆45、(1)圆是轴对称图形,任何一条直径所在直线都是它的对称轴。
(2)圆是中心对称图形,对称中心是圆心。
46、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
47、垂径定理推论: 如果一条直线具有过圆心(直径)、垂直弦、平分弦、平分弦所对的劣弧(优弧)中知二得二。
48、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。
49、同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.50、圆周角定理 一条弧所对的圆周角等于它所对的圆心角的一半(1)半圆或直径所对的圆周角都相等,都等于90°(直角); (2)90°的圆周角所对的弦是圆的直径.(3)在同圆或等圆中,同弧或等弧所对的圆周角相等,圆周角相等则所对的弧相等;51、不在同一条直线上的三个点确定一个圆.52、切线的判定(1)经过半径的外端且垂直于这条半径的直线是圆的切线.53、切线的性质(2)圆的切线垂直于过切点的直径。
附:扩展部分:1、从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角2、射影定理:直角三角形斜边上高分成的两直角三角形与原三角形相似,并且有以下关系:(1)AC 2=AD ·AB (2)BC 2=BD ·AB (3)CD 2=AD ·BD3、(1)如图(1)有:AE ·BE=CE ·DE(2)如图(2),AB 是直径,CD ⊥AB ,则:CD 2=AD ·BDA B ACB D E3(1)A C D 3(2) B。