人教九年级下---锐角三角函数(3)课件
合集下载
九年级数学下册课件锐角三角函数解直角三角形

3
2
=
6
= ,
∴ a =3 3.
由勾股定理得 b = 2 − 2 = 36 − 27 = 3 .
已知一锐角和一边解三角形中的两锐角互
余求出另一个锐角,再利用已知角的正切求出另一条直角边.当已
知直角边是已知锐角的对边时,利用这个角的正弦求斜边;当已
5
3
= ,
5
H
2.如图,在△ABC 中,sinB
AC 的长为(
1
= ,tanC
3
=2,AB = 3,则
)
A. 2
B.
5
2
C. 5
D.2
A
B
C
解:如图,过 A 作 AD⊥BC 于点 D,则∠ADC=∠ADB=90°,
A
∵ tanC =2 =
,sinB
1
3
= =
,
∴ AD =2DC,AB =3AD,
∠A的邻边
∠B的邻边
A
a
b
C
知识点2:解直角三角形的基本类型及解法
1.根据下列条件,解直角三角形:
(1)在 Rt△ABC 中,∠C =90°,a =20,c =20 2;
解:(1)在 Rt△ABC 中,∠C = 90° ,
则 sinA = =
20
20 2
=
2
2
,
∴ ∠A =45°,∴ ∠B =90°-∠A =45°,∴ b =a=20.
按题意标明哪些元素是已知的,哪些元素是未知的,然
后确定锐角,再确定它的对边和邻边.
直角三角形中的边角关系
如图,在 Rt△ABC 中,∠C =90°,∠A,∠B,∠C 所
人教版初中数学九年级下册 28.1 锐角三角函数(第3课时)课件 【经典初中数学课件】

本课时主要讲解了人教版初中数学九年级下册锐角三角函数的相关内容通过这些值能迅速说出对应锐角的度数。同时,讲解了如何熟练计算含有这些角度的三角函数的运算式。此外,还深入探讨了互为余角的两个锐角A,B正切值的关系,以及一个锐角A的正弦值、余弦值和正切值之间的关系。通过仔细观察和推导,得出了这些三角函数之间的重要规律。在例题部分,详细解析了如何运用这些知识点求解实际问题,如计算特定角度的三角函数值,以及利用三角函数关系解决梯形中的角度和边长问题等。通过这些讲解和练习,旨在帮助学生深入理解和掌握锐角三角函数的相关知识,提高解题能力。
锐角三角函数(3)(人教新课标九年级下) 2(1)

AB 6, BC 3 ,求∠A的度数.
解: (1)在Rt△ABC中
6
A
3
C
BC 3 2 sin A AB 2 6
A 45
解题思路:围绕∠A所在的直角三角形,并求出∠A的一个三角函数值, 据角与锐角三角函数值的一一对应关系即可以求出∠A.
A
(2)如图,已知圆锥的高AO等于圆锥 的底面半径OB的 3 倍,求 α .
cos 45 t an 45 (2) sin 45
cos 45 t an 45 ( 2) sin 45
=0
3 1 2 2
2
2
2 2 1 2 2
=1
友情提示:
sin260°表示(sin60°)2,即(sin60°)·(sin60°), 其余类推.
练一练
1. 求下列各式的值: (1)1-2 sin30°cos30° (2)3tan30°-tan45°+2sin60°
cos60 1 (3) 1 sin 60 tan30
解: (1)1-2 sin30°cos30° (2)3tan30°-tan45°+2sin60°
1 3 1 2 2 2 3 1 2
学以致用
为了测量旗杆的高度,准备了如下测量工具: 操场里有一根旗杆,老师让小明去测量旗杆高度, ①含30°和60°两个锐角的三角尺;②皮尺 .请 小明站在离旗杆底部 10米远处,目测旗杆的顶部,视 你设计一个测量方案,能测出旗杆的高度 ? 米.你 线与水平线的夹角为 30 ° ,并已知目高为1.65 能帮他算出旗杆的高度吗?(精确到0.1米)
3 3 3 1 2 3 2
3 1 3
初中数学 九年级下册 28-1 锐角三角函数(教学课件)

∵ ∠C=90°,∠A=45°∴ BC=AC=2
由勾股定理得AB=
+ =2 ∴cos A=
=
=
变式2-2 Rt△ABC中,∠C=90°,cosA=,AC=6cm,那么BC等于_____.
在 △ 中,∵ =
∴
,
=
A.
B.
C.
D.
【详解】作AB⊥x轴交x轴于点B,
∵A(3,4),∴AB=4,BO=3,∴AO= AB 2 + BO2 = 42 + 32 =5,
B
AB 4
= .故选C.
AO 5
∴sinα =
变式1-2 把△ABC三边的长度都扩大为原来的3倍,则锐角A的正弦函数值()
A.不变
B.缩小为原来的
在直角三角形中,当锐角 A 的度数一定时,
不管三角形的大小如何,它的对边与斜边的比是一个固定值.
′′
与
’
′′
01
锐角三角函数-正弦
在 Rt△ABC 中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作:sinA.
即 sin A=
∠所对的边
斜边
=
B
斜边
c
a 对边
∠所邻的边
斜边
B
=
斜边
c
A
正弦和余弦的注意事项:
b
邻边
a 对边
C
1.sinA、cosA是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形)。
2.sinA、cosA是一个比值(数值,无单位)。
锐角三角函数第3课时特殊角的三角函数值课件人教版数学九年级下册

14.已知α为锐角,且关于 x 的方程 x2-tan α·x+1 =0 有两个相等的实根,则 4
α的度数为 B A.30° B.45° C.60° D.90°
15.如图所示的运算程序,能使输出的 y 的值为1 的是 C 2
A.α=60°,β=45° C.α=30°,β=30°
B.α=30°,β=45° D.α=45°,β=30°
BC 3 3 求出 tan 15°的值,请画出你添加的辅助线,并求出 tan 15°的值.
解:延长 CB 至点 D,使 BD=AB,连接 AD,图略.则∠D=15°,tan 15°=CADC
=1 2+
3
=2-
3
类型一 同角三角函数的相互关系
(一)同角正弦与余弦之间的关系为 sin2α+cos2α=1. 1.若α为锐角,且 sin2α+cos226°=1,则α= 26° .
2.已知 sinαcos α=18) ,且 0°<α<45°,则 sin α-cos α=
-3 2
.
(二)同角正弦、余弦、正切之间的关系为 tan
α=sin α cos α
.
5
3.已知∠A 是锐角,且 tan A=2,那么 cos A= 5
.
4.若α为锐角,tan α=4,则cos α-sin α =
5
7.在
Rt△ABC
中,∠C=90°,若
tan
A
=2 5
,则 tan B=
2
.
8.若 tan 35°·tan α·tan 50°·tan 55°=1,则锐角α= 40° .
知识点 2: 由锐角三角函数值求特殊角 7.(怀化中考)已知α为锐角,且 sin α=12 ,则α= A A.30° B.45° C.60° D.90°
人教版九年级下册数学锐角三角函数课件 (3)

D.不能确定
3.如图
B
1
3 则 sinA=___2___ .
A 30°
C
7
练习 B 根据下图,求sinA和sinB的值. 3
A
5
C
求sinA就是要确∠A 的对边与斜边的比;
求sinB就是要确定∠B 的对边与斜边的比
练习 B 根据下图,求sinA和sinB的值. 5
求sinA就是要确定∠A A 1
sinα 1 2 3
22
2
cosα 3 2 1
22
2
1 tanα 3 3
3
三、研读课文
特 殊 角
知 识 点
的一
三
角
函
数
值
1、在Rt△ABC中,∠C为直角,sinA= 2,则cosB的
2
值是( D )
A.1 ; B. 3 ; C.1;
D. 2
2
2
2
2、在Rt△ABC中, 2sin(α+20°)= 3,则锐角α的
A
如图,任意画一个Rt△ABC,使∠C=90°, ∠A=45°,计算∠A的对边与斜边的比 , 你能得出B什C么结论?
AB
C
B
在Rt△ABC中,∠C=90°,由于∠A=45°,所以Rt△ABC 是等腰直角三角形,由勾股定理得:
因此
即在直角三角形中,当一个锐角等于45°时,不管这个直角三角形的大小 如何,这个角的对边与斜边的比都等于
∠A=_4_5__0 _,设AB=K,则AC=__22_K__,BC=__22_K__,
2
2
sinB= sin45°=__2__, cosB =cos45°=_2___,
1 tanB= tan45°=____.
3.如图
B
1
3 则 sinA=___2___ .
A 30°
C
7
练习 B 根据下图,求sinA和sinB的值. 3
A
5
C
求sinA就是要确∠A 的对边与斜边的比;
求sinB就是要确定∠B 的对边与斜边的比
练习 B 根据下图,求sinA和sinB的值. 5
求sinA就是要确定∠A A 1
sinα 1 2 3
22
2
cosα 3 2 1
22
2
1 tanα 3 3
3
三、研读课文
特 殊 角
知 识 点
的一
三
角
函
数
值
1、在Rt△ABC中,∠C为直角,sinA= 2,则cosB的
2
值是( D )
A.1 ; B. 3 ; C.1;
D. 2
2
2
2
2、在Rt△ABC中, 2sin(α+20°)= 3,则锐角α的
A
如图,任意画一个Rt△ABC,使∠C=90°, ∠A=45°,计算∠A的对边与斜边的比 , 你能得出B什C么结论?
AB
C
B
在Rt△ABC中,∠C=90°,由于∠A=45°,所以Rt△ABC 是等腰直角三角形,由勾股定理得:
因此
即在直角三角形中,当一个锐角等于45°时,不管这个直角三角形的大小 如何,这个角的对边与斜边的比都等于
∠A=_4_5__0 _,设AB=K,则AC=__22_K__,BC=__22_K__,
2
2
sinB= sin45°=__2__, cosB =cos45°=_2___,
1 tanB= tan45°=____.
人教版九年级下册数学课件特殊角的三角函数值

课堂导练
10.在△ABC 中,∠C=90°,则: (1)sin2A+cos2A=____1____;
sin A (2)tan A=__c_o_s_A___; (3)sin A=__c_o_s_B___.
课堂导练
11.在 Rt△ABC 中,∠C=90°,下列式子不.一.定.成立的是( A )
A.tan
卒子过河,意在吃帅。
鸟不展翅膀难高飞。
志当存高远。
石看纹理山看脉,人看志气树看材。
志不立,天下无可成之事。
立志是事业的大门,工作是登门入室的旅程。
海纳百川有容乃大壁立千仞无欲则刚
心随朗月高,志与秋霜洁。
精彩一题 (2)求楼 CD 的高度(结果保留根号).
解:在 Rt△AED 中,DE=AE=30 3米, ∴CD=CE+ED=(30+30 3)米. 即楼 CD 的高度为(30+30 3)米.
长和 sin B 的值.
【点拨】由(1)得sin ∠ABACB=siBnCA=2R,得到 AB=4 2,2R=8, 过点 B 作 BH⊥AC 于点 H,解直角三角形得到 AC=AH+CH= 2( 2+ 6),再根据(1)的结论可求出 sin∠ABC 的值.
课后训练
解:由(1)得sin ∠ABACB=siBnCA=2R,即sinAB45°=si4n 630°=2R.
课后训练
∵tan∠1=25,∴EB=DE·tan∠1=2. ∵∠1=∠2,∴tan∠2=25. ∴AE=tanDE∠2=225. ∴AB=AE+EB=229. ∴⊙O 的半径为249.
精彩一题
16.(2020·宜宾)如图,AB 和 CD 两幢楼地面距离 BC 为 30 3米, 楼 AB 高 30 米,从楼 AB 的顶部点 A 测得楼 CD 的顶部点 D 的仰角为 45°.
人教版九年级数学下册第28章 锐角三角函数:余弦函数和正切函数

3 4. tan30°= 3 ,tan60°= 3.
5. sin70°,cos70°,tan70°的大小关系是 A. tan70°<cos70°<sin70° B. cos70°<tan70°<sin70° C. sin70°<cos70°<tan70° D. cos70°<sin70°<tan70°
∴ cos A AC = 4,tan B AC = 4 .
AB 5
BC 3
随堂即练
如图,在 Rt△ABC 中,∠C = 90°,AC = 8,
tanA= 3 , 求sinA,cosB 的值.
4
B
解:∵ tan A BC 3,
AC 4
∴ BC 3 AC 3 8 6, C
8
A
4
4
∴ AB AC 2BC2 82 62 10,
RJ九(下) 教学课件
第二十八章 锐角三角函数
28.1 锐角三角函数
第2课时 余弦函数和正切函数
学习目标
1. 认识并理解余弦、正切的概念进而得到锐角三角函 数的概念. (重点)
2. 能灵活运用锐角三角函数进行相关运算.(重点、难 点)
新课引入
如图,在 Rt△ABC 中,∠C=90°,当锐角 A 确定 时,∠A的对边与斜边的比就随之确定.
随堂即练
( )D
解析:根据锐角三角函数的概念,知 sin70°< 1,cos70°<1,tan70°>1. 又∵cos70°=sin20°, 正弦值随着角的增大而增大,∴sin70°>cos70°= sin20°.
随堂即练
6. 如图,在 Rt△ABC 中,∠C = 90°,cosA = , 15 17
A
C
cos A AC = 8 = 4,tan A BC = 6 = 3 .
5. sin70°,cos70°,tan70°的大小关系是 A. tan70°<cos70°<sin70° B. cos70°<tan70°<sin70° C. sin70°<cos70°<tan70° D. cos70°<sin70°<tan70°
∴ cos A AC = 4,tan B AC = 4 .
AB 5
BC 3
随堂即练
如图,在 Rt△ABC 中,∠C = 90°,AC = 8,
tanA= 3 , 求sinA,cosB 的值.
4
B
解:∵ tan A BC 3,
AC 4
∴ BC 3 AC 3 8 6, C
8
A
4
4
∴ AB AC 2BC2 82 62 10,
RJ九(下) 教学课件
第二十八章 锐角三角函数
28.1 锐角三角函数
第2课时 余弦函数和正切函数
学习目标
1. 认识并理解余弦、正切的概念进而得到锐角三角函 数的概念. (重点)
2. 能灵活运用锐角三角函数进行相关运算.(重点、难 点)
新课引入
如图,在 Rt△ABC 中,∠C=90°,当锐角 A 确定 时,∠A的对边与斜边的比就随之确定.
随堂即练
( )D
解析:根据锐角三角函数的概念,知 sin70°< 1,cos70°<1,tan70°>1. 又∵cos70°=sin20°, 正弦值随着角的增大而增大,∴sin70°>cos70°= sin20°.
随堂即练
6. 如图,在 Rt△ABC 中,∠C = 90°,cosA = , 15 17
A
C
cos A AC = 8 = 4,tan A BC = 6 = 3 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
?
30°
1.65米 10米
练习:P83-练习
例3、(1)如图,在Rt△ABC中, ∠C=90°,AB= 6 ,BC= 3 。求∠A的度数。 (2)如图,已知圆锥的高AO等于圆锥的底面半 径OB的 3 倍,求α.
A
B
6 3
(2)
O
A
C
B
(1)
例4 如图,在Rt△ABC中,∠ACB=90度,CD⊥AB于D ,已 知∠B=30度,计算 tan ACD sin BCD 的值。
AB AD BD 3 2 5
练习
1. 求下列各式的值:
(1)1-2 sin30°cos30°
(2)3tan30°-tan45°+2sin60°
cos60 1 (3) 1 sin 60 tan30
解: (1)1-2 sin30°cos30° (2)3tan30°-tan45°+2sin60°
A
D
B
C
3 , AC 2 3, 例5 如图,在△ABC中,∠A=30度, tanB 2
求AB。 解:过点C作CD⊥AB于点D ∠A=30度, AC 2 3
1 CD 1 CD 2 3 3 sin A 2 AC 2
A
C
D
B
3 AD 3 AD 2 3 3 cos A 2 AC 2 CD 3 BD 3 2 2 tan B 3 BD 2
1 3 1 2 2 2 3 1 2
3 3 3 1 2 3 2
3 1 3
2 3 1
cos 60 1 (3) 1 sin 60 tan 30
1 3 3 1 2 3
1 2
2 3 3
2
2. 在Rt△ABC中,∠C=90°, BC
1 2 3 2
3 3
45°
2 2
60°
3 2
2 2
1 2
1
3
例1求下列各式的值:
(1)cos260°+sin260°
(3)tan450.sin450-4sin300.cos450+cos2300
cos45 tan45 (2) sin 45
解: (1) cos260°+sin260°
1 3 2 2
1 2sin A A cos
sin 230 + 245 + tan sin 260 1 2 cos 45 + tan30cos30
2、已知:α为锐角,且满
足 3tan 数。 3、在Rt△ABC中,∠C=90°,化简
2
-4tan + 3 =0 ,求α的度
1-2sinAcosA
求∠A、∠B的度数.
7 , AC 21
B
7
解: 由勾股定理 A C
AB AC BC
2 2
21 7
2
21
2
28 2 7
sin A
BC 7 1 AB 2 7 2
∴ A=30° ∠B = 90°- ∠ A = 90°-30°= 60°
3.在Rt△ABC中,∠C=90度,tanA+tanB=4, △ABC 面积为8,求AB的长。 4.在Rt△ABC中,∠C=90度,化简
设30°所对的直角边长为a,那么斜边长为2a 另一条直角边长=
2a
2
a 2 3a
a 1 2a 2
30°
sin 30
cos30
tan 30
3a 3 2a 2
a 3 3a 3
3a 3 sin 60 2a 2
cos 60
tan 60
新人教版九年级数学(下册)第二十八章
§28.1 锐角三角函数(3)
B
∠A的对边
sinA
∠A的邻边 斜边
A
∠A的邻边
C
tanA
∠A的对边 ∠A的邻边
活 动 1
两块三角尺中有几个不同的锐 角?分别求出这几个锐角的正 弦值、余弦值和正切值. 60° 30° 45° 45°
a 1 2a 2
3a 3 a
60°
设两条直角边长为a,则斜边长= a2 a2 2a
a sin 45 2a a cos 45 2a
2 2 2 2
45°
a tan 45 1 a
仔细观察,说说你发现 30°、45°、60°角的正弦值、余弦值和正切值如下表: 这张表有哪些规律? 锐角a 30° 三角函数 sin a cos a tan a
2
2
cos45 tan45 (2) sin 45 2 2 1 2 2
=0
=1
应用生活
例2:操场里有一个旗杆,老师让小明去测量旗杆
高度,小明站在离旗杆底部10米远处,目测旗杆的顶 部,视线与水平线的夹角为30度,并已知目高为1.65 米.然后他很快就算出旗杆的高度了。
你想知道小明怎样 算出的吗?
小结
30°、45°、60°角的正弦值、余弦值和正切值如下表:
锐角a 30° 三角函数 sin a cos a tan a
1 2 3 2
3 3
45°
2 2
60°
3 2
2 2
1 2
1
3
对于sinα与tanα,角度越大,函数值也越大;(带正) 对于cosα,角度越大,函数值越小。