特高压交流输变电装备最新技术发展—特高压串补装置
特高压输变电技术的现状分析和发展趋势

特高压输变电技术的现状分析和发展趋势摘要:在社会经济不断发展的背景下,人们对电力能源的需求不断提升。
电力能源传输往往受传输距离的影响,出现很大的损耗,在节能减排成为社会普遍共识的情况下,电力传输过程中的能源损耗问题愈加突出,该问题在很大程度上影响了电力能源的长距离输送和能源资源的配置。
随着特高压输变电技术的不断成熟,长距离输电过程中的能源损耗问题可以被解决。
基于以上认识,文章从特高压输变电技术的应用意义出发,探究了特高压输变电技术的研究现状及发展,希望能够为特高压输变电技术的应用提供一定的思路。
关键词:特高压;输变电;电力传输1.特高压输变电技术的应用意义应用特高压输变电技术建立特高压网络,能够进一步提升电网的安全性、可靠性与经济性;应用特高压输变电技术可以彻底解决电网跨区弱连接导致的电力网络安全问题,为我国东部地区的生产建设提供强有力的电力网络支撑;应用特高压输变电技术可解决高负载区域电网短路电流超限问题,并减少走廊回路数量、节省土地资源。
计算和实际应用证明,±800kV的直流输电线路比±600kV的直流输电线路回数明显减少,可节约输电通道面积300km2。
在传输100000kW的电能,传输距离为800km时,使用500kV交流线路需8~10回,而使用特高压输电网络仅需2回,可缩短传输通道宽度0.3km,节省传输通道面积240km2,具有较明显的经济优势。
应用特高压输变电技术和特高压电网有助于构建跨区域的大规模网络,实现错峰、调峰、水火互惠、减少电网损耗;应用特高压输变电技术也能减少煤炭运输压力,推进煤炭的集约利用。
目前,我国能源分布存在一定的结构性矛盾,中西部地区的能源资源较丰富,东部沿海地区的能源消耗大,存在能源紧张问题。
应用特高压输变电技术有助于西电东输,可以使西部地区充分发挥自身的资源优势,同时降低中部和东部地区的能源压力,推动地区经济和社会的协调发展。
1.我国特高压输变电技术的研究现状我国开展特高压输变电技术的科研工作已有30余年。
特高压交流输电技术发展现状

特高压交流输电技术发展现状1. 引言1.1 特高压交流输电技术发展现状概述特高压交流输电技术是一种高端技术,能够实现跨越长距离传输大量电力,是电力系统中的重要组成部分。
随着社会经济的发展和电力需求的增加,特高压交流输电技术在近年来得到了迅速发展。
特高压交流输电技术通过提高输电电压和线路容量,减少输电损耗和占地面积,提高了电网的稳定性和可靠性,为我国电力供应的安全性和稳定性提供了有力保障。
特高压交流输电技术在促进电力资源优化配置、提高电网运行效率、促进节能减排等方面也发挥着重要作用。
当前,特高压交流输电技术已经成为电力行业发展的重要方向,受到了广泛关注和重视。
未来,随着技术的不断创新和完善,特高压交流输电技术将会继续发展壮大,为国家电力事业的发展做出更大贡献。
2. 正文2.1 特高压交流输电技术的历史发展特高压交流输电技术是电力传输领域的重要技术之一,经过多年的发展和进步,已经取得了许多重要的成就。
特高压交流输电技术的历史可以追溯到上世纪初,最早出现在欧洲和美国。
最初,特高压交流输电技术主要用于解决长距离电力传输的问题,例如将发电厂产生的电能传输到远离城市的地区。
随着工业化和城市化的发展,特高压交流输电技术得到了进一步的推广和应用。
在特高压交流输电技术的发展过程中,出现了许多关键的技术突破和挑战。
随着传输距离的增加和输电线路的容量要求不断提高,研究人员不断寻求提高传输效率和减少能量损失的方法。
特高压交流输电技术还面临着环境保护和电网安全等方面的挑战,需要不断创新和改进技术。
特高压交流输电技术的发展历程充满了挑战和机遇。
通过不断的创新和努力,特高压交流输电技术已经取得了长足的进步,为电力传输领域的发展做出了重要贡献。
在未来,特高压交流输电技术将继续发展,为建设清洁、高效的电力系统提供技术支持。
2.2 特高压交流输电技术的主要应用领域1. 长距离输电:特高压交流输电技术能够实现长距离、大容量的电能输送,有效解决了远距离电力输送存在的能量损耗和输电效率低的问题。
高压直流输电技术的发展趋势

高压直流输电技术的发展趋势在当今能源需求不断增长、能源分布不均衡以及对电力供应质量要求日益提高的背景下,高压直流输电技术作为一种高效、可靠的电力传输方式,正发挥着越来越重要的作用。
随着科技的不断进步,高压直流输电技术也在持续发展和创新,展现出一系列令人瞩目的发展趋势。
高压直流输电技术具有诸多优点,如能够实现远距离、大容量输电,降低输电损耗,提高输电效率等。
它在实现能源资源的优化配置、促进区域间的电力互济等方面发挥着关键作用。
从技术层面来看,电压等级的不断提高是一个重要的发展趋势。
更高的电压等级意味着能够传输更大的功率,减少输电线路的数量,降低建设成本和土地占用。
目前,特高压直流输电技术已经取得了显著的成就,未来有望进一步提升电压等级,以满足更大规模的电力输送需求。
在换流器技术方面,新型的换流器拓扑结构不断涌现。
传统的基于晶闸管的换流器逐渐被基于绝缘栅双极型晶体管(IGBT)等全控型器件的换流器所取代。
这些新型换流器具有更快的开关速度、更好的控制性能和更低的损耗,能够提高输电系统的效率和稳定性。
直流断路器的研发也是一个关键领域。
快速可靠的直流断路器对于保障直流输电系统的安全运行至关重要。
目前,已经有多种直流断路器的技术方案在研究和试验中,未来有望实现更快速、更可靠、更经济的直流断路器,从而提高直流输电系统的故障处理能力。
随着电力电子技术的发展,多端直流输电系统正逐渐成为现实。
相较于传统的两端直流输电,多端直流输电能够更灵活地实现多个电源和负荷的连接,提高电力系统的可靠性和灵活性。
未来,多端直流输电系统有望在城市电网、区域电网互联等领域得到广泛应用。
在控制保护技术方面,智能化、自适应的控制保护系统是发展的方向。
通过先进的传感器和监测技术,实时获取输电系统的运行状态信息,利用智能算法进行分析和决策,实现对输电系统的精准控制和保护,提高系统的稳定性和可靠性。
在能源转型的大背景下,高压直流输电技术与可再生能源的结合将更加紧密。
特高压交流输电技术发展现状

特高压交流输电技术发展现状特高压交流输电技术是一种用于远距离输电的高压输电技术,其特点是输电距离远、输电功率大、输电损耗小。
特高压交流输电技术发展迅猛,已经成为当今世界上最先进的输电技术之一。
本文将从特高压交流输电技术的发展历程、现状及未来发展趋势三个方面进行探讨。
一、发展历程特高压交流输电技术的发展历程可以追溯到20世纪初。
当时,发电厂与用电地点的距离不断增大,传统的110kV、220kV输电线路已经不能满足需求,迫切需要一种更高电压等级的输电技术。
1928年,世界上第一条超高压(即特高压)输电线路——美国卡姆登至贝格姆特的345kV交流输电线路建成,标志着特高压交流输电技术的诞生。
此后,各国纷纷投入特高压交流输电技术的研究和实践。
随着电力系统的发展和输电距离的增加,特高压交流输电技术逐渐成为远距离输电的首选技术。
二、现状目前,特高压交流输电技术已经非常成熟,并且在全球范围内得到了广泛应用。
中国自2009年以来就先后建成了多条特高压输电工程,其中以西北至华东特高压交流输电工程、扬中至南京特高压直流输电工程等为代表。
这些工程不仅为中国电力系统的升级换代提供了有力支撑,更极大地推动了我国电力工业的技术创新和模式转型。
在国际上,俄罗斯、美国、巴西、印度等许多国家也纷纷启动了特高压交流输电工程的建设。
特高压交流输电技术已经成为世界范围内输电技术的主流。
特高压交流输电技术的发展现状主要表现在以下几个方面:1.技术水平稳步提升。
特高压交流输电技术的核心在于输电线路和变电设备。
目前,特高压输电线路的工作电压等级已经达到1100kV,并且具备了超过10GW的输电功率能力。
变电站设备的技术水平也不断提高,已经能够满足特高压输电系统的稳定运行和故障处理需求。
2.工程建设规模不断扩大。
随着技术的提升,特高压输电工程的规模不断扩大。
现在已经出现了数千公里长的特高压输电线路,使得大气污染等环保问题得到了有效的缓解。
特高压输电系统还能够处理复杂的电磁环境和极端天气等情况,确保了系统的可靠性和稳定性。
1000kV特高压串联电容器耐爆能量与接线方式选择浅析

2 引起 电容器爆破 的原 因
21 导 致 电容器 爆破 的 能量 来源 .
有 大 幅 度 提 高 , 需 装设 的 串联 电 容器 装 置 的 容 量 所
也 大 幅 提 高 , 过 串联 电容 器 装 置 的 系统 电流 比较 流
大 ,从 而 带来 了 串联 电容器 装 置 的安 全运 行 问题 ,
电容 器爆破 是 电容 器装 置最 严重 的事故 .它 不
1 概 述
特 高 压 及 长 距 离输 电线 路 的投 入运 行 , 得 串 使
仅使 装置设 备 损坏 , 严重 时 可能会 导 致火 灾 , 造成 输
电线 路正 常运行 的 中断 , 重威 胁 电网 的安 全运 行 。 严
联 电容 器 装 置在 特 高压 系统 的使 用成 为可能 。 由于 特 高 压 比普 通 高 压 及 超 高 压 输 电 线 路 的输 送 容 量
e ta r iay h S h tt e e po ie e eg sali o a tfco r y o o s eain i e x od r i r n O t a h x lsv n r y i ! mp r a trwo h fc n i rt n t t n t d o h d sg fc p ct rb n .h se s y fo te c luain o h x l sv n r fwi n ytm , e in o a a i a kT i sa , m h ac lt fte e p o ie e eg o r g s se o r o y i
21 0 1年第 4期
河 南 电 力
l0k O0 V特高压串联电容器耐爆能量 与接线方式选择浅析
田秋松 , 张健毅 , 果 , 郭 李茹 勤
特高压交流试验示范工程串补平台的吊装方案研究

4 0
10 O 各种 规格
4 平 台整 体 吊装
8 平 台、设 备 吊装控 制 螺栓紧固
水准 仪
经纬 仪
2 基 础标 高 复测 , 台找 平
平
4 平 台支 柱 绝缘 子 找正 , 钢 丝绳 垂直 度 检测 。
脚手 架
2 支 柱 、 拉 绝缘 子 安装 0 斜
④在完成平 台吊装作业前需拆除下球节点 所 有 临 时 固定螺 栓 , 接下 球节 点球 窝 与支 柱 绝 连 缘子的永久固定螺栓 , 并紧固到要求 的力矩值 。 35吊装后 的设 备安装 工作 .
当平 台 的 吊装 完成 后 , 以安 装 平 台上 的主 可 设备 了, 一般按照 由内向外 、 从低到高 的原则进 行 。设 备 吊装 流程 为 : V 阻尼 电抗 器 阻尼 MO 电 阻器 一 电容 器 组 火 花 间 隙一 电流 互 感 器一
2 1 年第 3 02 期
特高压交流试验示范工程串补平台的吊装方案研究
冯 舰
20 3 ) 0 2 5 ( 海送 变 电工 程 公 司 , 海 上 上
摘
要: 晋东南一 阳一 门交流特高压试验示 范工程成功投运后 , 南 荆 实现 了华 北与华中电网的特 高压 同步联 网。采 取
在10 k 线路侧加装 串联补偿电容器 的方法 , 00 V 可进一步提高通道送 电能力 。串补装置设备平台是否能够安全 、 正确安装 , 对设备 的安全运行有直接影 响, 进而对线路通道输送能力有重要 的影响 。文章介绍 了10 k 0 0 V串补平 台的吊装方法 , 对后 续特高压交流工程串补的吊装有一定的借鉴意义。 关键词: 特高压 ; 串补平 台; 吊装
特高压交流输电技术发展现状

特高压交流输电技术发展现状特高压交流输电技术是指电压等级在800千伏及以上的电力输电系统。
它是实现全球范围内大规模能源互联网的关键技术之一,也是未来能源互联网发展的必然选择。
本文将介绍特高压交流输电技术的发展现状。
作为特高压交流输电技术的发起者和领跑者,中国在特高压交流输电领域取得了重要的进展。
2010年,中国建成了世界首条特高压交流输电工程——京沪特高压工程。
此后,中国陆续建设了西电东送、南西电网、北洛电网等一系列特高压交流输电工程,形成了覆盖全国的特高压输电网。
据统计,中国目前特高压交流线路总长已经超过3万公里。
除了覆盖面积之外,中国特高压交流输电技术在其他方面也取得了显著的进展。
首先是电力传输效率的大幅提高。
特高压交流输电技术的特点是输电线路可以较长距离传输能量,同时在线路传输过程中能量损失少。
这种输电技术的广泛应用不仅可以降低输电成本,还可以降低二氧化碳等温室气体的排放,进而保护环境。
其次,中国特高压交流输电技术在电网安全和稳定运行方面也具有重要意义。
特高压交流输电技术可在输电过程中通过智能监测系统及时地发现故障,保障电网的安全稳定运行,并为善后措施提供必要的支持。
除了中国,世界上还有一些其他国家也在开展特高压交流输电技术的研究和实践。
例如,欧洲在发展可再生能源时面临着能源地理分布不均的问题,需要通过输电将远离能源消费中心的可再生能源输送到主要用电地点。
为此,欧洲各国陆续启动了特高压交流技术的研究和试验工作,试图通过特高压交流输电来解决能源输送的问题。
美国也有一些特高压交流输电工程,例如从得克萨斯州到加利福尼亚州的特高压输电线路,其线路长度达到近1000英里。
这条输电线路的电压等级达到了1100千伏,并实现了可持续运营。
总体来看,特高压交流输电技术在全球范围内都受到了越来越多的关注和研究,特别是在推动可再生能源的发展、提高能源供应安全等方面具有重要的作用和价值。
从发展趋势上看,未来的特高压交流输电技术将主要体现为智能化、数字化和高效化三个方面。
基于相位比较的1000kV特高压串补电容器组不平衡度分析及调整

—
C5 C8 -C 6 C 7
特高压 串补 电容器组配置了过电压保护、过负
荷保护 、不平衡保护 。过电压保护 由 M O V装置将
电容 器组 两端 电压 限制 在 可 以承受 的 2 . 3倍 额 定 电
又因为电容器组桥 1 电容 c m与电容器组桥 2
电容 C m几乎 相等 ,所 以
压范围内,保护 电容器组免受损坏 ,此定值由一次
第 3期( 总第 1 8 0期 )
2 0 1 3年 0 6月
山
西
电
力
N o . 3( S e r . 1 8 0 )
J u n .2 0 1 3
S HAN XI EI C TR I C P OW ER
基于相位 比较的 1 0 0 0 k V特高压 串补 电容 器组 不平衡度分析及调整
关键 词 :相位 比较 ;特 高压 ; 串补 ;电容 器组 ;不平衡 度
中图分 类号 :T M5 3
文献标 识码 :A
文章 编 号 :1 6 7 1 — 0 3 2 0 ( 2 0 1 3 ) 0 3 — 0 0 4 0 — 0 3
0 引言
为提高 1 0 0 0 k V晋东商 _南 - 日 —荆门特高压试验
示 范 工 程 的输 电能 力 ,2 0 1 1年 特 高 压 扩 建 工 程 安
能造成整台电容器的电容量改变 ,进而引起整个电 容器组电容量 的改变。电容器组在出厂时都尽量将 各桥臂电容量配置一致 ,这样理论上运行状态下不 平衡电流应为零 ,但要做到各桥臂电容量完全一致
几 乎是 不可 能 的 ,同时运行 状况 和环 境 温度都 可 能
交通大学 电力系统及 自 动化专业 , 工程师 , 从 事交流特 高压运维工作 ; 成小胜( 1 9 7 0 一 ) , 男, 山西晋城人 , 1 9 9 3 年毕业 于河 北煤
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特高压工程大规模建设,核心装备是关键。
为促进特高压交流输电技术的进一步发展,对特高压交流变压器、气体绝缘金属封闭开关设备(GIS)、串联补偿装置和避雷器等关键装备的最新技术发展进行了总结和展望。
结果表明:特高压变压器应选择局部放电概率为1‰时的电场强度允许值作为许用场强;采用器身端部磁屏蔽、油箱电屏蔽、油箱磁屏蔽、采用不导磁钢板等漏磁控制措施可有效降低1500MVA大容量特高压变压器的漏磁和温升;特高压断路器的开断能力可达63kA,采用基于“三回路法”的合成试验回路可突破试验设备限制,完成1100kV断路器开断试验;明确了通过在“立式”隔离开关静触头侧安装阻尼电阻来限制VFTO的幅值和频率;提出了从持续运行电压的角度出发,特高压避雷器的额定电压降低到780kV是安全的。
未来特高压交流输变电装备应在高可靠性、大容量、新工作原理和性能参数优化等方面进行深入研究。
特高压交流变压器、开关设备、串补装置和避雷器是特高压交流输电工程的主要核心装备,本次将重点对这4类设备的最新技术发展进行梳理和总结。
特高压串补装置发展
特高压串补装置主要解决了应用串补对系统特性影响、串补关键技术参数的优化选取、控制保护和测量系统的强抗电磁干扰能力、超大容量电容器组的设计和保护、串补火花间隙的通流能力及动作可靠性、限压器的压力释放能力及均流性能、旁路开关的快速开合能力以及阻尼装置、光纤柱、电流互感器的结构设计等关键技术问题。
攻克了特高压、超大电流、超大容量条件下,串补主设备多项关键技术指标达到性能极限的难题,研制出特高压串补一次设备,并全部实现了国产化。
电容器组
串补用电容器组是实现串补功能的基本物理元件,是串补装置的关键设备之一。
单套特高压串补电容器数量多达2500台,为500kV串补的3-4倍,面临大补偿容量下电容器单元的大量串并联难题。
国内提出了双H桥保护方案,结合花式接线技术,解决了电容器不平衡电流检测灵敏性和注入能量控制之间的配合难题,同时解决了串联电容器组可能群爆的技术难题,串补用电容器组的实体图和接线原理图如图12和图13所示。
限压器
针对特高压串补提出的极为苛刻的可靠性要求,专门优化了电阻片的配片方法,实现了每相限压器近百柱电阻片柱并联(每个电阻片柱由30片电阻片串联)后柱间分流系数从超高压
串补的1.10降至1.03。
采用特殊设计的压力释放结构,在瓷外套限压器单元高度达2.2m、内部无隔弧筒的情况下,压力释放能力达到了63kA/0.2s。
火花间隙
特高压串补用火花间隙的额定电压达到120kV,远高于超高压串补用火花间隙的80kV;电流承载能力达到63kA/0.5s(峰值170kA),是超高压间隙的2.5倍。
研制的火花间隙具有精确、可控、稳定的触发放电电压以及足够的故障电流承载能力(63kA,0.5s),百微秒级触发放电时延,主绝缘快速恢复能力(在通过50kA/60ms电流后,间隔650ms时恢复电压标幺值达2.17)、强抗电磁干扰能力等性能。
表4是特高压串补用火花间隙与500kV串补用火花间隙主要参数对比表。
图14记录了短路试验时间隙可靠动作的情况。
串补平台
设计了紧凑化、大载荷、高抗震等级的特高压串补平台,形成了国际独有的特高压串补真型
试验研究能力;建立了复杂多设备三维力学和场强分析模型,提出了一体化、大包围结构的3段母线式平台设备紧凑化布置和支撑方案,解决了超重平台(200t)的抗震、绝缘配合及电磁环境控制等难题;建设了特高压串补真型试验平台,形成了串补平台大尺度外绝缘配合、电晕及空间场强、平台上弱电设备电磁兼容等试验能力,填补了特高压串补试验研究的空白,如图15所示。
旁路开关和旁路隔离开关
研制了大容量灭弧室和高速操作机构,解决了10m超长绝缘拉杆在高速动作下的导向和机械强度难题,研制出首台T型结构SF6瓷柱式旁路开关,额定电流达6300A,合闸时间≤30ms,机械寿命10000次;提出了主触头加装辅助真空断路器,由主导电杆操作开合转换电流的方法,研制出首台敞开式旁路隔离开关,转换电流开合能力大幅提升至7kV/6300A。
平台上弱电设备的电磁兼容
攻克了特高压串补平台上暂态过电压控制及弱电设备在高电位、强干扰下的电磁兼容等技术难题,研制出具有极强抗电磁干扰能力的串补平台测量系统、火花间隙触发控制箱。
图16是特高压串补装置现场图。
2011−12−16,中国电科院自主研制的国际首套特高压固定串补装置在特高压交流试验示范工程扩建工程中成功投运,装置额定电流达5080A、额定容量达1500MVA(无功),主要技术指标居世界第一,将特高压试验示范工程输送能力提高了100万kW,实现了单回特高压线路稳定输送500万kW的目标,至今保持安全稳定可靠运行。
随着电气新材料的迅速发展,更高储能密度的电容器有望应用在串补中,可以显著减少串补电容器的串、并联数量。
现有限压器阀片的能量密度为300J/cm3,随着阀片技术的进步,更高能量密度阀片的限压器有望应用于串补装置中。
新型电容器和采用高能量密度阀片的限压器可以大幅度节约串补平台的空间,从而降低串补工程的整体造价。
同时,现有特高压串补用火花间隙为敞开式强制触发型空气间隙,外界环境对其运行可靠性有一定影响,而基于新型工作原理如等离子体触发、全密封结构的快速旁路装置的研究,有望能进一步提高串补间隙的运行可靠性。