高中数学概率统计练习题
高中数学统计与概率测试题

高中数学统计与概率测试题高中数学统计与概率测试题选择题1.某校期末考试后,为了分析该校高一年级1000名学生的研究成绩,从中随机抽取了100名学生的成绩单。
以下说法中正确的是()A。
1000名学生是总体B。
每名学生是个体C。
每名学生的成绩是所抽取的一个样本D。
样本的容量是1002.某班级在一次数学竞赛中为全班同学生设置了一等奖、二等奖、三等奖以及参与奖,各个奖品的单价分别为:一等奖20元、二等奖10元、三等奖5元,参与奖2元,获奖人数的分配情况如图。
以下说法不正确的是()A。
获得参与奖的人数最多B。
各个奖项中三等奖的总费用最高C。
购买奖品的费用平均数为9.25元D。
购买奖品的费用中位数为2元3.XXX为了调查消费者对滴滴打车出行的真实评价,采用系统抽样方法从2000人中抽取100人做问卷调查。
为此将他们随机编号1,2,⋯,2000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的100人中,编号落入区间[1,820]的人做问卷A,编号落入区间[821,1520]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为()A。
23B。
24C。
25D。
264.为了解城市居民的环保意识,某调查机构从一社区的120名年轻人、80名中年人、60名老年人中,用分层抽样方法抽取了一个容量为n的样本进行调查,其中老年人抽取3名,则n=()A。
13B。
12C。
10D。
95.A、B、C、D四位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆车只能带一大人和一小孩,其中孩子们表示都不坐自己妈妈的车,则A的小孩坐C妈妈或D妈妈的车概率是A。
1/15B。
C。
D。
6.如图,海水养殖厂进行某水产品的新旧网箱养殖方法产量对比,收获时各随机抽取了100个网箱,测量各箱水产品产量(单位:kg),其频率分布直方图如图。
根据频率分布直方图,下列说法正确的是①新网箱产量的方差的估计值高于旧网箱产量的方差的估计值②新网箱产量中位数的估计值高于旧网箱产量中位数的估计值③新网箱产量平均数的估计值高于旧网箱产量平均数的估计值④新网箱频率最高组的总产量的估计值接近旧网箱频率最高组总产量估计值的两倍A。
人教B版高中数学选择性必修第二册课后习题 第四章 概率与统计 4.1.1 条件概率

第四章 概率与统计4.1 条件概率与事件的独立性4.1.1 条件概率必备知识基础练1.已知P(B|A)=12,P(A)=35,则P(AB)等于( )A.56B.910C.310D.1102.把一枚质地均匀的硬币任意抛掷两次,事件A={第一次出现正面},事件B={第二次出现正面},则P(B|A)等于( ) A.14B.12C.16D.183.同时抛掷一个红骰子和一个蓝骰子,观察向上的点数,记“红骰子向上的点数为奇数”为事件A,“两颗骰子的点数之积为奇数”为事件B,则P(B|A)=( ) A.12B.13C.14D.164.已知在10支铅笔中,有8支正品,2支次品,从中任取2支,则在第一次抽的是次品的条件下,第二次抽的是正品的概率是( ) A.15B.845C.89D.455.一个家庭中有两个小孩,已知其中有一个是女孩,则另一个是男孩的概率为.6.从1,2,…,15中,甲、乙两人依次任取一数(不放回),在已知甲取到的数是5的倍数的条件下,甲取的数大于乙取的数的概率是.7.将三枚质地均匀的骰子各掷一次,设事件A=“三个点数之和等于15”,B=“至少出现一个5点”,则概率P(A|B)等于.关键能力提升练8.(浙江宁波高二课时练习)中秋节吃月饼是我国的传统习俗,若一盘中共有两种月饼,其中4块五仁月饼,6块枣泥月饼,现从盘中任取3块,在取到的都是同种月饼的条件下,都是五仁月饼的概率为( )A.34B.130C.12D.169.将三枚骰子各掷一次,设事件A为“三个点数都不相同”,事件B为“至少出现一个6点”,则P(A|B)等于( )A.6091B.12C.518D.9121610.(辽宁大连一模)我国中医药选出的“三药三方”对治疗某种疾病均有显著效果,“三药”分别为金花清感颗粒、连花清瘟胶囊、血必净注射液;“三方”分别为清肺排毒汤、化湿败毒方、宣肺败毒方,若某医生从“三药三方”中随机选出两种,事件A表示选出的两种中有一药,事件B 表示选出的两种中有一方,则P(B|A)= .11.将分别写有A,B,C,D,E的5张卡片排成一排,在第一张是A且第三张是C的条件下,第二张是E的概率为;第二张是E的条件下,第一张是A且第三张是C的概率为.12.由“0,1,2”组成的三位数密码中,若用A表示“第二位数字是2”的事件,用B表示“第一位数字是2”的事件,则P(A|B)= .学科素养创新练13.某校从学生文艺部6名成员(4男2女)中,挑选2人参加学校举办的文艺汇演活动.(1)男生甲被选中的概率为;(2)在已知男生甲被选中的条件下,女生乙被选中的概率为;(3)在要求被选中的两人中必须一男一女的条件下,女生乙被选中的概率为.参考答案第四章概率与统计4.1 条件概率与事件的独立性4.1.1 条件概率1.C 由条件概率计算公式得P(B|A)=P(AB)P(A),所以12=P(AB)35,所以P(AB)=12×35=310.故选C.2.B 第一次出现正面的概率是P(A)=12,第一次出现正面且第二次也出现正面的概率P(A∩B)=14.所以P(B|A)=P(A⋂B)P(A)=12.3.A P(A)=12,若事件A,B同时发生,则蓝色骰子向上点数为奇数,故P(AB)=14,所以P(B|A)=P(AB)P(A)=12.故选A.4.C 记事件A,B分别表示“第一次、第二次抽得正品”,则A B表示“第一次抽得次品,第二次抽得正品”.故P(B|A)=(ABP(A)=89.5.23一个家庭中有两个小孩,已知其中有一个是女孩,基本事件有(女,女),(女,男),(男,女),共3个,其中另一个是男孩包含的基本事件有2个,分别为(女,男),(男,女),则另一个是男孩的概率为23.6.914A={甲取的数是5的倍数},B={甲取的数大于乙取的数},P(B|A)=P (AB )P (A )=4+9+1415×143×1415×14=914.7.113至少出现一个5点的情况有63-53=91,至少出现一个5点的情况下,三个点数之和等于15有以下两类:①恰好一个5点,则另两个点数只能是4和6,共有C 31×C 21=6;②恰好出现两个5点,则另一个点数也只能是5点,共有1种情况. 所以P(A|B)=6+191=113.8.D 设“取到的都是同种月饼”为事件A,“都是五仁月饼”为事件B. 因为P(AB)=C 43C 103=4120=130,P(A)=C 43+C 63C 103=4+20120=24120=15.所以P(B|A)=P (AB )P (A )=13015=16.所以在取到的都是同种月饼的条件下,都是五仁月饼的概率为16.故选D. 9.A ∵P(A|B)=P (AB )P (B ),P(AB)=6063=60216,P(B)=1-P(B )=1-5363=1-125216=91216.∴P(A|B)=P (AB )P (B )=6021691216=6091.故选A.10.34某医生从“三药三方”中随机选出两种,事件A 表示选出的两种中有一药,事件B 表示选出的两种中有一方,则P(A)=C 32+C 31C 31C 62=45,P(AB)=C 31C 31C 62=35,所以P(B|A)=P (AB )P (A )=3545=34.11.13112A,B,C,D,E5张卡片排成一排,在第一张是A 且第三张是C 的条件下,第二张可以是B,D,E,所以第二张是E 的概率为13;第二张是E 的条件下,其余四张的可能结果有A 44=24(种),其中第一张是A 且第三张是C 的可能结果有A 22=2(种),所以所求的概率为224=112.12.13由“0,1,2”组成的三位数密码,共有3×3×3=27(个)基本事件,又由用A 表示“第二位数字是2”的事件,用B 表示“第一位数字是2”的事件,可得P(B)=3×327=13,P(A∩B)=327=19,所以P(A|B)=P (A⋂B )P (B )=1913=13.13.(1)13(2)15(3)12(1)从6名成员中挑选2名成员,共有C 62=15种情况,记“男生甲被选中”为事件A,事件A 所包含的基本事件数为C 51=5种,故P(A)=13.(2)记“男生甲被选中”为事件A,“女生乙被选中”为事件B,则P(AB)=115,由(1)知P(A)=13,故P(B|A)=P (AB )P (A )=15.(3)记“挑选的2人一男一女”为事件C,则P(C)=815,“女生乙被选中”为事件B,P(BC)=415,故P(B|C)=P (BC )P (C )=12.。
高中数学概率统计练习题

y 2015年12月31日期末复习题(二)一.选择题(共12小题)1.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,则此样本的容量为()A.40B.80C.160D.3202.某县教育局为了解本县今年参加一次大联考的学生的成绩,从5000名参加今年大联考的学生中抽取了250名学生的成绩进行统计,在这个问题中,下列表述正确的是()A.5000名学生是总体B.250名学生是总体的一个样本C.样本容量是250D.每一名学生是个体3.(2015?抚顺模拟)某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法.抽取4个班进行调查,若抽到的最小编号为3,则抽取最大编号为()A.15B.18C.21D.224.一个频率分布表(样本容量为30)不小心倍损坏了一部分,只记得样本中数据在[20,60)上的频率为0.8,则估计样本在[40,50),[50,60)内的数据个数共为()A.15B.16C.17D.195.如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为()A.11B.11.5C.12D.12.56.某公司在2014年上半年的收入x(单位:万元)与月支出(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系7.下列事件是随机事件的是()(1)连续两次掷一枚硬币,两次都出现正面向上.(2)异性电荷相互吸引(3)在标准大气压下,水在1℃时结冰(4)任意掷一枚骰子朝上的点数是偶数.A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)8.从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么对立的两个事件是()A.至少有1个白球,至少有1个红球B.至少有1个白球,都是红球C.恰有1个白球,恰有2个白球D.至少有1个白球,都是白球9.抛掷一枚质地均匀的硬币,如果连续抛掷2011次,那么第2010次出现正面朝上的概率是()A.B.C.D.10.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是()A.0.42B.0.28C.0.3D.0.711.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4B.0.6C.0.8D.112.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A.B.C.D.二.填空题(共4小题)13.在棱长为2的正方体内随机取一点,取到的点到正方体中心的距离大于1的概率.14.从甲、乙、丙、丁四人中任选两名代表,甲被选中的概率为。
高中数学概率统计题库及答案解析

高中数学概率统计题库及答案解析随着高中数学概率统计的教学深入,学生们需要更多的练习来巩固所学知识。
因此,一个全面且有针对性的概率统计题库及答案解析就显得尤为重要。
本文将介绍一个高中数学概率统计题库,并提供详细的答案解析,帮助学生更好地掌握该领域的知识。
一、选择题1. 已知事件A和事件B是互不相容的,且P(A)= 0.3,P(AUB) = 0.7,求P(B)的值。
解析:由题意可知 P(AUB) = P(A) + P(B) - P(AB),代入已知条件可得 0.7 = 0.3 + P(B) - 0,从而得到 P(B) = 0.4。
2. 设事件A和事件B相互独立,且P(A) = 1/4,P(B) = 1/3,求P(AB)的值。
解析:由于事件A和事件B相互独立,所以 P(AB) = P(A)P(B),代入已知条件可得 P(AB) = (1/4)(1/3) = 1/12。
二、计算题1. 从1到20中随机选取一个数,求选取的数被3整除的概率。
解析:在1到20中可以被3整除的数有3, 6, 9, 12, 15, 18共6个。
而总的样本空间为20,所以选取的数被3整除的概率为6/20 = 3/10。
2. 甲、乙、丙共参加了一次考试,甲过的概率为0.7,乙过的概率为0.8,丙过的概率为0.9。
已知甲、乙、丙三人中至少有两人过的概率是0.97,求三人中全部过的概率。
解析:设甲、乙、丙三人全部过的概率为 P(甲)P(乙)P(丙),根据题意可得到以下等式:1 - [P(甲) + P(乙) + P(丙) - P(甲)P(乙) - P(甲)P(丙) - P(乙)P(丙)] = 0.97代入已知概率可解得 P(甲)P(乙)P(丙) = 0.51,即三人全部过的概率为0.51。
三、证明题已知事件A和事件B是相互独立的,证明事件A的补事件与事件B的补事件也是相互独立的。
证明:设事件A的补事件为A',事件B的补事件为B'。
高中数学概率统计专题练习题及答案

高中数学概率统计专题练习题及答案一、选择题1. 掷一枚骰子,结果为奇数的概率是多少?A. 1/2B. 1/6C. 2/3D. 1/32. 从1至20这20个数字中随机选出一个数,选出的数是素数的概率是多少?A. 1/5B. 1/4C. 1/2D. 2/53. 一只盒子中有5张红牌和3张蓝牌,从中随机抽取2张牌,同时放回,再随机抽取2张牌,求两次抽取都是红牌的概率是多少?A. 1/16B. 3/8C. 1/4D. 1/8二、计算题1. 一次考试中,甲乙丙三位同学都有70%的概率通过考试。
求三位同学中至少有一位通过考试的概率。
答案:1 - (1 - 0.7)^3 = 0.9732. 从1至100这100个数字中随机选出一个数,选出的数是2的倍数且小于等于50的概率是多少?答案:50/100 = 0.53. 有A、B两个车站,A车站开往B车站的列车间隔是15分钟,B车站开往A车站的列车间隔是10分钟。
现在一个人随机到达A车站,请问他至少要等待几分钟才能搭乘到开往B车站的列车?答案:最小公倍数(15, 10) = 30分钟三、应用题1. 每个学生参加一次足球比赛的概率是0.4,问一个班级20个同学中至少有10个学生参加比赛的概率是多少?答案:利用二项分布公式,计算P(X≥10),其中n=20,p=0.4,k≥10。
答案约为0.599。
2. 一批产品有10%的次品率,现从中随机抽取20个产品,求其中恰好有3个次品的概率。
答案:利用二项分布公式,计算P(X=3),其中n=20,p=0.1,k=3。
答案约为0.201。
3. 一支篮球队最近10场比赛中获胜的概率是0.8,在下一场比赛中,求该队至少获胜8次的概率。
答案:利用二项分布公式,计算P(X≥8),其中n=10,p=0.8,k≥8。
答案约为0.967。
以上为高中数学概率统计专题练习题及答案。
希望对您的学习有所帮助!。
全国名校高中数学题库--概率与统计

“概率与统计”专题训练一.随机抽样(简单随机抽样,系统抽样,分层抽样)1.从学号为0~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是(B)A.1,2,3,4,5B、5,15,25,35,45C.2,4,6,8,10D、4,13,22,31,402.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是(D)A.12,24,15,9B.9,12,12,7C.8,15,12,5D.8,16,10,63.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N为__120_______4.一个社会调查机构要了解某地区8000名教师的月收入情况,从中随机抽取400名进行调查,调查结果如下表所示:则该地区月收入在[2000,4000]的教师估计有_6400___名.5.某学校有学生4022人.为调查学生对2010年上海世博会的了解情况,现用系统抽样的方法抽取一个容量为30的样本,则分段间隔是____134____.6.某校高一年级有x名学生,高二年级有y名学生,高三年级有z名学生,采用分层抽样抽取一个容量为45的样本,高一年级被抽取20人,高二年级被抽取10人,高三年级共有学生300人,则此学校共有学生___900_____人.7.经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生参加摄影座谈会,如果选出的是5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多_3___人.8.一工厂生产了某种产品16800件,它们来自甲、乙、丙3条生产线,为检查这批产品的质量,决定采取分层抽样的方法进行抽样,已知甲、乙、丙3条生产线抽取的个体数组成一个等差数列,则乙生产线生产了___5600_______件产品.二.用样本估计总体(频率分布直方图,茎叶图,众数,中位数,平均数,标准差,方差)1.频率分布直方图:小长方形的面积=频率,各个小矩形的面积之和为12.众数:出现次数最多的数3.中位数:将一组数据按大小依次排列,处在最中间的一个数据(或最中间两个数据的平均数)4.标准差:s =5.方差:()()()2222121...n s x x x x x x n ⎡⎤=−+−++−⎢⎥⎣⎦方差(或标准差)越小,数据越稳定.1.某人从一鱼池中捕得120条鱼,做了记号之后,再放回池中,经过适当的时间后,再从池中捕得100条鱼,结果发现有记号的鱼为10条(假定鱼池中不死鱼,也不增加),则鱼池中大约有鱼(B )A.120条B.1200条C.130条D.1000条2.某校从参加高三年级期末考试的学生中抽出60名学生,将其成绩(是不小于40不大于100的整数)分成六段[)50,40,[)60,50…[]100,90后画出如下部分观察频率分布直方图图形的信息,估计这次考试的平均分为(D )A.70B.72C.73D.713.甲、乙两名篮球运动员在某几场比赛得分的茎叶图如图所示,则甲、乙两人这几场比赛得分的中位数之和是(A)A.63B.64C.65D.664.在某次考试中,共有100个学生参加考试,如果某题的得分情况如下那么这些得分的众数是(C )A.37.0%B.20.2%C.0分D.4分5.甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示:从这四个人中选择一人参加奥运会射击项目比赛,最佳人选是(C)A.甲B.乙C.丙D.丁甲乙丙丁平均环数x8.68.98.98.2方差2s 3.5 3.5 2.1 5.649.559.569.579.589.599.56.随机调查某校50个学生在“六一”儿童节的午餐费,结果如下表:这50个学生“六一”节午餐费的平均值和方差分别是(A )A.4.2,0.56 B.4.2,56.0 C.4,0.6 D.4,6.07.一组数据共有7个数,记得其中有10,2,5,2,4,2,还有一个数没记清,但知道这组数的平均数、中位数、众数依次成等差数列,这个数的所有可能值的和为(A )A.9B.3C.17D.-118.对某校400名学生的体重(单位:kg )进行统计,得到如图所示的频率分布直方图,则学生体重在60kg 以上的人数为(B )A.300B.100C.60D.20第9题图9.为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为12,则报考飞行员的学生人数是48.10.在光明中学举行的电脑知识竞赛中,将九年级的两个班的学生成绩(得分均为整数)进行整理后分成五组,绘制出如下的频率分布直方图,已知图中从左到右的第一、第三、第四、第五的频率分别为0.30,0.15,0.10,0.05,第二小组的频数是40,则这两个班参赛的学生人数为100.11.一个样本按从小到大的顺序排列为10,12,13,x,17,19,21,24,其中位数为16,则x =____15____.12.某教师出了一份共3道题的测试卷,每道题1分,全班得3分、2分、1分、0分的学生所占比例分别为30%、40%、20%、10%.若全班共有30人,则全班同学的平均得分是__1.9______分(kg )(第8题图)13.某高校有甲、乙两个数学建模兴趣班.其中甲班有40人,乙班50人.现分析两个班的一次考试成绩,算得甲班的平均分为90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是___85__分.14.样本101,98,102,100,99______15.已知一组数a,0,1,2,3的平均值为1,则样本方差为216.为从甲、乙两名运动员中选拔一人参加2010年广州亚运会跳水项目,对甲、乙两名运动员进行培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取6次,得出茎叶图如图所示.从平均成绩及发挥稳定性的角度考虑,你认为选派哪名运动员合适?提示:=85x 甲=85x 乙2133=3s 甲2139=3s 乙应选派甲三.统计案例22()()()()()n ad bc K a b c d a c b d −=++++临界值表如下:P (K 2≥k 0)0.500.400.250.150.100.050.0250.0100.0050.001k 00.4550.708 1.323 2.072 2.706 3.841 5.024 6.6357.87910.8281.下列各关系中是相关关系的是(C )①路程与时间(速度一定)的关系;②加速度与力的关系;③产品成本与产量的关系;④圆周长与圆面积的关系;⑤广告费支出与销售额的关系.A.①②④B.①③⑤C.③⑤D.③④⑤2.工人月工资y(元)依劳动生产率x(千元)变化的回归方程为y ^=50+80x 下列判断正确的是(B )A.劳动生产率为1000元时,工资为130元B.劳动生产率提高1000元时,工资提高80元C.劳动生产率提高1000元时,工资提高130元D.当月工资250元时,劳动生产率为2000元3.(2011年高考山东卷)某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程y ^=b ^x +a ^中的b ^为9.4,据此模型预报广告费用为6万元时,销售额为(B )A.63.6万元B.65.5万元C.67.7万元D.72.0万元4.已知x 、y 之间的一组数据如下:则线性回归方程bx a y+=ˆ所表示的直线必经过点3(,5)25.为研究某新药的疗效,给50名患者服用此药,跟踪调查后得下表中的数据:无效有效总计男性患者153550女性患者64450总计2179100设H 0:服用此药的效果与患者的性别无关,则K 2的观测值k ≈___4.882_____,从而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为____0.05____.6.一台机器由于使用时间较长,生产的零件有一些会缺损,按不同转速生产出来的零件有缺损的统计数据如下表:转速x (转/秒)1614128每小时生产缺损零件数y (件)11985(1)作出散点图;(2)如果y 与x 线性相关,求出回归直线方程;(3)若实际生产中,允许每小时的产品中有缺损的零件最多为10个,那么,机器的运转速度应控制在什么范围?提示:(2)x =12.5,y =8.2544211438,660i i i i i x y x ====∑∑4142145i ii i i x y x y b xbx ==−=≈−∑∑54.25a y bx =−=−线性回归方程为:554.25y x =−(3)1012.85y x ≤≤由得:,所以运转速度应控制在12转/秒内.广告费用x (万元)4235销售额y (万元)49263954x 0123y 82647.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:喜爱打篮球不喜爱打篮球合计男生20525女生1015合计302050已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为35.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由.提示:8.337.879,99.5%k ≈>有的把握四.概率1.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是(D )A.110B.310C.35D.9102.某商场在春节举行抽奖促销活动,规则是:从装有编为0,1,2,3四个小球的抽奖箱中同时抽出两个小球,两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖,则中奖的概率是(B )A.13B.23C.14D.343.记集合{}22(,)|16A x y x y =+≤和集合{}(,)|40,0,0B x y x y x y =+−≤≥≥表示的平面区域分别为12,ΩΩ,若在区域1Ω内任取一点(,)M x y ,则点M 落在区域2Ω内的概率为(A )A .12πB .1πC .14D .24ππ−4.甲、乙两队进行足球比赛,若两队战平的概率是14,乙队胜的概率是13,则甲不输的概率是____23____.5.从含有2件正品和1件次品的3件产品中每次任取1件,每次取出后再放回,连续取两次,则两次取出的产品中恰好有一件次品的概率是____49____.6.在区间()0,1内任取两个实数,则这两个实数之和小于0.8的概率是825.7.在边长为1的正方形ABCD 内随机选一点M,则点M 到点D 的距离小于正方形的边长的概率是4π.8.已知集合{2,0,1,3},A =−在平面直角坐标系中,点M 的坐标(,)x y 满足,x A y A ∈∈.(1)请列出点M 的所有坐标;(2)求点M 不在y 轴上的概率;(3)求点M 正好落在区域5000x y x y +−<⎧⎪>⎨⎪>⎩上的概率.提示:(1)基本事件有16个(-2,-2)(-2,0)(-2,1)(-2,3)(0,-2)(0,0)(0,1)(0,3)(1,-2)(1,0)(1,1)(1,3)(-3,-2)(3,0)(3,1)(3,3)(2)34P =(3)316P =9.已知集合{}2230A x x x =+−<,{}(2)(3)0B x x x =+−<,(1)在区间()3,3−上任取一个实数x ,求“x A B ∈∩”的概率;(2)设(),a b 为有序实数对,其中a 是从集合A 中任取的一个整数,b 是从集合B 中任取的一个整数,求“a b A B −∈∪”的概率.1)由已知{}31A x x =−<<,{}23B x x =−<<,…………………………2分设事件“x A B ∈∩”的概率为1P ,这是一个几何概型,则13162P ==。
高中数学概率统计(含详细答案)

1.某初级中学共有学生2000名,各年级男、女生人数如下表:已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1)求x 的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (3)已知y ≥245,z ≥245,求初三年级中女生比男生多的概率. 解:(1)0.192000x= ∴ 380x =(2)初三年级人数为y +z =2000-(373+377+380+370)=500, 现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:48500122000⨯= 名 (3)设初三年级女生比男生多的事件为A ,初三年级女生男生数记为(y ,z ); 由(2)知 500y z += ,且 ,y z N ∈, 基本事件空间包含的基本事件有:(245,255)、(246,254)、(247,253)、……(255,245)共11个事件A 包含的基本事件有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245) 共5个∴ 5()11P A =2.为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查.6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体. (Ⅰ)求该总体的平均数;(Ⅱ)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率. 解:(Ⅰ)总体平均数为1(5678910)7.56+++++=. (Ⅱ)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”. 从总体中抽取2个个体全部可能的基本结果有:(56),,(57),,(58),,(59),,(510),,(67),,(68),,(69),,(610),,(78),,(79),,(710),,(89),,(810),,(910),.共15个基本结果.事件A 包括的基本结果有:(59),,(510),,(68),,(69),,(610),,(78),,(79),.共有7个基本结果. 所以所求的概率为7()15P A =.3.现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,,132()A B C ,,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,, 231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,, 322331332()()()A B C A B C A B C ,,,,,,,,}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,,122131132()()()A B C A B C A B C ,,,,,,,,}事件M 由6个基本事件组成, 因而61()183P M ==. (Ⅱ)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件,由于N ={111211311()()()A B C A B C A B C ,,,,,,,,},事件N 有3个基本事件组成, 所以31()186P N ==,由对立事件的概率公式得15()1()166P N P N =-=-=.4.某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.(I )求全班人数及分数在[)90,80之间的频数;(II )估计该班的平均分数,并计算频率分布直方图中[)90,80间的矩形的高; (III )若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.解:(I )由茎叶图知,分数在[)60,50之间的频数为2,频率为,08.010008.0=⨯ 全班人数为.2508.02= …………3分所以分数在[)90,80之间的频数为42107225=---- …………5分(II )分数在[)60,50之间的总分为56+58=114;分数在[)70,60之间的总分为60×7+2+3+3+5+6+8+9=456;(III )将[)90,80之间的4个分数编号为1,2,3,4,[90,100]之间的2个分数编号为5,6,在[80,100]之间的试卷中任取两份的基本事件为: (1,2),(1,3),(1,4),(1,5),(1,6) (2,3),(2,4),(2,5),(2,6), (3,4),(3,5),(3,6) (4,5),(4,6) (5,6)共15个, …………12分 其中,至少有一个在[90,100]之间的基本事件有9个, …………14分故至少有一份分数在[90,1000]之间的频率是6.0159= …………15分5.袋子中装有编号为b a ,的2个黑球和编号为e d c ,,的3个红球,从中任意摸出2个球。
高中数学:概率统计专题

高三文科数学:概率与统计专题一、选择题:1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量单位:kg分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数2.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A.13B.12C.23D.343、在一组样本数据x1,y1,x2,y2,…,x n,y n n≥2,x1,x2,…,x n不全相等的散点图中,若所有样本点x i,y i i=1,2,…,n都在直线y=错误!x+1上,则这组样本数据的样本相关系数为A-1 B0 C错误! D14.如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为A103 B15C110D1205.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是A.14B.π8C.12D.π46.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是二、填空题:7、从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______;8、将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_____.9.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,制作了对照表: 由表中数据得回归直线方程错误!=错误!x +错误!中的错误!=-2,预测当气温为-4 ℃时,用电量约为________度. 三、解答题10.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售;如果当天卖不完,剩下的玫瑰花做垃圾处理;Ⅰ若花店一天购进17枝玫瑰花,求当天的利润y 单位:元关于当天需求量n 单位:枝,n ∈N 的函数解析式;Ⅱ花店记录了100天玫瑰花的日需求量单位:枝,整理得下表: 日需求量n 14 15 16 17 18 19 20 频数102016161513101假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润单位:元的平均数;气温℃ 18 13 10 -1 用电量度243438642若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率;11. 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值75,85 85,95 95,105 105,115 115,125 分组频数 6 26 38 22 8 I在答题卡上作出这些数据的频率分布直方图:II估计这种产品质量指标值的平均数及方差同一组中的数据用该组区间的中点值作代表;III根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定12. 某地区2009年至2015年农村居民家庭人均纯收入y单位:千元的数据如下表:年份2009201020112012201320142015年份代号t1234567人均纯收入y1求y关于t的线性回归方程;2利用1中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:错误!=错误!,错误!=错误!-错误!错误!.13.某省会城市地铁将于2017年6月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:1若以区间的中点值为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距是多少结果保留2位小数;2由以上统计数据填下面2×2列联表分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.附:K2=错误!14.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸单位:cm .下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.1求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小.2一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.ⅰ从这一天抽检的结果看,是否需对当天的生产过程进行检查ⅱ在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.精确到附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑,0.09≈.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年12月31日期末复习题(二)一.选择题(共12小题)1.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,则此样本的容量为()A.40 B.80 C.160 D.3202.某县教育局为了解本县今年参加一次大联考的学生的成绩,从5000名参加今年大联考的学生中抽取了250名学生的成绩进行统计,在这个问题中,下列表述正确的是()A.5000名学生是总体B.250名学生是总体的一个样本C.样本容量是250 D.每一名学生是个体3.(2015抚顺模拟)某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法.抽取4个班进行调查,若抽到的最小编号为3,则抽取最大编号为()A.15 B.18 C.21 D.224.一个频率分布表(样本容量为30)不小心倍损坏了一部分,只记得样本中数据在[20,60)上的频率为,则估计样本在[40,50),[50,60)内的数据个数共为()A.15 B.16 C.17 D.195.如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为()A.11 B.C.12 D.6.某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份 2月份 3月份 4月份 5月份 6月份收入x支出Y根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系7.下列事件是随机事件的是()(1)连续两次掷一枚硬币,两次都出现正面向上.(2)异性电荷相互吸引(3)在标准大气压下,水在1℃时结冰(4)任意掷一枚骰子朝上的点数是偶数.A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)8.从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么对立的两个事件是()A.至少有1个白球,至少有1个红球B.至少有1个白球,都是红球C.恰有1个白球,恰有2个白球D.至少有1个白球,都是白球9.抛掷一枚质地均匀的硬币,如果连续抛掷2011次,那么第2010次出现正面朝上的概率是()A. B.C.D.10.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是,摸出白球的概率是,那么摸出黒球的概率是()A.B.C.D.11.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.B.C.D.112.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A.B.C.D.二.填空题(共4小题)13.在棱长为2的正方体内随机取一点,取到的点到正方体中心的距离大于1的概率.14.从甲、乙、丙、丁四人中任选两名代表,甲被选中的概率为。
15.已知盒子中有5个白球、3个黑球,这些球除颜色外完全相同,若从盒子中随机地取出2个球,则其中至少有1个黑球的概率是.16.已知下列表格所示的数据的回归直线方程为,则a的值为.x 2 3 4 5 6y 251 254 257 262 266三.解答题(共6小题)17.一个单位有职工160人,其中业务员120人,管理人员16人,后勤服务人员24人.为了了解职工的某种情况,要从中抽取一个容量为20的样本,用分层抽样的方法写出抽取样本的过程.18.已知向量=(2,1),=(x,y)(Ⅰ)若x∈{﹣1,0,1},y∈{﹣2,﹣1,2},求向量⊥的概率;(Ⅱ)若用计算机产生的随机二元数组(x,y)构成区域Ω:,求二元数组(x,y)满足x2+y2≥1的概率.19.农科院分别在两块条件相同的试验田分别种植了甲、乙两种杂粮作物,从两块试验田中任意选取6颗该种作物果实,测得籽重(单位:克)数据如下:甲种作物的产量数据:111,111,122,107,113,114乙种作物的产量数据:109,110,124,108,112,115(1)计算两组数据的平均数和方差,并说明哪种作物产量稳定;(2)作出两组数据的茎叶图.20.如图是校园“十佳歌手”大奖赛上,七位评委为甲、乙两位选手打出的分数的茎叶图.(1)写出评委为乙选手打出分数数据的众数,中位数;(2)求去掉一个最高分和一个最低分后,两位选手所剩数据的平均数和方差,根据结果比较,哪位选手的数据波动小21.为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该生7次考试的成绩.数学88 83 117 92 108 100 112物理94 91 108 96 104 101 106(1)他的数学成绩与物理成绩哪个更稳定请给出你的理由;(2)已知该生的物理成绩y与数学成绩x是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少(已知88×94+83×91+117×108+92×96+108×104+100×101+112×106=70497,882+832+1172+922+1082+1002+1122=70994)(参考公式:==,=﹣)22.某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)的用户中应抽取多少户2015年12月31日期末复习题(二)参考答案与试题解析一.选择题(共12小题)1.(2015陕西校级模拟)某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,则此样本的容量为()A.40 B.80 C.160 D.320【考点】分层抽样方法.【专题】概率与统计.【分析】根据分层抽样的定义和方法可得=,解方程求得n的值,即为所求.【解答】解:根据分层抽样的定义和方法可得=,解得n=80,故选B.【点评】本题主要考查分层抽样的定义和方法,各层的个体数之比等于各层对应的样本数之比,属于基础题.2.(2015春白山期末)某县教育局为了解本县今年参加一次大联考的学生的成绩,从5000名参加今年大联考的学生中抽取了250名学生的成绩进行统计,在这个问题中,下列表述正确的是()A.5000名学生是总体B.250名学生是总体的一个样本C.样本容量是250D.每一名学生是个体【考点】简单随机抽样.【专题】计算题;概率与统计.【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,考查对象是某地区初中毕业生参加中考的数学成绩,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:总体指的是5000名参加今年大联考的学的成绩,所以A错;样本指的是抽取的250名学生的成绩,所以B对;样本容量指的是抽取的250,所以C对;个体指的是5000名学生中的每一个学生的成绩,所以D错;故选:C.【点评】考查统计知识的总体,样本,个体,等相关知识点,要明确其定义.易错易混点:学生易对总体和个体的意义理解不清而错选.3.(2015抚顺模拟)某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法.抽取4个班进行调查,若抽到的最小编号为3,则抽取最大编号为()A.15 B.18 C.21 D.22【考点】系统抽样方法.【专题】概率与统计.【分析】根据系统抽样的定义进行求解即可.【解答】解:抽取样本间隔为24÷6=6,若抽到的最小编号为3,则抽取最大编号为3+3×6=21,故选:C【点评】本题主要考查系统抽样的应用,求出样本间隔是解决本题的关键.4.(2015陕西二模)一个频率分布表(样本容量为30)不小心倍损坏了一部分,只记得样本中数据在[20,60)上的频率为,则估计样本在[40,50),[50,60)内的数据个数共为()A.15 B.16 C.17 D.19【考点】频率分布表.【专题】概率与统计.【分析】根据样本数据在[20,60)上的频率求出对应的频数,再计算样本在[40,50),[50,60)内的数据个数和即可.【解答】解:∵样本数据在[20,60)上的频率为,∴样本数据在[20,60)上的频数是30×,∴估计样本在[40,50),[50,60)内的数据个数共为24﹣4﹣5=15.故选:A.【点评】本题考查了频率=的应用问题,是基础题目.5.(2015烟台二模)如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为()A.11 B. C.12 D.【考点】众数、中位数、平均数.【专题】概率与统计.【分析】由题意,×5+x×=,所以x为2,所以由图可估计样本重量的中位数.【解答】解:由题意,×5+x×=,所以x为2,所以由图可估计样本重量的中位数是12.故选:C.【点评】本题考查频率分布直方图,考查样本重量的中位数,考查学生的读图能力,属于基础题.6.(2015湖南一模)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x支出Y根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系【考点】变量间的相关关系.【专题】计算题;概率与统计.【分析】月收入的中位数是=16,收入增加,支出增加,故x与y有正线性相关关系.【解答】解:月收入的中位数是=16,收入增加,支出增加,故x与y有正线性相关关系,故选:C.【点评】本题考查变量间的相关关系,考查学生的计算能力,比较基础.7.(2015春重庆期末)下列事件是随机事件的是()(1)连续两次掷一枚硬币,两次都出现正面向上.(2)异性电荷相互吸引(3)在标准大气压下,水在1℃时结冰(4)任意掷一枚骰子朝上的点数是偶数.A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【考点】随机事件.【专题】概率与统计.【分析】随机事件就是可能发生也可能不发生的事件,依据定义即可判断.【解答】解:(1)连续两次掷一枚硬币,两次都出现正面向上.是随机事件;(2)异性电荷相互吸引,是必然事件;(3)在标准大气压下,水在1℃时结冰,是不可能事件;(4)任意掷一枚骰子朝上的点数是偶数.是随机事件;故是随机事件的是(1),(4),故选:D【点评】本题主要考查了必然事件、不可能事件、随机事件的概念,用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,难度适中.8.(2014春邯郸期末)从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么对立的两个事件是()A.至少有1个白球,至少有1个红球B.至少有1个白球,都是红球C.恰有1个白球,恰有2个白球D.至少有1个白球,都是白球【考点】随机事件.【专题】计算题;概率与统计.【分析】对立事件是在互斥的基础之上,在一次试验中两个事件必定有一个要发生.根据这个定义,对各选项依次加以分析,不难得出选项B才是符合题意的答案.【解答】解:对于A,“至少有1个白球”发生时,“至少有1个红球”也会发生,比如恰好一个白球和一个红球,故A不对立;对于B,“至少有1个白球”说明有白球,白球的个数可能是1或2,而“都是红球”说明没有白球,白球的个数是0,这两个事件不能同时发生,且必有一个发生,故B是对立的;对于C,恰有1个白球,恰有2个白球是互斥事件,它们虽然不能同时发生但是还有可能恰好没有白球的情况,因此它们不对立;对于D,至少有1个白球和都是白球能同时发生,故它们不互斥,更谈不上对立了故选B【点评】本题考查了随机事件当中“互斥”与“对立”的区别与联系,属于基础题.互斥是对立的前提,对立是两个互斥事件当中,必定有一个要发生.9.(2015龙川县校级模拟)抛掷一枚质地均匀的硬币,如果连续抛掷2011次,那么第2010次出现正面朝上的概率是()A.B.C.D.【考点】概率的意义.【专题】应用题;概率与统计.【分析】简化模型,只考虑第2010次出现的结果,有两种结果,第2010次出现正面朝上只有一种结果,即可求【解答】解:抛掷一枚质地均匀的硬币,只考虑第2010次,有两种结果:正面朝上,反面朝上,每中结果等可能出现,故所求概率为.故选:D.【点评】本题主要考查了古典概率中的等可能事件的概率的求解,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.(2015张掖一模)口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是,摸出白球的概率是,那么摸出黒球的概率是()A. B. C. D.【考点】互斥事件与对立事件.【专题】计算题.【分析】在口袋中摸球,摸到红球,摸到黑球,摸到白球这三个事件是互斥的,摸出红球的概率是,摸出白球的概率是,根据互斥事件的概率公式得到摸出黑球的概率是1﹣﹣,得到结果.【解答】解:∵口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,在口袋中摸球,摸到红球,摸到黑球,摸到白球这三个事件是互斥的摸出红球的概率是,摸出白球的概率是,∵摸出黑球是摸出红球或摸出白球的对立事件,∴摸出黑球的概率是1﹣﹣=,故选C.【点评】本题考查互斥事件的概率,注意分清互斥事件与对立事件之间的关系,本题是一个简单的数字运算问题,只要细心做,这是一个一定会得分的题目.11.(2015广东)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A. B. C. D.1【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】首先判断这是一个古典概型,而基本事件总数就是从5件产品任取2件的取法,取到恰有一件次品的取法可利用分步计数原理求解,最后带入古典概型的概率公式即可.【解答】解:这是一个古典概型,从5件产品中任取2件的取法为;∴基本事件总数为10;设“选的2件产品中恰有一件次品”为事件A,则A包含的基本事件个数为=6;∴P(A)==.故选:B.【点评】考查古典概型的概念,以及古典概型的概率求法,明白基本事件和基本事件总数的概念,掌握组合数公式,分步计数原理.12.(2015芜湖校级模拟)函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A.B.C.D.【考点】几何概型;一元二次不等式的解法.【专题】计算题.【分析】先解不等式f(x0)≤0,得能使事件f(x0)≤0发生的x0的取值长度为3,再由x0总的可能取值,长度为定义域长度10,得事件f(x0)≤0发生的概率是【解答】解:∵f(x)≤0x2﹣x﹣2≤0﹣1≤x≤2,∴f(x0)≤0﹣1≤x0≤2,即x0∈[﹣1,2],∵在定义域内任取一点x0,∴x0∈[﹣5,5],∴使f(x0)≤0的概率P==故选C【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键二.填空题(共4小题)13.(2015景洪市校级模拟)在棱长为2的正方体内随机取一点,取到的点到正方体中心的距离大于1的概率1﹣.【考点】几何概型.【专题】计算题.【分析】本题利用几何概型求解.只须求出满足:OQ≥1几何体的体积,再将求得的体积值与整个正方体的体积求比值即得.【解答】解:取到的点到正方体中心的距离小于等于1构成的几何体的体积为:×13=,∴点到正方体中心的距离大于1的几何体的体积为:v=V正方体﹣=8﹣取到的点到正方体中心的距离大于1的概率:P==1﹣.故答案为:1﹣.【点评】本小题主要考查几何概型、球的体积公式、正方体的体积公式等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.属于基础题.14.(2015?上海模拟)从甲、乙、丙、丁四人中任选两名代表,甲被选中的概率为.【考点】等可能事件的概率.【专题】计算题.【分析】由题意列出选出二个人的所有情况,再根据等可能性求出事件“甲被选中”的概率.【解答】解:由题意:甲、乙、丙、丁四人中任选两名代表,共有六种情况:甲和乙、甲和丙、甲和丁、乙和丙、乙和丁、丙和丁,因每种情况出现的可能性相等,所以甲被选中的概率为.故答案为:.【点评】本题考查了等可能事件的概率的求法,即列出所有的实验结果,再根据每个事件结果出现的可能性相等求出对应事件的概率.15.(2015春?宿迁期末)已知盒子中有5个白球、3个黑球,这些球除颜色外完全相同,若从盒子中随机地取出2个球,则其中至少有1个黑球的概率是.【考点】互斥事件的概率加法公式.【专题】概率与统计.【分析】利用对立事件的概率公式,可得至少有1个黑球的概率.【解答】解:由题意,利用对立事件的概率公式,可得至少有1个黑球的概率是1﹣=.故答案为:.【点评】此题主要考查了概率公式,考查对立事件的概率公式的运用,比较基础.16.(2015?锦州二模)已知下列表格所示的数据的回归直线方程为,则a的值为.x 2 3 4 5 6y 251 254 257 262 266【考点】线性回归方程.【专题】计算题.【分析】求出样本中心点,代入回归直线方程,即可求出a.【解答】解:由表格可知,样本中心横坐标为:=4,纵坐标为:=258.由回归直线经过样本中心点,所以:258=×4+a,a=.故答案为:.【点评】本题考查的知识点是线性回归直线方程,其中样本中心点在回归直线上,满足线性回归方程.是解答此类问题的关键.三.解答题(共6小题)17.(2015春?兰州期中)一个单位有职工160人,其中业务员120人,管理人员16人,后勤服务人员24人.为了了解职工的某种情况,要从中抽取一个容量为20的样本,用分层抽样的方法写出抽取样本的过程.【考点】分层抽样方法.【专题】概率与统计.【分析】根据分层抽样的定义即可得到结论.【解答】解:∵样本容量与职工总人数的比为20:160=1:8,∴业务员,管理人员,后勤服务人员抽取的个数分别为,即分别抽取15人,2人和3人.每一层抽取时,可以采用简单随机抽样或系统抽样,再将各层抽取的个体合在一起,就是要抽取的样本.【点评】本题主要考查分层抽样的定义和应用,根据分层抽样的定义是解决本题的关键,比较基础.18.(2014?泉州模拟)已知向量=(2,1),=(x,y)(Ⅰ)若x∈{﹣1,0,1},y∈{﹣2,﹣1,2},求向量⊥的概率;(Ⅱ)若用计算机产生的随机二元数组(x,y)构成区域Ω:,求二元数组(x,y)满足x2+y2≥1的概率.【考点】几何概型;古典概型及其概率计算公式.【专题】概率与统计.【分析】(Ⅰ)本问为古典概型,需列出所有的基本事件,以及满足向量⊥的基本事件,再由古典概型的概率计算公式求出即可;(Ⅱ)本问是一个几何概型,试验发生包含的事件对应的集合是Ω={(x,y)|﹣1<x<1,﹣2<y<2},满足条件的事件对应的集合是A={(x,y)|﹣1<x<1,﹣2<y<2,x2+y2≥1},做出两个集合对应的图形的面积,根据几何概型概率公式得到结果.【解答】解:(Ⅰ)从x∈{﹣1,0,1},y∈{﹣2,﹣1,2}取两个数x,y的基本事件有(﹣1,﹣2),(﹣1,﹣1),(﹣1,2),(0,﹣2),(0,﹣1),(0,2),(1,﹣2),(1,﹣1),(1,2),共9种设“向量”为事件A若向量,则2x+y=0,∴事件A包含的基本事件有(﹣1,2),(1,2),共2种∴所求事件的概率为;(Ⅱ)二元数组(x,y)构成区域Ω={(x,y)|﹣1<x<1,﹣2<y<2},设“二元数组(x,y)满足x2+y2≥1”为事件B,则事件B={(x,y)|﹣1<x<1,﹣2<y<2,x2+y2≥1},如图所示,∴所求事件的概率为.【点评】本题主要考查古典概型以及几何概型,对于古典概型的问题,一般要列出所有的事件,以及所求事件包含的事件,再由古典概型计算公式即可得到结果.对于几何概型的问题,一般要通过把试验发生包含的事件同集合结合起来,根据集合对应的图形做出面积,用面积的比值得到结果.19.(2015?武汉校级模拟)农科院分别在两块条件相同的试验田分别种植了甲、乙两种杂粮作物,从两块试验田中任意选取6颗该种作物果实,测得籽重(单位:克)数据如下:甲种作物的产量数据:111,111,122,107,113,114乙种作物的产量数据:109,110,124,108,112,115(1)计算两组数据的平均数和方差,并说明哪种作物产量稳定;(2)作出两组数据的茎叶图.【考点】茎叶图;众数、中位数、平均数;极差、方差与标准差.【专题】概率与统计.【分析】(1)计算甲、乙组数据的平均数与方差,比较得出结论;(2)画出两组数据的茎叶图即可.【解答】解:(1)甲组数据的平均数是=×(122+111+111+113+114+107)=113,乙组数据的平均数是=×(124+110+112+115+108+109)=113,甲组数据的方差是=×[(122﹣113)2+(111﹣113)2+(111﹣113)2+(113﹣113)2+(114﹣113)2+(107﹣113)2]=21,乙组数据的方差是=×[(124﹣113)2+(110﹣113)2+(112﹣113)2+(115﹣113)2+(108﹣113)2+(109﹣113)2]=;∴=,<,∴甲的产量较稳定;(2)画出两组数据的茎叶图,如图所示:【点评】本题考查了计算数据的平均数与方差的应用问题,也考查了画茎叶图的应用问题,是基础题目.20.(2015春?鞍山期末)如图是校园“十佳歌手”大奖赛上,七位评委为甲、乙两位选手打出的分数的茎叶图.(1)写出评委为乙选手打出分数数据的众数,中位数;(2)求去掉一个最高分和一个最低分后,两位选手所剩数据的平均数和方差,根据结果比较,哪位选手的数据波动小【考点】极差、方差与标准差;茎叶图;众数、中位数、平均数.【专题】计算题;概率与统计.【分析】(1)由茎叶图可知由茎叶图可知,乙选手得分为79,84,84,84,86,87,93,即可写出评委为乙选手打出分数数据的众数,中位数;(2)求出甲、乙两位选手,去掉最高分和最低分的平均数与方差,即可得出结论.【解答】解:(1)由茎叶图可知,乙选手得分为79,84,84,84,86,87,93,所以众数为84,中位数为84;(2)甲选手评委打出的最低分为84,最高分为93,去掉最高分和最低分,其余得分为86,86,87,89,92,故平均分为(86+86+87+89+92)÷5=88,=;乙选手评委打出的最低分为79,最高分为93,去掉最高分和最低分,其余得分为84,84,84,86,87,故平均分为(84+84+86+84+87)÷5=85,=,∴乙选手的数据波动小.【点评】本题考查茎叶图,考查一组数据的平均数与方差,考查处理一组数据的方法,是一个基础题.21.(2015?固原校级模拟)为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该生7次考试的成绩.数学88 83 117 92 108 100 112物理94 91 108 96 104 101 106(1)他的数学成绩与物理成绩哪个更稳定请给出你的理由;(2)已知该生的物理成绩y与数学成绩x是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少(已知88×94+83×91+117×108+92×96+108×104+100×101+112×106=70497,882+832+1172+922+1082+1002+1122=70994)(参考公式:==,=﹣)【考点】线性回归方程.【专题】概率与统计.【分析】(1)根据公式分别求出其平均数和方差,从而判断出结果;(2)分别求出和的值,代入从而求出线性回归方程,将y=115代入,从而求出x的值.【解答】解:(1)=100+=100;=100+=100;∴==142,=,从而>,所以物理成绩更稳定.(2)由于x与y之间具有线性相关关系,根据回归系数公式得到:==,=100﹣×100=50,∴线性回归方程为:y=+50,当y=115时,x=130.【点评】本题考查了平均数及方差的公式,考查线性回归方程,是一道基础题.22.(2015•广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)的用户中应抽取多少户【考点】频率分布直方图.【专题】概率与统计.【分析】(1)由直方图的性质可得(++++x++)×20=1,解方程可得;(2)由直方图中众数为最高矩形上端的中点可得,可得中位数在[220,240)内,设中位数为a,解方程(+++)×20+×(a﹣220)=可得;(3)可得各段的用户分别为25,15,10,5,可得抽取比例,可得要抽取的户数.【解答】解:(1)由直方图的性质可得(++++x++)×20=1,解方程可得x=,∴直方图中x的值为;(2)月平均用电量的众数是=230,∵(++)×20=<,∴月平均用电量的中位数在[220,240)内,设中位数为a,由(++)×20+×(a﹣220)=可得a=224,∴月平均用电量的中位数为224;(3)月平均用电量为[220,240)的用户有×20×100=25,月平均用电量为[240,260)的用户有×20×100=15,月平均用电量为[260,280)的用户有×20×100=10,月平均用电量为[280,300)的用户有×20×100=5,∴抽取比例为=,∴月平均用电量在[220,240)的用户中应抽取25×=5户【点评】本题考查频率分布直方图,涉及众数和中位数以及分层抽样,属基础题.。