第二章(1) 数学模型(微分方程)A
合集下载
第二章1_被控过程的数学模型-单容多容

2.2 采用物理机理方法建模
(1) 单容过程的建模
只有一个存储容量的过程。自衡单容过程和无自衡单容过程。
自衡过程:被控过程在扰动作用下,平衡
状态被破坏后,无需操作人员或仪表的干
预,依靠自身能够恢复平衡的过程。
自衡过程的阶跃响应图
无自衡过程:被控过程在扰动作用下,平衡状 态被破坏后,若无操作人员或仪表的干预,依 靠自身能力不能恢复平衡的过程。 无自衡过程的阶跃响应图
2.1 概述
建立数学模型的方法:
物理机理方法建模
根据过程的内在机理,运用已知的静态和动态的能量(物料)平衡关 系,用数学推理的方法建立数学模型。
实验辨识 (系统辨识和参数估计法)
根据过程输入、输出的实验测试数据,通过辨识和参数估计建立过程 的数学模型。
混合法
首先通过机理分析确定过程模型的结构形式,然后利用实验测试数据 来确定模型中各参数的大小。
则系统特性可用下列微分方程式来描述:
2.1 概述
a n c ( n ) (t ) a n1c ( n1) (t ) a1c(t ) a0 c(t ) bm r ( m) (t ) bm1r ( m1) (t ) b1r (t ) b0 r (t )
式中 an , an1 ,, a1 , a0 及 bm , bm1 ,, b1 , b0 分别为与系统 结构和参数有关的常系数。它们与系统的特性有关, 一般需要通过系统的内部机理分析或大量的实验数 据处理才能得到。
2.1 概述
(b) 传递函数 复数域模型包括系统传递函数和结构图,传递函数不 仅可以表征系统的动态特性,而且可以用来研究系统的结 构或参数变化对系统性能的影响。 线性定常系统的传递函数定义为零初始条件下,输出 量(响应函数)的拉普拉斯变换与输入量(输入函数)的 拉普拉斯变换之比。拉普拉斯变换为:
线性系统的数学模型

第二章 线性系统的数学模型
描述控制系统输入、输出变量及内部变量之间关 系的数学表达式称为系统的数学模型。
★ 描述控制系统的输入-输出变量数学模型:
微分方程、传递函数、方框图、频率特性
★ 描述控制系统的内部变量数学模型: 状态空间
说明 ◆ 要分析自动控制系统的性能,必须先建立该系统 的数学模型; ◆ 一个物理系统,要处理的问题或要达到的精度不 同,得到的数学模型也不同。
3.反馈
R(S) E(S) + B(S) H(S) C(S)
G(S)
负反馈 正反馈 单位反馈:H(S)=1
主 要 内 容
§2-1 微分方程 §2-2 传递函数
§2-3 典型环节的传递函数及动态响应
§2-4 电气网络的运算阻抗与传递函数 §2-5 方框图 §2-5 反馈控制系统的传递函数
§2-1
微分方程
对于线性定常系统, 可以用线性常系数微分方程 作为其数学模型,如 a 0dnc (t)/dtn +a1dn-1c (t) /dtn-1+…+anc (t) =b0dmr(t)/dtm +b1dm-1r(t)/dtm-1+…+bmr(t) c(t): 系统的输出; r(t): 系统的输入; a0……an ; b0……bm 均为实数,均由系统本身的结
对电气网络,可以不列微分方程,仅利用运算电 路,经过简单的代数运算,就可以求得传递函数!
§2-5 控制系统的方框图
方框图是以图形表示系统的数学模型;
通过方框图,能够非常清楚地表示出信号在系统各
环节之间的传递过程;
方框图可以方便地求出复杂系统的传递函数; 方框图是分析控制系统的一个简明而有效的工具。
八.二阶振荡环节 1、传递函数
描述控制系统输入、输出变量及内部变量之间关 系的数学表达式称为系统的数学模型。
★ 描述控制系统的输入-输出变量数学模型:
微分方程、传递函数、方框图、频率特性
★ 描述控制系统的内部变量数学模型: 状态空间
说明 ◆ 要分析自动控制系统的性能,必须先建立该系统 的数学模型; ◆ 一个物理系统,要处理的问题或要达到的精度不 同,得到的数学模型也不同。
3.反馈
R(S) E(S) + B(S) H(S) C(S)
G(S)
负反馈 正反馈 单位反馈:H(S)=1
主 要 内 容
§2-1 微分方程 §2-2 传递函数
§2-3 典型环节的传递函数及动态响应
§2-4 电气网络的运算阻抗与传递函数 §2-5 方框图 §2-5 反馈控制系统的传递函数
§2-1
微分方程
对于线性定常系统, 可以用线性常系数微分方程 作为其数学模型,如 a 0dnc (t)/dtn +a1dn-1c (t) /dtn-1+…+anc (t) =b0dmr(t)/dtm +b1dm-1r(t)/dtm-1+…+bmr(t) c(t): 系统的输出; r(t): 系统的输入; a0……an ; b0……bm 均为实数,均由系统本身的结
对电气网络,可以不列微分方程,仅利用运算电 路,经过简单的代数运算,就可以求得传递函数!
§2-5 控制系统的方框图
方框图是以图形表示系统的数学模型;
通过方框图,能够非常清楚地表示出信号在系统各
环节之间的传递过程;
方框图可以方便地求出复杂系统的传递函数; 方框图是分析控制系统的一个简明而有效的工具。
八.二阶振荡环节 1、传递函数
机械工程控制基础--第二章

,
Cm
Tm J
得
TaTm
d2
dt 2
Tm
d
dt
Cdua
CmTa
dM L dt
CmM L
TaTm
d2
dt 2
Tm
d
dt
Cdua
CmTa
dM L dt
CmM L
设电动机处于平衡态,导数为零,静态模型
Cdua CmML 设平衡点 (ua0,ML0, )
L
R
即有 Cdua0 CmML0 ua
i2R2
1 C2
i2dt
1 C1
(i1 i2 )dt
1
C2 i2dt u2
i1 C1
3. 消除中间变量 i1、i2,并整理:
R1C1R2C2
d2u2 dt 2
(R1C1
R2C2
R1C2
)
du2 dt
u2
u1
R2 i2 C2 u2
例5 直流电动机 1. 明确输入与输出:
输入ua 和ML,输出
注意:负载效应,非线性项的线性化。
3. 消除中间变量,得到只包含输入量和输出量的微分方程。
4. 整理微分方程。输出有关项放在方程左侧,输入有关项 放在方程右侧,各阶导数项降阶排列。
an
x(n) o
(t
)
a x(n1) n1 o
(t
)
a1xo (t) a0xo (t)
bm
x(m) i
(t
)
bm1xi(
...
a1 s
a0
(n m) 传递函数
传递函数定义:
零初始条件下,线性定常系统输出的拉氏变换与输入的拉
氏变换之比。
2-1控制系统的时域数学模型

(2)消去中间变量 i(t) (2) (t)
duo (t ) ui (t ) = RC + uo (t ) dt
(3)标准化
duo (t ) RC + uo (t ) = ui (t ) dt
例2 对两级RC无源网络,列写以ui(t)为输入 量,uo(t)为输出量的网络微分方程式。
由基尔霍夫电压定律
机械力学系统的数学模型: 机械力学系统的数学模型:
d 2 y (t ) dy (t ) m + f + ky (t ) = F (t ) 2 dt dt
相似系统 相似系统便于用一个简单的系统去研究与其相似的 复杂系统,也为控制系统计算机仿真提供了基础。 复杂系统,也为控制系统计算机仿真提供了基础。
小结
取一次近似, 取一次近似,且令
∆y( x) = y( x) − y( x0 ) ≈ −E0 sin x0 ⋅ ( x − x0 )
既有
∆y = −E0 sin x0 ⋅ ∆x
例:单摆系统的运动方程为
试列写其线性化方程。 试列写其线性化方程。 解:运动方程中的非线性项为
预定工作点为 [θ0 ,ϕ0 ]
Class is over. ByeBye-bye!
式中:
T1 = R1C1
T2 = R2C2
T3 = R1C2
牛顿定律约束
机械系统
例3 一个由弹簧、质量、 阻尼器组成的做直线运动的 力学系统。图中,m为物体 的质量,k为弹簧系数,f为 粘性摩擦系数,F(t)为物体受 到的外作用力,y(t)为物体的 位移。试列写质量m在外力 F(t)作用下,位移y(t)的运动 方程。
元件约束
d 2uo (t ) duo (t ) R1C1 R2C2 + ( R1C1 + R2C2 + R1C2 ) + uo (t ) = ui (t ) 2 dt dt dt
控制工程基础第二章——数学模型

② 脉冲函数: 脉动函数的极限,t0看作变量。
A
fT
(t)
lim
t0 0
t0
d [ A(1 et0s )]
L[
fT
(t
)]
lim
t0 0
A t0s
(1
et0s
)
lim t0 0
dt0
d dt0
(t0 s )
As A s
单位脉冲(Dirac) 定义:
面积为1的脉冲函数
(t)dt 1, (t 0, (t) 0)
fi (t)
此式为二阶常系 数线性微分方程。
系统的数学模型可用方块图表示:
方块图描述了系统
中信号转换、传递的 过程,给出了系统的 工作原理。
☆ 举例2:电网络系统
设输入端电压ui(t)为系统输入量。电容器c两端电压uo(t)为系统输
出量。现研究输入电压ui(t)和输出电压 uo(t)之间的关系。电路中的
.
(n)
x(t) sX (s) x (t) s n X (s)
x(t)dt
1 sn
X
(s)
①平移函数、延迟函数
对于函数 f (t) 函数 f (t )
称为延迟函数,函数本身并
不发生改变,只是延迟α时
间才发生。
注意:t 时,函数 f (t ) 0
②延迟定理
若 f (t) F (s) 则有 f (t ) es F (s) 延迟函数的拉氏变换 原函数的拉氏变换乘以 es
显然 (t) 1, A (t) A
结论:脉冲函数是面积函数; 脉冲函数的拉氏变换就是脉冲下的面积。 换言之,复数域中的实数在时域里是脉冲函数。
☆ 关于单位脉冲函数的说明
自动控制原理:第二章--控制系统数学模型全

TaTLma KJe K
dMdML m dtdt
L
Tm
Ra J K eKm
——机电时间常数(秒);
Ta
La Ra
—电动机电枢回路时间常数 (秒)
若输出为电动机的转角q ,则有
TaTm
d 3q
dt 3
Tm
d 2q
dt 2
dq
dt
1 Ke
ua
Tm J
ML
TaTm J
dM L dt
—— 三阶线性定常微分方程 9
(1)根据克希霍夫定律可写出原始方程式
((23))式消LuLCcdd中去(titd)i中2d是utRc间2(中Cti1)变间C1量iR变dCti量idd后udt,ct,(t它)u输r与u(入tc输)(输t)出出uu微rc((tt)分)有方如程下式关系
或
T1T2
d 2uc (t) dt 2
T2
duc (t) dt
扰动输入为负载转矩ML。 (1)列各元件方程式。电动机方程式为:
TaTm
d 2w
dt 2
测输T速Km出发td为d电wt电测压机速w 反 K馈1e系ua数
Tm J
M反L馈 电TaJT压m
dM L dt
ua Kae ut Ktw e ur ut 12
(2)消去中间变量。从以上各式中消去中间变
量ua,e,ut,最后得到系统的微分方程式
线性(或线性化)定常系统在零初始条件下, 输出量的拉氏变换与输入量的拉氏变换之比 称为传递函数。
令线C性(s定)=常L[c系(t统)],由R下(s)述=Ln阶[r(微t)]分,方在程初描始述条:件为零
时[[aab,nnmbssdmdn进mt+ndn+dt行acmmbn(tm拉-r1)-(s1t氏ns)-am1变n+-1b1+…m换dd…1t+,nndd+1a1t得mm1bcs1(11到+ts)r+a关(t0b)]于0C]的RD(sM的s的a(()分s1s(分))=代sdbd为母)t1子为数cd传d多(tt多传方)r递项(项t程递函)式a式0函数c。b(0数tr) (t)
第2章-1-微分方程

K
eo
eo
ei
e
i1 i2 i3
i1 ui u R1
u u 0
d(u uo ) i2 C dt
i3
u uo R2
有源网络的微分方程为
C
duo uo ui dt R2 R1
自 动 控 制 原 理
2.1.3 机电系统
电枢
1.直流电动机,控制电压
Ce (t ) ua (t )
自 动 控 制 原 理
2.1.3 机电系统
La Ra
磁场控制式直流 电动机微分方程为
Rf
转动惯量 J 摩擦系数 f
激磁电流 负载
d 2 (t ) d (t ) Lf J Lf f Rf J R f f (t ) kmu f (t ) 2 dt dt dM c (t ) Lf R f M c (t ) dt
自 动 控 制 原 理
第2章 自动控制系统的数学模型
2.1 控制系统的微分方程
2.2 控制系统的传递函数
2.3 方块图
2.4 控制系统的信号流图
数学模型:系统的输入/输出时间函数描述
物理模型——任何元件或系统实际上都是很复杂的,难以
对它作出精确、全面的描述,必须进行简化或理想化。简 化后的元件或系统称为该元件或系统的物理模型。简化是
V
H
M
x
P M
自 动 控 制 原 理
2.1.1 机械系统
• 简化物理模型 • 列写控制系统各部分的微分方程 • 在平衡点附近线性化 各部分的微分方程:
I V sin H cos
d2 m 2 ( x sin ) H dt
第二章控制系统数学模型

s s 后,再求 F (s) 的极限值来求得。条件是当 t 和s 0时,等式两边各
有极限存在。
终值定理在分析研究系统的稳态性能时(例如分析系统的稳态误差,求取系统
输出量的稳态值等)有着很多的应用。因此终值定理也是一个经常用到的运算
定理。
7.初值定理: lim f (t) lim sF (s)
18
2
例2-1:写出RLC串联电路的微分方程。
ui
L
R
i
C
uo
ui 输入
uo 输出
[解]:据基尔霍夫电路定理:
L di dt
Ri
1 C
idt
ui
①
uo
1 C
idt
②
由②: i C d,uo代入①得: dt
LC
d 2uo dt 2
RC
duo dt
uo
ui
这是一个线性定常二阶微分方程。
3
例2-2 设一弹簧、质量块、阻尼器组成的系统如图所示,当外力 F(t)作用于系统时,系统将产生运动。试写出外力F(t)与质量块的 位移y(t)之间的微分方程。
uR uc Us
把 uR i R
和
ic
C
duc dt
代入电路,可得到电路的
微分方程:
RC
duc dt
uc
Us
23
现在对于上面的微分方程,我们用Laplace变换求解。
首先,利用Laplace变换中的微分定理,将微分方程变换成如下形式:
RC
duc dt
uc
Us
RCsU c (s) Uc (s) Us R(s)
利用待定系数法可求得:
A 1 ARC B 0
F (s) L[ f (t)] f (t)e st dt 0
有极限存在。
终值定理在分析研究系统的稳态性能时(例如分析系统的稳态误差,求取系统
输出量的稳态值等)有着很多的应用。因此终值定理也是一个经常用到的运算
定理。
7.初值定理: lim f (t) lim sF (s)
18
2
例2-1:写出RLC串联电路的微分方程。
ui
L
R
i
C
uo
ui 输入
uo 输出
[解]:据基尔霍夫电路定理:
L di dt
Ri
1 C
idt
ui
①
uo
1 C
idt
②
由②: i C d,uo代入①得: dt
LC
d 2uo dt 2
RC
duo dt
uo
ui
这是一个线性定常二阶微分方程。
3
例2-2 设一弹簧、质量块、阻尼器组成的系统如图所示,当外力 F(t)作用于系统时,系统将产生运动。试写出外力F(t)与质量块的 位移y(t)之间的微分方程。
uR uc Us
把 uR i R
和
ic
C
duc dt
代入电路,可得到电路的
微分方程:
RC
duc dt
uc
Us
23
现在对于上面的微分方程,我们用Laplace变换求解。
首先,利用Laplace变换中的微分定理,将微分方程变换成如下形式:
RC
duc dt
uc
Us
RCsU c (s) Uc (s) Us R(s)
利用待定系数法可求得:
A 1 ARC B 0
F (s) L[ f (t)] f (t)e st dt 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建立系统(元件)数学模型常用方法: 1.分析法-对系统(元件)各部分的运动”机理”进 行分析,应用物理规律、化学规律找出系统输
入/输出变量之间的数学关系。
应用:系统内部运动机理(原理)比较清楚.
2.实验法-人为施加某种测试信号,记录系统的输
出响应.然后再根据测得的系统输入输出之间的
关系,找出系统中变量之间的数学关系。
根据物料平衡原理,dt时间内水箱液体 的增加,应与进水量相等:
dh q 1 q 2 C dt
d h q 1 q 2 C dt
根据托里拆定理,出水量与水位高度的 平方根成正比: h h q 2 q 2 线性化 R
0
R
1 R 2 h0R0
微分方程: C 线性化
C
dh h q 1 非线性! dt R 0
2.2 控制系统微分方程的建立 系统最基本的数学模型是反映系统变量之间 动态特性的微分方程式。 建立微分方程的步骤如下: ①将系统划分为若干环节,确定各个环节的输 入量和输出量。 ②从输入端开始,按信号传递的顺序,依据各 变量所遵循的物理、化学定律,列出各个环节的 原始方程(线性化) 。 ③消去中间变量,写出仅包含系统输入、输出 变量的微分方程式。
图2-3 所示为电枢控制直流 电动机的原理图。要求以电枢 电压Ua(t)(v)为输入量,电 动机转速ωm(t)(rad/s) 为输出量,列写微分方程。 图中Ra(Ω)、La(H)分别是 电枢电路的电阻和电感,Mc是 折合到电动机轴上的总负载转 距。激磁磁通为常值。
+ Ua
输入
+
La ia
if Ra
激磁磁通
由电枢电压Ua(t)在电枢回路 中产生电枢电流ia(t)
1)电枢回路电压平衡方程:
dia (t ) U a (t ) La Ra ia (t ) Eb ① dt Eb是电枢反电势,它是当电枢旋转 时产生的反电势,其大小与激磁磁 通及转速成正比,方向与电枢电压 Ua(t)相反,即
+
La + Ua ia
d 2U 2 dU 2 R1 R2 C1C 2 ( R1C1 R1C 2 R2 C 2 ) U 2 U1 2 dt dt
这就是RC组成的四端网络的数学模型,是一个 二阶线性微分方程。
【例4】建立惯性环节的微分方程。其中,U1(t) 为输入量,U2(t)为输出量。
C R2
D/A1
1μ
200K
u1
→ i1 100K
R 1 i2 ↓
u2
100K
A/D1
R0
解:利用运算放大器“虚地” 的概念,得
u1 i 1 R1
由i1=i2,得
u2 du 2 i 2 ( C ) R2 dt
传递函数:
du 2 u 2 u1 C dt R 2 R1
R 2 / R1 G( s) R 2 Cs 1
du c RC uc u i dt
G( s)
上述问题中有3个变量,需列出2个独立方程. 由此推知,N个变量的问题应建立N-1个独立方程
【例2】求图示RLC回 路的微分方程。
R + u(t)
输入
L uc(t)
输出
C
+ _
+ y _
i(t)
_
解:以 u L (t ),i(t ) 作为中间变量,列写该回路的微分方程
传递函数:
【例9】建立热容系统的微分方程。
解:根据热容定义和热平衡方程, u r dt时间内加给热炉的热量应 与其炉内温度的上升所需热量 平衡。
Cd c (qc q0 )dt
c
qc q0 i
箱体热容C,热阻R
热炉向外散出的热量与炉内外温差成正比: 电炉丝通电发出的热量为:
u2 qc r r
【例6】.建立下列机械系统的微分方程.
解:根据牛顿力学:
u(t) m b
K
f b by
u(t ) f k f b ma
f
k
ky
y(t)
f b ky 微分方程:
dy & & my b ky u (t ) dt
【例7】建立单容水箱的的微分方程。 解:
液阻R 液容C 液面差变化 H 流量变化 Q 被储存液体变化 V 水头(高度)的变化 H
【例5】建立比例微分器(PD)的微分方程。其中, U1(t)为输入量,U2(t)为输出量。
C 2 0.01μ R 2 100K
A/D1
R1
D/A1
100K
→ i1 C 1
i2 ↓
1μ
R0
100K
解:利用运算放大器“虚地” 的概念,得
u2 du 2 u1 du 1 i 2 ( C 2 ) i 1 C 1 R2 dt R1 dt du 2 u 2 du 1 u 1 C 1 由i1=i2,得 C 2 dt R2 dt R 1 R 2 C1s R 2 / R 1 G( s) ( R 2 C1s R 2 / R 1 ) R 2C 2 s 1
Wm Ea
SM
输出
负 载
Jm,fm
-
图2-3 电枢控制直流电动机原理图
例12、电枢控制直流电动机的微分方程
解: 电枢控制直流电动机的工作实质是将输入 的电能转换为机械能.也就是由输入的电枢电压 Ua(t)在电枢回路中产生电枢电流ia(t),再由电流 ia(t)与激磁磁通相互作用产生电磁转距Mm(t), 从而拖动负载运动。即:电压→电流→转距 因此,直流电动机的运动方程可由以下三部分 组成: 1)电枢回路电压平衡方程; 2)电磁转矩方程; 3)电动机轴上的转矩平衡方程.
根据出水量的增量与水位高度的增量近 似成正比: h
q 2 C R
L[ f (t )] f (s)e s
微分方程: 拉氏变换:
d h h q 1 (t 0 ) dt R
RCsh(s) h(s) Rq 1(s)e s
G( s) h R e s q 1 RCs 1
i
2
dt
U 2 U c2
由④、⑤得:
⑤
i1
dU c 2 dU 2 i2 C 2 C2 dt dt
由于
dUc1 dUc1 dU 2 i1 C1 i2 C1 C2 dt dt dt
将i1、i2代入①、③,则得
U1 R1i1 R2 i2 Uc 2
dUc1 dU 2 dU 2 R1 (C1 C2 ) R2 C 2 U2 dt dt dt
建立微分方程的关键是什么?
【例1】图由一RC组成的四端无源网络。试列写以Ui (t)为输入量,Uc(t)为输出量的微分方程。
解:设电容两端的电压为 根据电路定理,得
uc
.
ui
R
ui Ri uc
iC du c dt
i
① ②
C
uc
将(1)代入(2),消取中间变量i,得
传递函数:
U c ( s) 1 U i ( s) RCs 1
应用:系统内部运动机理原理不清楚。
举例1. 分析法建立系统数学模型的几个步骤:
1)建立系统和元件的物理模型。 2)列写原始方程。 利用适当的物理定律—如牛顿定律、基尔霍夫 电流和电压定律、能量守恒定律等. 3)选定系统的输入量、输出量及状态变量(仅 在建立状态模型时要求),消去中间变量,建 立适当的输入输出模型或状态空间模型。 4)对模型进行检验.
q0
c i R
微分方程:
d c Ru2 r RC c i dt r
【例10】建立无自恒水箱的微分方程。
解:由于输出流量q2为定值,因此 水箱水位高度的变化与输入流 量成正比
d h C q 1 dt
传递函数:
1 G (s) Cs
积分环节
【例11】建立电枢控制直流电动机的微分方程
第二章
教学重点:
连续系统的数学模型
控制系统微分方程、传递函数、系统结构图。
教学难点:
根据系统工作原理图绘制系统”结构图”。
教学内容:
2.1 概述 2.2 控制系统微分方程的建立 2.3 传递函数 2.4 控制系统的结构图 2.5 控制系统的信号流图 2.6 控制系统的传递函数
2.1 概述
1、控制系统的分析、设计过程
R1 [C1
dU 2 dU 2 d ( R2 i2 U 2 ) C 2 ] R2 C 2 U2 dt dt dt
d 2U 2 dU 2 dU 2 dU 2 R1C1 R2 C 2 R1C1 R1C 2 R2 C 2 U2 2 dt dt dt dt
整理,得微分方程:
提出课题 拟定方案
设计装置
器件组装
试验调试 修改设计
性能ห้องสมุดไป่ตู้试
修改方案
系统设计:根据用户对被控对象性能的要求,设计控 制装置,使被控对象的性能指标满足用户提出的要求. 系统分析:对已经存在的控制系统,分析系统的性能 指标,作出系统性能优劣状况的判断。 系统分析是系统设计的基础.系统设计是系统分析的结 果.
h q 1 h0R0
d h h C q 1 dt R
线性
d h 1 dt 2
G( s)
h R q 1 RCs 1
【例8】建立有延迟的单容水箱的微分方程。
l/v
解:根据物料平衡原理,dt时间内
水箱液体的增加,应与进水量 相等:
q 1 (t ) q 2 (t ) C dh dt
数学模型怎么表示?
4、控制系统数学模型的几种表示方式
数学模型
时域模型
复域模型
频域模型
结构图