直线与圆的方程综合题、典型题 2

合集下载

第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一

第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一

第二章直线和圆的方程专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一第二章直线和圆的方程专题测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息。

2.请将答案正确填写在答题卡上。

第I卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线 $ $l_1\parallell_2$,则实数 $k=$()。

A。

$-2$B。

$-1$C。

$1$D。

$2$2.(2020·XXX高一月考)直线$l_1:(a-2)x+(a+1)y+4=0$,$l_2:(a+1)x+ay-9=0$ 互相垂直,则 $a$ 的值是()。

A。

$-0.25$B。

$1$C。

$-1$D。

$1$ 或 $-1$3.(2020·XXX高一月考)直线 $l:(m-1)x-my-2m+3=0$($m\in R$)过定点 $A$,则点 $A$ 的坐标为()。

A。

$(-3,1)$B。

$(3,1)$C。

$(3,-1)$D。

$(-3,-1)$4.(2020·广东高二期末)设 $a\in R$,则“$a=1$”是“直线$ax+y-1=0$ 与直线 $x+ay+1=0$ 平行”的()。

A。

充分不必要条件B。

必要不充分条件C。

充分必要条件D。

既不充分也不必要条件5.(2020·黑龙江高一期末)若曲线 $y=4-x^2$ 与直线$y=k(x-2)+4$ 有两个交点,则实数 $k$ 的取值范围是()。

A。

$\left[\frac{3}{4},1\right]$B。

$\left[\frac{3}{4},+\infty\right)$C。

$(1,+\infty)$D。

$(1,3]$6.(2020·XXX高三其他)已知直线 $x+y=t$ 与圆$x+y=2t-t^2$($t\in R$)有公共点,则 $\frac{t(4-t)}{9}$ 的最大值为()。

新人教版高中数学选修一第二单元《直线和圆的方程》测试题(含答案解析)

新人教版高中数学选修一第二单元《直线和圆的方程》测试题(含答案解析)

一、选择题1.直线()()()230x m x y m -+-+=∈R 过下面哪个定点( ) A .()4,0B .()0,4C .()2,5D .()3,22.设点(1,2),(2,3)A B -,若直线10ax y ++=与线段AB 有交点,则a 的取值范围是( ) A .[3,2]- B .[2,3]-C .(,2][3,)-∞-⋃+∞D .(,3][2,)-∞-⋃+∞3.已知两点()1,2A -、()2,1B ,直线l 过点()0,1P -且与线段AB 有交点,则直线l 的倾斜角的取值范围为( ) A .3,44ππ⎡⎤⎢⎥⎣⎦ B .30,,424πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦ C .30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭ D .3,,4224ππππ⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦4.已知圆M :22(1)(2)5x y -+-=和点(3,5)P ,过点P 做圆M 的切线,切点分别为A 、B ,则下列命题:①4PA PB k k ⋅=-;②PA =;③AB 所在直线方程为:23130x y +-=;④PAB △外接圆的方程为2247130x y x y +--+=.其中真命题的个数为( ) A .1B .2C .3D .45.赵州桥,是一座位于河北省石家庄市赵县城南洨河之上的石拱桥,因赵具古称赵州而得名.赵州桥始建于隋代,是世界上现存年代久远、跨度最大、保存最完整的单孔石拱桥.小明家附近的一座桥是仿赵州桥建造的一座圆拱桥,已知在某个时间段这座桥的水面跨度是20米,拱顶离水面4米;当水面上涨2米后,桥在水面的跨度为( )A .10米B .米C .米D .6.已知点()1,0A m -,()()1,00B m m +>,若圆C :2288280x y x y +--+=上存在一点P ,使得PA PB ⊥,则实数m 的取值范围是( ) A .3m ≥ B .3m 7≤≤ C .27m -<≤D .46m ≤≤7.在平面直角坐标系中,定义1212(,)||||d A B x x y y =-+-为两点11(,)A x y 、22(,)B x y 的“切比雪夫距离”,又设点P 及直线l 上任意一点Q ,称(,)d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(,)d P l ,给出下列三个命题: ①对任意三点A 、B 、C ,都有(,)(,)(,)d C A d C B d A B +≥; ②已知点(3,1)P 和直线:210l x y --=,则4(,)3d P l =; ③定义(0,0)O ,动点(,)P x y 满足(,)1d P O =,则动点P 的轨迹围成平面图形的面积是4;其中真命题的个数( ) A .0B .1C .2D .38.111222(,),(,)P a b P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a x b y +=⎧⎨+=⎩的解的情况是( )A .无论12,,k P P 如何,总是无解B .无论12,,k P P 如何,总有唯一解C .存在12,,k P P ,使12x y =⎧⎨=⎩是方程组的一组解 D .存在12,,k P P ,使之有无穷多解9.圆221:2410C x y x y ++++=与圆222:4410C x y x y +---=的公切线有几条( ) A .1条B .2条C .3条D .4条10.已知11(,)P x y 是直线1:(,)0l f x y =上一点,22(,)Q x y 是l 外一点,则方程(,)f x y =1122(,)(,)f x y f x y +表示的直线( )A .与l 重合B .与l 交于点PC .过Q 与l 平行D .过Q 与l 相交11.直线:210l x my m +--=与圆22:(2)4C x y +-=交于A B 、两点,则当弦AB 最短时直线l 的方程为( ) A .2410x y +-= B .2430x y -+= C .2410x y ++= D .2430x y ++=12.曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时,则实数k的取值范围是( ) A .50,12⎛⎫⎪⎝⎭B .13,34⎛⎫⎪⎝⎭C .5,12⎛⎫+∞⎪⎝⎭D .53,124二、填空题13.已知三条直线的方程分别为0y=0y -+=0y +-,那么到三条直线的距离相等的点的坐标为___________.14.已知点(4,0),(0,2)A B ,对于直线:0l x y m -+=的任意一点P ,都有22||||18PA PB +>,则实数m 的取值范围是__________.15.若实数x ,y 满足关系10x y ++=,则式子S =______.16.当直线:(21)(1)740()l m x m y m m R +++--=∈被圆22:(1)(2)25C x y -+-=截得的弦最短时,m 的值为____________.17.已知定点A 到动直线l :()221420+---=mx m y m (m R ∈)的距离为一常数,则定点A 的坐标为________.18.已知点A (0,2),O (0,0),若圆()()22:21C x a y a -+-+=上存在点M ,使3MA MO ⋅=,则圆心C 的横坐标a 的取值范围为________________.19.数学家欧拉在1765年发现,任意三角形的外心、重心、垂心在同一条直线上,这条直线称为“欧拉线”.已知ABC 的顶点(2,0),(0,4)A B ,其“欧拉线”的直线方程为20x y -+=,则ABC 的顶点C 的坐标__________.20.直线2ax +by =1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(0,1)之间的距离的最大值为________.三、解答题21.已知一圆经过点()3,1A ,()1,3B -,且它的圆心在直线320x y --=上. (1)求此圆的方程;(2)若点D 为所求圆上任意一点,且点()3,0C ,求线段CD 的中点M 的轨迹方程. 22.在平面直角坐标系中,已知射线OA :0(0)x y x -=≥,OB :20(0)x y x +=≥.过点(1,0)P 作直线分别交射线,OA OB 于点A ,B .(1)当AB 的中点在直线20x y -=上时,求直线AB 的方程; (2)当AOB 的面积取最小值时,求直线AB 的方程; (3)当||||PA PB ⋅取最小值时,求直线AB 的方程.23.已知直线l :2830mx y m ---=和圆C :22612200x y x y +-++=. (1)求圆C 的圆心、半径(2)求证:无论m 为何值,直线l 总与圆C 有交点;(3)m 为何值时,直线l 被圆C 截得的弦最短?求出此时的弦长.24.(1)已知点(,)a b 在直线3210x y ++=上,则直线20ax by ++=必过定点M ,求定点M 的坐标.(2)已知直线1l 过(1)中的定点M ,且与直线2:4l y x =相交于第一象限内的点A ,与x 正半轴交于点B ,求使△OAB 面积最小时的直线1l 的方程.25.△ABC 中∠C 的平分线所在直线方程为y x =,且A (-1,52),B (4,0).(1)求直线AB 的截距式...方程; (2)求△ABC 边AB 的高所在直线的一般式...方程.26.在①经过直线1:20l x y -=与直线2:210l x y +-=的交点.②圆心在直线20x y -=上.③被y 轴截得弦长AB =;从上面这三个条件中任选一个,补充下面问题中,若问题中的圆存在,求圆的方程;若问题中圆不存在,请说明理由.问题:是否存在圆Q ,且点()2,1A --,()1,1B -均在圆上?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由恒等式的思想得出2030x x y -=⎧⎨-+=⎩,解之可得选项.【详解】由2030x x y -=⎧⎨-+=⎩,解得:25x y =⎧⎨=⎩,故直线过恒过点()2,5,故选:C. 【点睛】方法点睛:求直线恒过点的方法:方法一(换元法):根据直线方程的点斜式直线的方程变成()y k x a b =-+,将x a =带入原方程之后,所以直线过定点()a b ,;方法二(特殊引路法):因为直线的中的m 是取不同值变化而变化,但是一定是围绕一个点进行旋转,需要将两条直线相交就能得到一个定点.取两个m 的值带入原方程得到两个方程,对两个方程求解可得定点.2.D解析:D 【分析】求出线段AB 的方程,列方程组求得直线与线段交点坐标(横坐标),由21x -≤≤可求得a 的范围. 【详解】321213AB k -==---,∴AB 方程为12(1)3y x -=--,即370x y +-=,由10370ax y x y ++=⎧⎨+-=⎩,解得1013x a =-,(显然310a -≠),由102113a-≤≤-解得3a ≤-或2a ≥.【点睛】方法点睛:本题考查直线与线段有公共点问题,解题方法有两种:(1)求出直线AB 方程,由直线AB 方程知直线方程联立方程组求得交点坐标(只要求得横坐标),然后由横坐标在已知两个点的横坐标之间列不等式解之可得;(2)求出直线过定点P ,再求出定点P 与线段两端点连线斜率,结合图形可得直线斜率范围,从而得出参数范围.3.C解析:C 【分析】作出图形,求出直线PA 、PB 的斜率,数形结合可得出直线l 的斜率的取值范围,进而可求得直线l 的倾斜角的取值范围. 【详解】 如下图所示:直线PA 的斜率为21110PA k -+==--,直线PB 的斜率为11120PB k +==-, 由图形可知,当直线l 与线段AB 有交点时,直线l 的斜率[]1,1k ∈-. 因此,直线l 的倾斜角的取值范围是30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭. 故选:C. 【点睛】关键点点睛:求直线倾斜角的取值范围的关键就是求出直线的斜率的取值范围,结合图象,利用直线PA 、PB 的斜率可得所要求的斜率的取值范围.4.D解析:D 【分析】设出斜率k ,得出切线方程,利用相切可得2+2440k k -=,即可得出4PA PB k k ⋅=-,判断①;由22PA PM MA =-②;可得,,,P A B M 四点共圆,圆心为PM 中点,即72,2⎛⎫ ⎪⎝⎭,半径为1322PM =,写出圆的方程可判断④;两圆相减可得直线AB 方【详解】可知切线的斜率存在,设斜率为k ,则切线方程为53y k x ,即350kx y k ,=2+2440k k -=,可得,PA PB k k 是该方程的两个根,故4PA PB k k ⋅=-,故①正确; 又PM ==PA MA ⊥,PA ∴==故②正确;,PA MA PB MB ⊥⊥,,,,P A B M ∴四点共圆,且圆心为PM 中点,即72,2⎛⎫⎪⎝⎭,半径为22PM =, 故PAB △外接圆的方程为22713(2)()24x y -+-=,即2247130x y x y +--+=,故④正确;将两圆方程相减可得23130x y +-=,即直线AB 方程,故③正确. 故选:D. 【点睛】本题考查过圆外一点作圆的切线问题,解题的关键是利用相切关系得出圆心到直线的距离为半径,且,,,P A B M 四点共圆.5.C解析:C 【分析】根据题意,建立圆拱桥模型,设圆O 半径为R , 当水面跨度是20米,拱顶离水面4米,分析可得22100(4)R R =--,求出R ,当水面上涨2米后,可得跨度2CD CN =,计算可得解. 【详解】根据题意,建立圆拱桥模型,如图所示:设圆O 半径为R ,当水面跨度是20米,拱顶离水面4米,此时水面为AB ,M 为AB 中点,即20AB =,4OM R =-,利用勾股定理可知,22222AB AM OA OB ==-,即22100(4)R R =--,解得292R =,当水面上涨2米后,即水面到达CD ,N 为CD 中点,此时2ON R =-, 由勾股定理得2222(2)66CD CN R R ==--=.故选:C 【点睛】关键点睛:本题考查圆的弦长,解题的关键是利用已知条件建立模型,利用数形结合求解,考查学生的转化能力与运算求解能力,属于基础题.6.B解析:B 【分析】根据题意,分析圆C 的圆心坐标以及半径,设AB 的中点为M ,由AB 的坐标分析M 的坐标以及|AB |的值,可得以AB 为直径的圆;进而分析,原问题可以转化为圆C 与圆M 有公共点,结合圆与圆的位置关系,分析可得答案. 【详解】根据题意,圆2288280C x y x y +--+=:,即()()22444x y -+-=;其圆心为()4,4,半径2r =, 设AB 的中点为M ,又由点()()1,0,1,0,A m B m -+则()1,0,2M AB m =, 以AB 为直径的圆为()2221x y m -+=,若圆2288280C x y x y +--+=:上存在一点P ,使得PA ⊥PB ,则圆C 与圆M 有公共点,又由22(14)(04)5MC =-+-=, 即有25m -≤且25m +≥,即37m ≤≤, 又0,37m m >∴≤≤,故选:B. 【点睛】本题考查直线与圆的位置关系,注意将圆问题转化为圆与圆的位置关系,属于基础题.7.B解析:B 【分析】由新定义表示出三点,,A B C 两两之间的“切比雪夫距离”,然后根据绝对值的性质判断①,由新定义计算出(,)d P l ,判断②,根据新定义求出P 的轨迹方程,确定其轨迹,求得轨迹围成的图形面积判断③. 【详解】①设112233(,),(,),(,)A x y B x y C x y ,则1212(,)d A B x x y y =-+-,13132323(,)(,)d A C d B C x x y y x x y y +=-+-+-+-,显然1323132312()()x x x x x x x x x x -+-≥---=-,同理132312y y y y y y -+-≥-,∴(,)(,)(,)d C A d C B d A B +≥,①正确; ②设(,)P x y 是直线l 上任一点,则21y x =-,(,)31322d P l x y x x =-+-=-+-35,31,1353,1x x x x x x -≥⎧⎪=+≤<⎨⎪-<⎩,易知(,)d P l 在[1,)+∞上是增函数,在(,1)-∞上是减函数,∴1x =时,min (,)13222d P l =-+-=,②错; ③由(,)1d P O =得1x y +=,易知此曲线关于x 轴,y 轴,原点都对称,它是以(1,0),(0,1),(1,0),(0,1)--为顶点的正方形,其转成图形面积为12222S =⨯⨯=,③错.故选:B . 【点睛】关键点点睛:本题考查新定义,解题关键是理解新定义,解题方法是把新概念转化为绝对值的问题,利用绝对值的性质求解.8.B解析:B 【分析】由点在直线上,点的坐标代入直线方程,确定1221a b a b -是否为0,不为0,方程组有唯一解,为0时,再讨论是否有无数解. 【详解】由题意112211b ka b ka =+⎧⎨=+⎩,则1221122112(1)(1)a b a b a ka a ka a a -=+-+=-,∵直线1y kx =+的斜率存在,∴12a a ≠,120a a -≠,∴方程组112211a x b y a x b y +=⎧⎨+=⎩总有唯一解.A ,D 错误,B 正确;若12x y =⎧⎨=⎩是方程组的一组解,则11222121a b a b +=⎧⎨+=⎩,则点1122(,),(,)a b a b 在直线21x y +=,即1122y x =-+上,但已知这两个在直线1y kx =+上,这两条直线不是同一条直线,∴12x y =⎧⎨=⎩不可能是方程组的一组解,C 错误.故选:B . 【点睛】本题考查直线方程,考查方程组解的个数的判断.掌握直线方程是解题关键.9.C解析:C 【分析】将两圆化为标准形式,求出圆心距和两圆半径之和,判断即可. 【详解】圆221:(1)(2)4C x y +++=,圆心 1(1,2)C -- ,12r =, 圆222:(2)(2)9C x y -+-= ,圆心2C ()2,2,23r =,圆心距125C C ==1212C C r r =+,∴两圆外切,有3条公切线.故选:C. 【点睛】本题考查圆与圆的位置关系,考查学生数形结合思想以及求解运算能力,属于基础题.10.C解析:C 【分析】由题意有可得1(f x ,1)0y =,2(f x ,2)0y ≠,根据当两直线方程的一次项系数相等,但常数项不相等时,两直线平行,得出结论. 【详解】解:由题意有可得1(f x ,1)0y =,2(f x ,2)0y ≠,则方程(f x ,1)(y f x -,12)(y f x -,2)0y =即(f x ,2)(y f x -,2)0y =,它与直线:(,)0l f x y =的一次项系数相等,但常数项不相等,故(f x ,2)(y f x -,2)0y =表示过Q 点且与l 平行的直线, 故选:C . 【点睛】根据平行直线系方程,即两直线方程10Ax By C ++=与20Ax By C ++=互相平行.11.B解析:B 【分析】先求出直线经过定点1(,1)2P ,圆的圆心为()0,2C ,根据直线与圆的位置关系可知,当CP l ⊥时弦AB 最短,根据1CP l k k ⋅=-求出m 的值,即可求出直线l 的方程.【详解】解:由题得,(21)(1)0x m y -+-=,21010x y -=⎧∴⎨-=⎩,解得:121x y ⎧=⎪⎨⎪=⎩,所以直线l 过定点1(,1)2P ,圆22:(2)4C x y +-=的圆心为()0,2C ,半径为2,当CP l ⊥时,弦AB 最短,此时1CP l k k ⋅=-, 由题得212102CP k -==--,12l k ∴=, 所以212m -=,4m ∴=-, 所以直线l 的方程为:2430x y -+=.故选:B. 【点睛】本题考查直线过定点问题,考查直线方程的求法,以及直线和圆的位置关系,考查分析推理和化简运算能力.12.D解析:D 【分析】 易知曲线214y x 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,然后在同一坐标系中作出直线与半圆的图象,利用数形结合法求解. 【详解】 曲线214y x 变形为22214141y x x y y 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,在同一坐标系中作出直线与半圆的图象,如图所示:当直线()24y k x =-+与圆相切时,圆心到直线的距离等于半径,23221kk -=+,解得512k =,即512AC k ,又413224AB k , 由图知:当曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时:ACAB k kk ,即53124k <≤. 故选:D 【点睛】本题主要考查直线与圆的位置关系的应用,还考查了数形结合的思想方法,属于中档题.二、填空题13.【分析】先画出图形求出再分四种情况讨论得解【详解】如图所示由题得的平分线:和的平分线:的交点到三条直线的距离相等联立两直线的方程解方程组得交点为;的外角平分线:和的外角平分线:的交点到三条直线的距离 解析:(0,3)30,33)(3)- 【分析】先画出图形,求出3),(1,0),(1,0)A B C -,再分四种情况讨论得解. 【详解】 如图所示,由题得3),(1,0),(1,0)A B C -,CAB ∠的平分线AO :0x =和ACB ∠的平分线CD :3(1)3y x =+的交点到三条直线的距离相等,联立两直线的方程解方程组03(1)3xy x =⎧⎪⎨=+⎪⎩得交点为3(0,); ACB ∠的外角平分线CE :3(1)y x =-+和ABC ∠的外角平分线BF :3(1)y x =-的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3(1)y x y x ⎧=-+⎪⎨=-⎪⎩得交点为(0,3)-;ACB ∠的外角平分线CG :3(1)y x =-+和CAB ∠的外角平分线AG :3y =的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y x y ⎧=-+⎪⎨=⎪⎩得交点为(2,3)-;ABC ∠的外角平分线BH :3(1)y x =-和CAB ∠的外角平分线AG :3y =的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y x y ⎧=-⎪⎨=⎪⎩得交点为(2,3).故答案为:(0,3)-、30,3、(2,3)、(2,3)-【点睛】关键点睛:解答本题的关键是利用平面几何的知识分析找到四个点,再利用直线的知识解答即可.14.【分析】设根据条件可得即点P 在圆外故圆与直线相离根据直线与圆的位置关系可得答案【详解】设由可得即所以点P 在圆外又点P 在直线上所以圆与直线相离所以解得:或故答案为:【点睛】关键点睛:本题考查根据直线与 解析:(,12)(221,)-∞--⋃+∞【分析】设(),P x y ,根据条件可得()()22214x y -+->,即点P 在圆()()22214x y -+-=外,故圆()()22214x y -+-=与直线:0l x y m -+=相离,根据直线与圆的位置关系可得答案. 【详解】设(),P x y ,由22||||18PA PB +>可得()()22224218x y x y -+++->,即()()22214x y -+-> 所以点P 在圆()()22214x y -+-=外,又点P 在直线:0l x y m -+=上 所以圆()()22214x y -+-=与直线:0l x y m -+=相离所以2d r =>=,解得:1m >或1m <--故答案为:(,11,)-∞--⋃+∞ 【点睛】关键点睛:本题考查根据直线与圆的位置关系求参数范围,解答本题的关键是根据条件得到点P 在圆()()22214x y -+-=外,即圆()()22214x y -+-=与直线:0l x y m -+=相离,属于中档题.15.【分析】化简看成是一个动点到一个定点的距离结合点到直线的距离公式即可求解【详解】由题意化简可得所以上式可看成是一个动点到一个定点的距离从而即为点与直线:上任意一点的距离由点到直线的距离公式可得所以的解析:2【分析】=,看成是一个动点(),M x y 到一个定点()1,1N 的距离,结合点到直线的距离公式,即可求解.【详解】=,所以上式可看成是一个动点(),M x y 到一个定点()1,1N 的距离, 从而S 即为点N 与直线l :10x y ++=上任意一点(),M x y 的距离,由点到直线的距离公式,可得2d ==,所以S 的最小值为min 2S d ==故答案为:2. 【点睛】形如:22()()x a y b -+-的形式的最值问题,可转化为动点到定点的距离的平方的最值问题,结合两点间的距离公式或点到直线的距离公式进行求解.16.【分析】先求得直线过定点分析可知当直线与CM 垂直时直线被圆截得的弦长最短进而利用斜率的关系即可求得m 的值【详解】直线的方程可化为所以直线会经过定点解得定点坐标为圆C 圆心坐标为当直线与CM 垂直时直线被解析:34-【分析】先求得直线过定点()3,1M ,分析可知当直线l 与CM 垂直时,直线被圆截得的弦长最短 ,进而利用斜率的关系即可求得m 的值. 【详解】直线l 的方程可化为()2740x y m x y +-++-=所以直线l 会经过定点27040x y x y +-=⎧⎨+-=⎩,解得定点坐标为()3,1M ,圆C 圆心坐标为()1,2当直线l 与CM 垂直时,直线被圆截得的弦长最短211132CM k -==-- ,211l m k m +=-+ 所以121121CM l m k k m +⎛⎫⎛⎫⨯=-⨯-=- ⎪ ⎪+⎝⎭⎝⎭,解方程得34m =-【点睛】本题考查了直线与圆的位置关系,根据斜率关系求得参数的值,属于基础题.17.【解析】【分析】设出定点A 根据点到直线的距离公式求出点到直线l 的距离由距离为常数利用一般到特殊的思想令分析可得定点A 的坐标检验一般性可知动直线l 是以为圆心半径为的圆的切线系即可求出定点A 的坐标为【详 解析:()2,1【解析】 【分析】设出定点A ,根据点到直线的距离公式求出点A 到直线l 的距离,由距离为常数,利用一般到特殊的思想,令0,1,1m =-分析可得,定点A 的坐标,检验一般性可知,动直线l 是以()2,1 为圆心,半径为1的圆的切线系,即可求出定点A 的坐标为()2,1. 【详解】设定点A 为(),a b ,所以点A 到直线l 的距离d =无论m R ∈,d 为定值,所以令0m = 可得,2d b =-,令1m = 可得,3d a =-, 令1m =-可得,1d a =- ,由31a a -=- 可得,2a =,即有1b =或3b = . 当定点A 为()2,1时,22111m d m +===+ ,符合题意; 当定点A 为()2,3 时,22131m d m -==+ ,显然d 的值随m 的变化而变化,不符题意,舍去.综上可知,动直线l 是以()2,1 为圆心,半径为1的圆的切线系,所以定点A 为2,1.故答案为:()2,1. 【点睛】本题主要考查直线系方程的识别和应用,点到直线的距离公式的应用,考查学生的转化能力和数学运算能力,属于中档题.18.【解析】【分析】设利用可得的轨迹方程以为圆心2为半径的圆利用圆上存在点可得两圆相交或相切建立不等式即可求出实数的取值范围【详解】解:设因为A(02)O(00)所以因为所以化简得:所以点的轨迹是以为圆 解析:[0,3]【解析】 【分析】设(),M x y ,利用 3MA MO ⋅= ,可得M 的轨迹方程以()0,1 为圆心,2为半径的圆,利用圆C 上存在点M ,可得两圆相交或相切,建立不等式,即可求出实数a 的取值范围. 【详解】解:设(),M x y ,因为 A (0,2),O (0,0), 所以(,2)MA x y =-- ,(,)MO x y =-- . 因为3MA MO ⋅= ,所以()()()()23x x y y --+--= ,化简得:22(1)4x y +-= ,所以M 点的轨迹是以()0,1 为圆心,2为半径的圆. 因为M 在()()22:21C x a y a -+-+= 上, 所以两圆必须相交或相切.所以13≤≤ ,解得03a ≤≤.所以圆心C 的横坐标a 的取值范围为: [0,3]. 故答案为:[0,3]. 【点睛】本题主要考查求轨迹方程,考查圆与圆的位置关系,确定M 的轨迹方程是解题的关键,属于中档题.19.【分析】设由题意结合重心的性质可得求得AB 的中垂线方程与欧拉线方程联立可得外心由外心的性质可得解方程即可得解【详解】设由重心坐标公式得的重心为代入欧拉线方程得整理得①因为AB 的中点为所以AB 的中垂线 解析:(4,0)-【分析】设(),C m n ,由题意结合重心的性质可得40m n -+=,求得AB 的中垂线方程,与欧拉=可得解. 【详解】设(),C m n ,由重心坐标公式得ABC 的重心为24,33m n ++⎛⎫⎪⎝⎭,代入欧拉线方程得242033m n++-+=整理得40m n -+=①, 因为AB 的中点为()1,2,40202AB k -==--,所以AB 的中垂线的斜率为12,所以AB 的中垂线方程为()1212y x -=-即230x y -+=, 联立23020x y x y -+=⎧⎨-+=⎩,解得11x y =-⎧⎨=⎩,∴ABC 的外心为()1,1-,=,联立①②得4,0m n =-=或0,4m n ==, 当0,4m n ==时,点B 、C 两点重合,舍去; ∴4,0m n =-=即ABC 的顶点C 的坐标为()4,0-. 故答案为:()4,0-. 【点睛】本题考查了直线方程的求解与应用,考查了两点间距离公式的应用,关键是对题意的正确转化,属于中档题.20.【分析】根据AOB 是直角三角形解得圆心O 到直线ax +by =1距离即得ab 关系式再根据两点间距离公式代入消去根据二次函数性质以及的范围求最值【详解】因为是直角三角形且所以O 到直线ax +by =1距离为因1【分析】根据AOB 是直角三角形,解得圆心O ax +by =1距离,即得a ,b 关系式,再根据两点间距离公式,代入消去a ,根据二次函数性质以及b 的范围求最值 【详解】因为AOB 是直角三角形,且||||1AO OB ==,所以O ax +by =1,因此22222a b =+= 设点P (a ,b )与点(0,1)之间的距离为d ,d ====因为22,b b ≤≤≤b =d 取最大值为1=+1 【点睛】本题考查直线与圆位置关系、利用二次函数性质求最值,考查综合分析求解能力,属中档题.三、解答题21.(1) 22(2)(4)10x y -+-=(2) ()2255222x y ⎛⎫-+-= ⎪⎝⎭ 【分析】(1)首先设出方程,将点坐标代入得到关于参数的方程组,通过解方程组得到参数值,从而确定其方程;(2)首先设出点M 的坐标,利用中点得到点D 坐标,代入圆的方程整理化简得到的中点M 的轨迹方程. 【详解】(1)由已知可设圆心N (a ,3a -2),又由已知得|NA |=|NB |,=,解得:a =2.于是圆N 的圆心N (2,4),半径r ==所以,圆N 的方程为22(2)(4)10x y -+-=,(2) 设M (x ,y ),D ()11,x y ,则由C (3,0)及M 为线段CD 的中点得:113202x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,解得11232x x y y=-⎧⎨=⎩又点D 在圆N :22(2)(4)10x y -+-=上,所以有()()222322410x y --+-=,化简得:()2255222x y ⎛⎫-+-= ⎪⎝⎭. 故所求的轨迹方程为()2255222x y ⎛⎫-+-= ⎪⎝⎭.【点睛】方法点睛:与圆相关的点的轨迹问题,一般可以考虑转移法(相关点法),设动点的坐标,根据条件,用动点坐标表示圆上点的坐标,再根据圆上点的坐标满足圆的方程求解即可.22.(1)7470x y --=(2)440x y --=(3)3)10x y --= 【分析】(1)设11(,)A x x ,22(,2)B x x -,根据AB 的中点在直线20x y -=上求出125x x =,利用斜率公式求出直线AB 的斜率,再由点斜式可求出直线AB 的方程; (2)设直线AB 的方程为1x my =+,求出,A B 的坐标,利用AOBAOPBOPSSS=+求出面积关于m 的解析式,再根据基本不等式求最值可得m 和直线AB 的方程;(3)利用(2)中,A B 的坐标求出||PA 、||PB ,得到||||PA PB 关于m 的函数关系式,再换元利用基本不等式求出||||PA PB 取最小值时的m ,从而可得直线AB 的方程. 【详解】(1)设11(,)A x x ,22(,2)B x x -,则AB 的中点为12122(,)22x x x x +-, 因为AB 的中点在直线20x y -=上,所以121222022x x x x +--⨯=,即125x x =, 所以直线AB 的斜率12212227744x x x k x x x +===-, 所以直线AB 的方程为7(1)4y x =-,即7470x y --=. (2)设直线AB 的方程为1x my =+,联立10x my x y =+⎧⎨-=⎩,得11x y m ==-,所以11(,)11A m m --(1)m <, 联立120x my x y =+⎧⎨+=⎩,得121x m =+,221y m =-+1()2m >-,所以12(,)2121B m m -++, 所以AOB AOP BOP S S S =+112||()2121OP m m =+-+112221m m =+-+,因为220,210m m ->+>,所以112221m m +-+112221()22213m m m m -++=+⨯-+ 12122(11)32221m m m m +-=+++-+14(233≥+=, 当且仅当14m =时,等号成立, 所以AOB S的最小值为43,此时14m =,直线AB 的方程为114x y =+,即440x y --=.(3)由(2)知,||PA ==||PB =21m =+, 所以||||PA PB ⋅=222212121m m m m m +=-+-++222(1)2(1)3m m m +=-+++ 22321m m =+-++, 令53(,4)2m t +=∈,则2231(3)1m t m t +=+-+21106106t t t t t ==-++-≤=,当且仅当=t3m =时,231m m ++取得最大值,||||PA PB ⋅取得最小值,此时直线AB的方程为3)1x y =+,即3)10x y --=. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 23.(1)圆心(3,6)C -,半径5R =(2)证明见解析(3)16m =-时,直线l 被圆C 截得的弦最短,弦长为【分析】(1)利用6,12,20D E F =-==可求得结果; (2)利用直线l 经过的定点在圆C 内可证结论成立;(3)设圆心C 到直线l 的距离为d ,直线l 被圆C 截得的弦为AB ,根据弦长公式可知d 最大即CM l ⊥时,弦长最短,由此可求得结果. 【详解】(1)因为6,12,20D E F =-==所以6322D --=-=,12622E -=-=-,所以(3,6)C -,所以半径5R ===. (2)由2830mx y m ---=得(28)(3)0x m y --+=,由28030x y -=⎧⎨+=⎩得4,3x y ==-,所以直线l 经过定点M (4,3)-,5=<,所以定点M (4,3)-在圆C 内, 所以无论m 为何值,直线l 总与圆C 有交点.(3)设圆心C 到直线l 的距离为d ,直线l 被圆C 截得的弦为AB ,则||AB =d 最大值时,弦长||AB 最小,因为||d CM ≤==,当且仅当CM l ⊥时,d ,||AB取最小值=111236343CMm k =-=-=--+-,所以16m =-.所以16m =-时,直线l 被圆C 截得的弦最短,弦长为 【点睛】关键点点睛:第(2)问的关键是证明直线经过的定点在圆内,第(3)问的关键是推出CM l ⊥时,弦长最短.24.(1)(6,4);(2)10x y +=.【分析】(1)点(,)a b 在直线3210x y ++=上,所以213b a +=-,代入直线20ax by ++=得6(32)0x b y x -+-=可得答案;(2)讨论直线的斜率存在和不存在情况,分别求出三角形的面积比较,并求较小时直线的【详解】(1)因为点(,)a b 在直线3210x y ++=上,所有3210a b ++=,即213b a +=-, 代入直线20ax by ++=得21203b x by +-++=,整理得6(32)0x b y x -+-=, 所以60320x y x -=⎧⎨-=⎩解得64x y =⎧⎨=⎩,定点(6,4)M . (2)设(,)A m n (0,0)m n >>,(,0)(0)B c c >,所以M 、A 、B 三点共线, 当1l 与x 轴垂直时,(4,24)A ,(4,0)B ,112444822OAB SOB AB =⨯⨯=⨯⨯=, 当1l 与x 轴不垂直时,所以AM BM k k =,即44066n m c --=--,644n m c n -=-, 因为在直线2:4l y x =上,所以4n m =,所以64541n m m c n m -==--, 因为0,0m c >>,所以501m c m =>-,所以1m , 2115101101222111OAB A m m S y OB n m m m m ⎛⎫=⨯⨯=⨯⨯==-++ ⎪---⎝⎭()102240≥⨯+=,当且仅当111m m -=-即2m =时等号成立,此时48n m ==,所以(2,8)A ,因为48>40,所以△OAB 面积最小时直线1l 与x 轴不垂直,且1l 的斜率为84126AM k -==--,所以直线1l 的方程为8(2)y x -=--,即为100x y +-=. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数; (2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.25.(1)142x y +=;(2)280x y -+=. 【分析】(1)设出直线的截距式方程1x y a b+=,代入点的坐标,求解出参数的值,从而截距式方程可求;(2)先求解出A 关于直线y x =的对称点A ',然后根据A '在BC 上求解出C 点坐标,再根据高所在直线的斜率与AB 斜率的关系,从而可求解出AB 的高所在直线的一般式方程.(1)设AB 的方程为1x y a b +=,代入点()51,,4,02A B ⎛⎫- ⎪⎝⎭, 所以1512401a b a b-⎧+=⎪⎪⎨⎪+=⎪⎩,所以42a b =⎧⎨=⎩,所以AB 的截距式方程为:142x y +=; (2)设A 关于y x =的对称点为A ',所以5,12A ⎛⎫'- ⎪⎝⎭且A '在直线BC 上, 又因为()4,0B ,所以()()01:04542A B l y x '---=--,即2833y x =-, 又因为C 在y x =上,也在2833y x =-上,所以2833y x y x =⎧⎪⎨=-⎪⎩,所以88x y =-⎧⎨=-⎩,所以()8,8C --, 又因为5012142AB k -==---,设AB 的高所在直线的一般式方程为20x y m -+=,代入点()8,8C --,所以1680m -++=,所以8m =,所以AB 的高所在直线的一般式方程为280x y -+=.【点睛】思路点睛:点关于直线l 的对称点坐标的求解步骤(直线的斜率存在且不为零,已知点()11,A x y ,直线l 的斜率k ):(1)设出对称点的坐标(),A a b ';(2)AA '的中点11,22x a y b ++⎛⎫ ⎪⎝⎭必在l 上,由此得到第一个方程; (3)根据1AA k k '=-得到第二个方程;(4)两个方程联立可求解出(),A a b '.26.答案见解析【分析】由点()2,1A --,()1,1B -均在圆上,可知圆心在直线AB :1y =-的垂直平分线上,即12x =-,设圆心坐标为1,2b ⎛⎫- ⎪⎝⎭,半径为r ,若选①,求出直线1l 和2l 的交点为21,55⎛⎫ ⎪⎝⎭,再利用两点之间的距离求出半径,即可求得圆的方程;若选②,由已知得圆心1,12⎛⎫-- ⎪⎝⎭,再利用两点之间的距离求出半径,即可求得圆的方程;若选③,由弦长AB =,可得半径及圆心,即可求出圆的方程.【详解】因为点()2,1A --,()1,1B -均在圆上,所以圆心在直线AB 的垂直平分线上, 又直线AB 的方程为1y =-,直线AB 垂直平分线所在直线方程为:21122x -+==-,则可设圆心坐标为1,2b ⎛⎫- ⎪⎝⎭;设圆的半径为r , 若选①,存在圆Q ,使得点()2,1A --,()1,1B -均在圆上.由20210x y x y -=⎧⎨+-=⎩解得2515x y ⎧=⎪⎪⎨⎪=⎪⎩,即直线1l 和2l 的交点为21,55⎛⎫ ⎪⎝⎭,则圆过点21,55⎛⎫ ⎪⎝⎭, 所以()222221211112552r b b ⎛⎫⎛⎫⎛⎫=--+-=--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得1b =-,则294r =, 即存在圆Q ,且圆Q 的方程为()2219124x y ⎛⎫+++= ⎪⎝⎭; 若选②,存在圆Q ,使得点()2,1A --,()1,1B -均在圆上. 由圆心在直线20x y -=上可得1202b ⎛⎫⨯--= ⎪⎝⎭,则1b =-, 所以()2221911124r ⎛⎫=--+-+= ⎪⎝⎭, 即存在圆Q ,且圆Q 的方程为()2219124x y ⎛⎫+++= ⎪⎝⎭; 若选③,存在圆Q ,使得点()2,1A --,()1,1B -均在圆上. 若圆被y轴截得弦长AB =,根据圆的性质可得,22219224AB r ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 由()222191124r b ⎛⎫=--++= ⎪⎝⎭,解得1b =-, 即存在圆Q ,且圆Q 的方程为()2219124x y ⎛⎫+++= ⎪⎝⎭;综上,存在圆Q ,且圆Q 的方程为()2219124x y ⎛⎫+++= ⎪⎝⎭ 【点睛】方法点睛:本题考查求圆的标准方程,常用的方法有:(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.(2)待定系数法:若已知条件与圆心(),a b 和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;。

人教版高中数学选修一第二单元《直线和圆的方程》测试(含答案解析)

人教版高中数学选修一第二单元《直线和圆的方程》测试(含答案解析)

一、选择题1.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若a R ∈,b R ∈且0ab ≠,则2211a b+的最小值为( ) A .72B .4C .1D .52.若平面上两点()2,0A -,()10B ,,则l :()1y k x =-上满足2PA PB =的点P 的个数为( ) A .0 B .1C .2D .与实数k 的取值有关3.点()4,2P -与圆224x y +=上任一点连线的中点轨迹方程是( ) A .()()22211x y -++= B .()()22214x y -++= C .()()22421x y ++-=D .()()22211x y ++-=4.已知直线1:210l ax y +-=2:820l x ay a ++-=,若12l l //,则a 的值为( ) A .4±B .-4C .4D .2±5.已知圆22:(1)1C x y +-=,点(3,0)A 在直线l 上,过直线l 上的任一点P 引圆C 的两条切线,若切线长的最小值为2,则直线l 的斜率k =( ) A .2B .12C .2-或12D .2或12-6.点P 是直线2100x y ++=上的动点,直线PA ,PB 分别与圆224x y +=相切于A ,B 两点,则四边形PAOB (O 为坐标原点)的面积的最小值等于( ) A .8 B .4C .24D .167.已知圆222:(1)(1)(0)C x y r r -+-=>,若圆C 上至少有3个点到直线20x y ++=,则实数r 的取值范围为( )A .(0,B .C .)+∞D .+∞[)8.在平面直角坐标系中,定义1212(,)||||d A B x x y y =-+-为两点11(,)A x y 、22(,)B x y 的“切比雪夫距离”,又设点P 及直线l 上任意一点Q ,称(,)d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(,)d P l ,给出下列三个命题: ①对任意三点A 、B 、C ,都有(,)(,)(,)d C A d C B d A B +≥; ②已知点(3,1)P 和直线:210l x y --=,则4(,)3d P l =; ③定义(0,0)O ,动点(,)P x y 满足(,)1d P O =,则动点P 的轨迹围成平面图形的面积是4;其中真命题的个数( ) A .0B .1C .2D .39.若过点(2,1)P 的圆与两坐标轴都相切,则圆心到直线230x y -+=的距离是( )A B C D 10.已知点(1,1)A - 和圆221014700C x y x y +--+=: ,一束光线从点A 出发,经过x 轴反射到圆C 的最短路程是( ) A .6B .7C .8D .911.曲线34y x x =-在点(1,3)--处的切线方程是( ) A .74y x =+B .72y x =+C .4y x =-D .2y x =-12.设点()0,1M x ,若在圆22:1O x y +=上存在点N ,使得45OMN ︒∠=,则0x 的取值范围是( )A .[0,1]B .[1,1]-C .⎡⎢⎣⎦D .⎡⎢⎣⎦二、填空题13.已知过点()4,1P 的直线l 与x 轴,y 轴的正半轴分别交于A 、B 两点,O 为坐标原点,当AOB 的面积最小时,直线l 的方程为______. 14.直线360x y +-=和圆()2215x y +-=的位置关系为______.15.已知圆C 过点(8,1),且与两坐标轴都相切,则面积较小的圆C 的方程为________. 16.设圆222:()0O x y r r +=>,定点(3,4)A -,若圆O 上存在两点到A 的距离为2,则r 的取值范围是___________.17.直线()130m x my m ++++=被圆2225x y +=所截的弦长的最小值为________. 18.若P 为直线40x y -+=上一个动点,从点P 引圆2240y x C x +-=:的两条切线PM ,PN (切点为M ,N ),则MN的最小值是________.19.若直线y x b =+与曲线y =b 的范围______________.20.若实数,a b ∈R 且0b ≠,则()221a b a b ⎛⎫-++ ⎪⎝⎭的最小值为_______.三、解答题21.在平面直角坐标系xOy 中,已知圆M 过点A (1,2),B (7,-6),且圆心在直线x +y -2=0上.(1)求圆M 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于C ,D 两点,且CD =2OA ,求直线l 的方程. 22.已知直线l 经过直线10x y -+=与直线240x y +-=的交点,且()2,3M ,()4,5N -到l 的距离相等,求直线l 的方程.23.已知圆C 过A (1,5)、B (4,2)两点,且圆心在直线2y x =上,直线l 过点()3,2P --且与AB 平行.(1)求直线l 及圆C 的方程;(2)设点M 、N 分别是直线l 和圆C 上的动点,求|MN |的取值范围. 24.已知圆C 的圆心在直线2y x =-上,且过点(2,1),(0,3)-- (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 25.已知直线:10l x y +-=与圆22:430C x y x +-+=相交于,A B 两点. (1)求||AB ;(2)若(,)P x y 为圆C 上的动点,求+1yx 的取值范围. 26.如图,已知ABC 的边AB 所在直线的方程为360x y --=,()2,0M 满足BM MC =,点()1,1T -在AC 边所在直线上且满足0AT AB ⋅=.(1)求AC 边所在直线的方程; (2)求ABC 外接圆的方程;(3)求过()2,0N -的ABC 外接圆的切线方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知两圆外切,可得出2249a b +=,然后将代数式2211a b +与2249a b +相乘,展开后利用基本不等式可求得2211a b +的最小值. 【详解】圆222240x y ax a +++-=的标准方程为()224x a y ++=,圆心为()1,0C a -,半径为12r =,圆2224140x y by b +--+=的标准方程为()2221x y b +-=,圆心为()20,2C b ,半径为21r =.由于圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,则这两圆外切,所以,1212C C r r =+3=,所以,2249a b +=,所以,222222222211411141551999a b a b a b a b b a ⎛⎛⎫+⎛⎫+=+=++≥⨯+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当222a b =时,等号成立,因此,2211a b +的最小值为1. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.C解析:C 【分析】首先利用直接法求点P 的轨迹方程,则转化为直线()1y k x =-与轨迹曲线的交点个数. 【详解】 设(),P x y ,2PA PB =,=整理为:()22224024x y x x y +-=⇔-+=, 即点P 的轨迹是以()2,0为圆心,2r为半径的圆,直线():1l y k x =-是经过定点()1,0,斜率存在的直线,点()1,0在圆的内部,所以直线():1l y k x =-与圆有2个交点,则l :()1y k x =-上满足2PA PB =的点P 的个数为2个. 故选:C方法点睛:一般求曲线方程的方法包含以下几种:直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.3.A解析:A 【分析】设圆上任意一点为()11,x y ,中点为(),x y ,则114222x x y y +⎧=⎪⎪⎨-⎪=⎪⎩,由此得解轨迹方程.【详解】设圆上任意一点为()11,x y ,中点为(),x y ,则114222x x y y +⎧=⎪⎪⎨-⎪=⎪⎩,112422x x y y =-⎧⎨=+⎩代入224x y +=得()()2224224x y -++=,化简得()()22211x y -++=.故选:A . 4.B解析:B 【分析】由12l l //可得280,a a ⨯-⨯=解得4a =±,然后再检验,得出答案. 【详解】因为12l l //,所以280,4a a a ⨯-⨯=∴=±. 当4a =时,两直线重合,所以4a =舍去. 当4a =-时,符合题意. 所以4a =-. 故选:B 【点睛】易错点睛:已知直线1110a x b y c ++=和直线2220a x b y c ++=平行求参数的值时,除了要计算12210a b a b -=,还一定要把求出的参数值代入原直线方程进行检验,看直线是否重合.本题就是典型例子,否则容易出现错解,属于中档题5.C【分析】根据勾股定理由切线长最小值求出||PC C 到直线l 的距离为l 的方程,根据点到直线的距离列式可解得结果.【详解】圆22:(1)1C x y +-=的圆心为(0,1)C ,半径为1,因为切线长的最小值为2,所以min ||PC ==所以圆心C 到直线l ,所以直线必有斜率,设:(3)l y k x =-,即30kx y k --=,所以圆心(0,1)C 到直线30kx y k --===22320k k +-=,解得12k =或2k =-.故选:C 【点睛】关键点点睛:根据勾股定理由切线长的最小值求出||PC 的最小值,也就是圆心C 到直线l 的距离是解题关键.6.A解析:A 【分析】根据题意,得到四边形PAOB 的面积22PAOS S PA ===只需求PO 最小值,进而可求出结果. 【详解】因为圆224x y +=的圆心为()0,0O ,半径为2r,圆心()0,0O 到直线2100x y ++=的距离为2d ==>,所以直线2100x y ++=与圆224x y +=相离,又点P 是直线2100x y ++=上的动点,直线PA ,PB 分别与圆224x y +=相切于A ,B 两点,所以PA PB =,PA OA ⊥,PB OB ⊥,因此四边形PAOB 的面积为12222PAO PBOPAOS SSSPA r PA =+==⨯⨯== 为使四边形面积最小,只需PO 最小,又min PO 为圆心()0,0O 到直线2100x y ++=的距离d =所以四边形PAOB 的面积的最小值为8=. 故选:A. 【点睛】 关键点点睛:求解本题的关键在于根据圆的切线的性质,将四边形的面积化为2PAOS =求面积最值问题,转化为定点到线上动点的最值问题,即可求解.7.D解析:D 【分析】根据题意,得到直线不过圆心,且求得圆心到直线的距离,结合题中条件,得到实数r 的取值范围. 【详解】圆222:(1)(1)(0)C x y r r -+-=>的圆心(1,1)到直线20x y ++=为:d ==,且直线20x y ++=不过圆心,若圆222:(1)(1)(0)C x y r r -+-=>上至少有3个点到直线20x y ++=,则有r ≥=所以实数r 的取值范围为+∞[), 故选:D. 【点睛】思路点睛:该题考查的是有关直线与圆的相关问题,解决该题的思路如下: (1)求得圆心到直线的距离,并且发现直线不过圆心; (2)结合题中条件,得到r 的取值范围.8.B解析:B 【分析】由新定义表示出三点,,A B C 两两之间的“切比雪夫距离”,然后根据绝对值的性质判断①,由新定义计算出(,)d P l ,判断②,根据新定义求出P 的轨迹方程,确定其轨迹,求得轨迹围成的图形面积判断③. 【详解】①设112233(,),(,),(,)A x y B x y C x y ,则1212(,)d A B x x y y =-+-,13132323(,)(,)d A C d B C x x y y x x y y +=-+-+-+-,显然1323132312()()x x x x x x x x x x -+-≥---=-,同理132312y y y y y y -+-≥-,∴(,)(,)(,)d C A d C B d A B +≥,①正确; ②设(,)P x y 是直线l 上任一点,则21y x =-,(,)31322d P l x y x x =-+-=-+-35,31,1353,1x x x x x x -≥⎧⎪=+≤<⎨⎪-<⎩,易知(,)d P l 在[1,)+∞上是增函数,在(,1)-∞上是减函数,∴1x =时,min (,)13222d P l =-+-=,②错; ③由(,)1d P O =得1x y +=,易知此曲线关于x 轴,y 轴,原点都对称,它是以(1,0),(0,1),(1,0),(0,1)--为顶点的正方形,其转成图形面积为12222S =⨯⨯=,③错.故选:B . 【点睛】关键点点睛:本题考查新定义,解题关键是理解新定义,解题方法是把新概念转化为绝对值的问题,利用绝对值的性质求解.9.C解析:C 【分析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y -+=的距离. 【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=, 可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心()1,1到直线230x y -+=的距离均为15d ==圆心()5,5到直线230x y -+=的距离均为25d ==圆心到直线230x y -+=的距离均为5d ==;所以,圆心到直线230x y -+=. 故选:C. 【点睛】关键点点睛:本题考查圆心到直线距离的计算,求出圆的圆心是解题的关键,考查计算能力.10.C解析:C 【分析】先将圆221014700C x y x y +--+=:化为标准方程,求出圆心和半径,再找出圆心O 关于x 轴对称的点'O ,最短距离即(1,1)A -和圆C 的圆心()5,7O 关于x 轴对称的点()'5,7O -的距离再减去半径的距离. 【详解】解:由题可知,圆221014700C x y x y +--+=:,整理得()()222572C x y -+-=:,圆心()5,7O ,半径2r最短距离即(1,1)A -和圆C 的圆心()5,7O 关于x 轴对称的点()'5,7O -的距离再减去半径的距离,所以21028d ==-=.故选:C 【点睛】本题主要考查圆的方程和直线与圆的位置关系,考查两点间的距离公式,属于简单题.11.D解析:D 【分析】已知点(1,3)--在曲线上,若求切线方程,只需求出曲线在此点处的斜率,利用点斜式求出切线方程. 【详解】由已知得:曲线为34y x x =-;则:对其进行求导得243y x '=-;当1x =-时,243(1)1y '=-⨯-=∴ 曲线34y x x =-在点(1,3)--处的切线方程为:31(1)y x +=⨯+化简得:2y x =-; 故选:D.【点睛】本题主要考查了求曲线切线方程,解题关键是掌握根据导数求切线的方法,考查了分析能力和计算能力,属于中档题.12.B解析:B 【分析】首先根据题中条件,可以判断出直线MN 与圆O 有公共点即可,从而可以断定圆心O 到直线MN 的距离小于等于半径,列出对应的不等关系式,求得结果. 【详解】依题意,直线MN 与圆O 有公共点即可, 即圆心O 到直线MN 的距离小于等于1即可,过O 作OA ⊥MN ,垂足为A , 在Rt OMA ∆中,因为OMA ∠045=, 故02sin 452OA OM ==1≤, 所以2OM ≤2012x +≤,解得011x -≤≤.故选:B. 【点睛】该题考查的是有关直线与圆的问题,涉及到的知识点有直线与圆的位置关系,解直角三角形,属于简单题目.二、填空题13.【分析】由题意可知直线的斜率存在且不为零可设直线的方程为求出点的坐标结合已知条件可求得的取值范围并求出的面积关于的表达式利用基本不等式可求得面积的最小值及其对应的值由此可求得直线的方程【详解】由题意 解析:480x y +-=【分析】由题意可知,直线l 的斜率存在且不为零,可设直线l 的方程为()14y k x -=-,求出点A 、B 的坐标,结合已知条件可求得k 的取值范围,并求出AOB 的面积关于k 的表达式,利用基本不等式可求得AOB 面积的最小值及其对应的k 值 ,由此可求得直线l 的方程. 【详解】由题意可知,直线l 的斜率存在且不为零,可设直线l 的方程为()14y k x -=-,即14y kx k =+-. 在直线l 的方程中,令0x =,可得14y k =-;令0y =,可得41k x k-=. 即点41,0k A k -⎛⎫⎪⎝⎭、()0,14B k -,由题意可得410140k k k -⎧>⎪⎨⎪->⎩,解得0k <, AOB 的面积为()1411111481688222AOBk S k k k k ⎛-⎛⎫=⨯⨯-=--≥+= ⎪ ⎝⎭⎝△,当且仅当()1160k k k-=-<时,即当14k =-时,等号成立,所以,直线l 的方程为()1144y x -=--,即480x y +-=. 故答案为:480x y +-=. 【点睛】关键点点睛:解本题的关键在于以下两点: (1)将三角形的面积利用k 加以表示;(2)在求解最值时,可充分利用基本不等式、导数、函数的单调性等知识来求解.14.相交【分析】由圆的标准方程求出圆心和半径根据圆心到直线的距离与半径的大小关系确定出直线与圆的位置关系【详解】解:圆的圆心坐标为半径则圆心到直线的距离直线与圆的位置关系是相交故答案为:相交【点睛】方法解析:相交 【分析】由圆的标准方程求出圆心和半径,根据圆心到直线的距离与半径的大小关系,确定出直线与圆的位置关系 【详解】解:圆()2215x y +-=的圆心坐标为(0,1),半径r =则圆心到直线360x y +-=的距离d =< ∴直线360x y +-=与圆()2215x y +-=的位置关系是相交.故答案为:相交. 【点睛】方法点睛:判断直线与圆的位置关系,常用圆心到直线的距离d 与圆半径r 的大小比较:(1)若d r =,则直线与圆相切; (2)若d r <,则直线与圆相交; (3)若dr ,则直线与圆相离.15.【分析】设圆的方程为代入点求得或进而得到圆的方程【详解】由题意圆过点且与两坐标轴都相切设圆的方程为将点代入圆的方程可得整理得解得或当时圆的面积较小所以圆的方程为故答案为:【点睛】求解圆的方程的两种方 解析:()()225525x y -+-=【分析】设圆的方程为222()()(0)x a y a a a -+-=>,代入点(8,1),求得5a =或13a =,进而得到圆的方程. 【详解】由题意,圆C 过点(8,1),且与两坐标轴都相切, 设圆的方程为222()()(0)x a y a a a -+-=>, 将点(8,1)代入圆的方程,可得222(8)(1)a a a -+-=, 整理得218650a a -+=,解得5a =或13a =,当5a =时,圆C 的面积较小,所以圆的方程为()()225525x y -+-=. 故答案为:()()225525x y -+-=. 【点睛】求解圆的方程的两种方法:几何法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程; 待定系数法:①根据题意,选择标准方程与一般方程; ②根据条件列出关于,,a b r 或,,D E F 的方程组; ③解出,,a b r 或,,D E F 的值,代入标准方程或一般方程.16.【分析】将问题转化为以为圆心2为半径的圆为圆与圆相交问题再根据圆与圆的位置关系求解即可【详解】解:根据题意设以为圆心2为半径的圆为圆所以圆圆心为半径为则两圆圆心距为:因为圆上存在两点到的距离为2所以 解析:(3,7)【分析】将问题转化为以(3,4)A -为圆心,2为半径的圆为圆A 与圆O 相交问题,再根据圆与圆的位置关系求解即可. 【详解】解:根据题意设以(3,4)A -为圆心,2为半径的圆为圆A , 所以圆222:(0),O x y r r +=> 圆心为(0,0),O 半径为r , 则两圆圆心距为 : ||5OA = , 因为圆O 上存在两点到A 的距离为2,所以圆O 与圆A 相交,所以252,r r -<<+ 解得 :37.r << 所以的取值范围是:(3,7). 故答案为:(3,7). 【点睛】圆与圆位置关系问题的解题策略:(1)判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法;(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.17.【分析】转化条件为直线过结合垂径定理可得当直线与直线垂直时弦长最小即可得解【详解】直线可变为由可得所以直线过定点又圆的圆心为半径所以点在圆内所以当直线与直线垂直时弦长最小此时弦长为故答案为:【点睛】解析:【分析】转化条件为直线过()3,2A -,结合垂径定理可得当直线AO 与直线()130m x my m ++++=垂直时,弦长最小,即可得解.【详解】直线()130m x my m ++++=可变为()130x y m x ++++=,由1030x y x ++=⎧⎨+=⎩可得32x y =-⎧⎨=⎩,所以直线()130m x my m ++++=过定点()3,2A -, 又圆2225x y +=的圆心为()0,0O ,半径=5r ,所以213AO =,点()3,2A -在圆内,所以当直线AO 与直线()130m x my m ++++=垂直时,弦长最小,此时弦长为==.故答案为: 【点睛】关键点点睛:解决本题的关键是找到直线经过的定点,再利用几何法转化出弦长.18.【分析】根据题意得当的长度最小时取最小值进而根据几何关系求解即可【详解】如图由题可知圆C 的圆心为半径要使的长度最小即要最小则最小因为所以当最小时最小因为所以当最小时最小因为所以所以由于所以故答案为:【分析】根据题意得当||MN 的长度最小时,||PC 取最小值,进而根据几何关系求解即可. 【详解】如图,由题可知圆C 的圆心为(2,0)C ,半径2r.要使||MN 的长度最小,即要MCN ∠最小,则MCP ∠最小. 因为||||tan 2PM PM MCP r ∠==, 所以当||PM 最小时,||MN 最小因为2||4PM PC =-∣, 所以当||PC 最小时,||MN 最小. 因为min ||3211PC ==+, 所以2cos 332MCP ∠==, 所以7sin 3MCP ∠=, 由于1in 2s 2MCP MN∠=所以min 47||MN =. 47. 【点睛】本题解题的关键是根据已知当||MN 的长度最小,即要MCN ∠最小,进而得当||PC 最小时,||MN 最小.由于||PC 的最小值为C 点到直线40x y -+=,故min ||32PC =.考查化归转化思想和运算能力,是中档题.19.或【分析】由曲线变形为画出的图象当直线经过时直线与曲线有两个公共点求出此时的以及直线过时的值再求出当直线与曲线相切时的的值数形结合即可得b 的范围【详解】由曲线变形为画出的图象①当直线经过时直线与曲线解析:22b -≤<或22b = 【分析】 由曲线24y x =-变形为()2204y x y +=≥,画出 y x b =+,()2204y x y +=≥的图 象,当直线经过()2,0A - ,()0,2B 时,直线与曲线有两个公共点,求出此时的b ,以及直线y x b =+过(2,0)C 时b 的值,再求出当直线与曲线相切时的b 的值,数形结合即可得b 的范围. 【详解】 由曲线24y x =-变形为()2204y x y +=≥,画出 y x b =+,()2204y x y +=≥的图象,①当直线经过()2,0A - ,()0,2B 时,直线与曲线有两个公共点,此时2b =, 当直线y x b =+过(2,0)C 时02b =+,得2b =-, 所以若直线与曲线有1个公共点,则22b -≤<. ②当直线与曲线相切时,联立224y x bx y =+⎧⎨+=⎩ ,化为222240x bx b ++-=, 令2248(4)0b b ∆=--=,解得:22b =,或22b =-(舍去), 综上所述b 的范围: 22b -≤<或22b =. 故答案为:22b -≤<或22b =.【点睛】本题主要考查了直线与圆相交相切问题、采用数形结合思想,属于中档题.20.2【分析】根据两点间的距离公式的几何意义可知表示点到点的距离点在直线上点在曲线上通过平移法设曲线的切线方程联立切线方程和曲线方程通过求出可求出切线方程最后利用两平行线间的距离公式求出两平行直线与的距【分析】(),a a 到点1,b b ⎛⎫- ⎪⎝⎭的距离,点(),a a 在直线y x =上,点1,b b ⎛⎫- ⎪⎝⎭在曲线1y x =-上,通过平移法,设曲线1y x=-的切线方程y x m =+,联立切线方程和曲线方程,通过0∆=求出m ,可求出切线方程,最后利用两平行线间的距离公式,求出两平行直线0x y -=与20x y -+=的距. 【详解】表示点(),a a 到点1,b b ⎛⎫- ⎪⎝⎭的距离, 而点(),a a 在直线y x =上,点1,b b ⎛⎫- ⎪⎝⎭在曲线1y x=-上, 将直线y x =平移到与曲线1y x=-相切,设切线为y x m =+,切线方程和曲线方程联立,即1y x my x =+⎧⎪⎨=-⎪⎩,得210x mx ++=,则240m ∆=-=,解得:2m =±,当2m =时,切线方程为:2y x =+,即20x y -+=, 所以两平行直线0x y -=与20x y -+=的距离为:d ==,所以()221a b a b ⎛⎫-++ ⎪⎝⎭的最小值为2. 故答案为:2. 【点睛】本题考查利用两点间距离的几何意义求最值,考查两点间的距离公式以及两平行线间的距离公式的应用,还涉及两平行线的斜率关系和一元二次方程根的判别式,考查转化思想和三、解答题21.(1)()()224225x y -++=;(2)2200x y --=. 【分析】(1)联立线段AB 的垂直平分线所在的方程与圆心所在直线方程,可得圆心坐标,进而求出圆的半径以及圆M 的标准方程;(2)设出直线l 的方程,由CD =2OA 可得弦长,利用点到直线的距离公式结合勾股定理列出方程,可得直线l 的方程. 【详解】(1)由题意可解得线段AB 的垂直平分线所在的方程为:y +2=34(x -4),即354y x =-,因为圆心在直线x +y -2=0上,且圆M 过点A (1,2),B (7,-6),则圆心为直线354y x =-与直线x +y -2=0的交点,联立20354x y y x +-=⎧⎪⎨=-⎪⎩,解得42x y =⎧⎨=-⎩,即圆心M 为(4,-2),半径为MA5=,所以圆M 的标准方程为()()224225x y -++=.(2)由直线l 平行于OA ,可设直线l 的方程为:20y x m m =+≠,,则圆心M 到直线l的距离为d ==CD =2OA =2525d +=,所以d ==,则解得m =-20或m =0(舍去),则直线l 的方程为2200x y --=. 【点睛】关键点点睛:本题考查圆的标准方程,考查圆的性质,解决本题的关键点是由已知求出弦长CD ,利用圆的弦长的一半,圆心到直线的距离和圆的半径构造直角三角形,结合勾股定理计算出参数的值,进而可得直线的方程,考查了学生计算能力,属于中档题. 22.3270x y +-=或460x y +-=. 【分析】根据题意求出交点坐标,由M ,N 到l 的距离相等,可判断直线有两种情况:①直线l 经过线段MN 的中点;②直线//l MN ,分别求解两种情况下的直线方程即可. 【详解】 联立10240x y x y -+=⎧⎨+-=⎩得12x y =⎧⎨=⎩,所以直线10x y -+=与直线240x y +-=的交点为()1,2P ,由M ,N 到l 的距离相等,知直线l 经过线段MN 的中点,或者直线//l MN ,线段MN 的中点为()3,1Q -,35424MN k +==--, ∴过点P ,Q 的直线l 的方程为3270x y +-=,∴过点P 与直线MN 平行的直线l 的方程为460x y +-=, 综上,直线l 的方程为3270x y +-=或460x y +-=. 【点睛】本题考查直线方程的求法,考查两直线交点等基础知识,两个点到直线的距离相等,可以分为两种情况:①直线l 经过线段MN 的中点;②直线//l MN ;当MN 的中点()3,1Q -在直线l 上时,计算出斜率PQ k ,利用点斜式即可得出直线l 的方程;当//MN l时,计算出斜率MN k ,再根据斜率相等,利用点斜式即可得出直线l 的方程.23.(1)x +y +5=0,(x -1)2+(y -2)2=9;(2))3,⎡+∞⎣. 【分析】(1)求出AB 的斜率,利用点斜式可得直线l 的方程,求出AB 的中垂线的方程,结合圆心在直线2y x =上可得圆心坐标,求出半径后可得所求的圆的方程. (2)求出圆心到直线l 的距离后可得|MN |的取值范围. 【详解】(1)∵1AB k =-, 直线l:y +2=-(x +3),即l:x +y +5=0,AB 的中点为57,22⎛⎫⎪⎝⎭,故AB 的中垂线方程为57122y x x =-+=+,由21y x y x =⎧⎨=+⎩解得12x y =⎧⎨=⎩,∴圆心C (1,2),半径3r CA ===, ∴圆C 的方程为:(x -1)2+(y -2)2=9.(2) ∵圆心C 到直线l 的距离为3d ==>,∴直线l 与圆C 相离,∴|MN |的最小值为3-,无最大值,∴|MN |的取值范围为)3,⎡+∞⎣. 【点睛】 方法点睛:(1)求圆的方程,关键是确定圆心坐标和圆的半径,前者的确定需要利用一些几何性质,如果圆心在弦的中垂线上,也在过切点且垂直于切线的直线上.(2)直线与圆的位置关系中的最值问题,往往转化为圆心到几何对象的距离问题. 24.(1)22(1)(2)2x y -++=;(2)0x =或34y x =-.【分析】(1)根据题意设圆心坐标为(,2)a a -,进而得222222(2)(12)(0)(32)a a r a a r ⎧-+-+=⎨-+-+=⎩,解得1,a r ==,故圆的方程为22(1)(2)2x y -++=(2)分直线l 的斜率存在和不存在两种情况讨论求解即可. 【详解】(1)圆C 的圆心在直线2y x =-上,设所求圆心坐标为(,2)a a - ∵ 过点(2,1),(0,3)--,222222(2)(12)(0)(32)a a r a a r ⎧-+-+=∴⎨-+-+=⎩解得1,a r ==∴ 所求圆的方程为22(1)(2)2x y -++= (2)直线l 经过原点,并且被圆C 截得的弦长为2 ①当直线l 的斜率不存在时,直线l 的方程为0x =, 此时直线l 被圆C 截得的弦长为2,满足条件; ②当直线l 的斜率存在时,设直线l 的方程为y kx =,由于直线l 被圆C 截得的弦长为2,故圆心到直线l 的距离为1d = 故由点到直线的距离公式得:1d ==解得34k =-,所以直线l 的方程为34y x =- 综上所述,则直线l 的方程为0x =或34y x =- 【点睛】易错点点睛:本题第二问在解题的过程中要注意直线斜率不存在情况的讨论,即分直线l 的斜率存在和不存在两种,避免在解题的过程中忽视斜率不存在的情况致错,考查运算求解能力与分类讨论思想,是中档题.25.(1;(2)⎡⎢⎣⎦. 【分析】(1)求出圆的圆心与半径,利用点到直线的距离公式求出圆心到直线的距离d ,由||AB =.(2)利用+1yx 表示圆上的点与原点构成直线的斜率即可求解. 【详解】(1)()222243021x y x x y +-+=⇒-+=,所以圆心为()2,0,半径1r =,则圆心到直线:10l x y +-=的距离:2d ==,所以||AB ===(2)+1yx 表示圆上的点(),x y 与()1,0-构成直线的斜率,当直线与圆相切时取得最值,设(1),1+1yk y k x x ==-=,,可得2291k k =+,218k =,k =±+1y x的取值范围为44⎡-⎢⎣⎦.【点睛】关键点睛:解题的关键在于利用几何法求弦长以及利用两点求斜率的计算公式得到+1yx 的取值范围26.(1)320x y ++=;(2)22(2)8x y -+=;(3)20x y -+=或20x y ++=. 【分析】(1)求出直线AC 的斜率后可得直线AC 的方程.(2)求出点A 的坐标,结合圆心坐标可求圆的半径,从而可得圆的方程. (3)利用点到直线的距离为半径可求切线的斜率,从而可得所求的切线的方程. 【详解】 (1)0AT AB ⋅=,AT AB ∴⊥,又T 在AC 上,AC AB ∴⊥,ABC ∴为Rt ABC ∆,又AB 边所在直线的方程为360x y --=,∴直线AC 的斜率为3-, 又点()1,1T -在直线AC 上,AC ∴边所在直线的方程为13(1)y x -=-+,即320x y ++=.(2)AC 与AB 的交点为A ,∴由360320x y x y --=⎧⎨++=⎩解得点A 的坐标为()0,2-,BM MC =,()2,0M ∴为Rt ABC 斜边上的中点,即为Rt ABC 外接圆的圆心,又||r AM === 从而ABC 外接圆的方程为22(2)8x y -+=. (3)设切线方程为(2)y k x =+=,解得1k =或1-.所以切线方程为20x y -+=或20x y ++=.【点睛】思路点睛:(1)确定直线的方程往往需要两个独立的条件,比如直线所过的两个不同点,或直线所过的一个点和直线的斜率;(2)确定圆的方程,关键是圆心坐标和半径的确定;(2)直线与圆的位置关系,往往通过圆心到直线的距离与半径的大小关系来判断.。

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

直线与圆的方程综合复习(含答案)一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是( C ) A 3B 6C 23D 562.已知过点A(-2,m)和B (m,4)的直线与直线2x+y-1=0平行,则m 的值为( C ) A 0 B 2 C -8 D 103.若直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于( D )A -1或2B 23C 2D -14.若点A (2,-3)是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 (a 1,b 1)和(a 2,b 2)所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=05.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m=12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2y)-3=0相互垂直”的( B )A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B (-5,6),则直线L 的方程为(B ) A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).若直线2l 经过点(0,5)且1l 2l ,则直线2l 的方程为( B )A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为( A )A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是(A )A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( C )A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为(D ), A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )A B 4 C 8 D 914.若直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为( B )A 1B -1C 3D -315.若直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba11+的最小值是( C )A.41B.2C.4D.2116.若直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 ( A )A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,17.设两圆1C ,2C 都和两坐标轴相切,且过点(4,1),则两圆心的距离 ︱1C 2C ︱等于( C )A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 ( C ) A.2B.5C.3D.3519.若直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211ba +≤1 D.2211ba +≥120.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为( B ) A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x+2(2)y =4相交于M 、N 两点,若︱MN ︱≥23,则k 的取值范围是( A )A [-34,0] B [-∞,-34] [0,∞) C [-33,33] D [-23,0] 22.(广东理科2)已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则AB 的元素个数为(C )A .0B .1C .2D .3 23.(江西理科9)若曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

直线与圆的方程综合复习〔含答案〕一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是〔 C 〕 A 3B 6C 23D 562.已知过点A(-2,m)和B 〔m,4〕的直线与直线2x+y-1=0平行,则m 的值为〔 C 〕 A 0 B 2 C -8 D 103.假设直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于〔 D 〕A -1或2 B23C 2D -1 4.假设点A 〔2,-3〕是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 〔a 1,b 1〕和〔a 2,b 2〕所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=0 5.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m= 12〞是“直线〔m+2〕x+3my+1=0与直线〔m-2〕x+(m+2y)-3=0相互垂直〞的〔 B 〕A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B 〔-5,6〕,则直线L 的方程为〔B 〕 A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).假设直线2l 经过点〔0,5〕且1l 2l ,则直线2l 的方程为〔 B 〕A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为〔 A 〕A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是〔A 〕A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是〔 C 〕A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为〔D 〕, A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于〔 B 〕A B 4 C 8 D 914.假设直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为〔 B 〕A 1B -1C 3D -315.假设直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba 11+的最小值是〔 C 〕 A.41B.2C.4D.2116.假设直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 〔 A 〕A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,0 17.设两圆1C ,2C 都和两坐标轴相切,且过点〔4,1〕,则两圆心的距离 ︱1C 2C ︱等于〔 C 〕A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 〔 C 〕 A.2B.5C.3D.3519.假设直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211b a +≤1 D.2211b a +≥120.已知A 〔-3,8〕和B 〔2,2〕,在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为〔 B 〕A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x +2(2)y =4相交于M 、N 两点,假设︱MN ︱≥23,则k 的取值范围是〔 A 〕A [-34,0] B [-∞,-34] [0,∞〕 C [-33,33] D [-23,0] 22.〔X 理科2〕已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则A B 的元素个数为〔 C 〕A .0B .1C .2D .3 23.〔X 理科9〕假设曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以了解,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。

2022版新教材高中数学第二章直线和圆的方程2

2022版新教材高中数学第二章直线和圆的方程2

直线的一般式方程基础过关练题组一求直线的一般式方程1.(2021江西临川二中高二上第一次月考)已知直线l过点(0,3),且与直线x-y-1=0平行,则l的方程是()A.x+y-2=0B.x-y+2=0C.x+y-3=0D.x-y+3=02.过点A(2,3)且垂直于直线2x+y-5=0的直线方程为()A.x-2y+4=0B.2x+y-7=0C.x-2y+3=0D.x-2y+5=03.在平面直角坐标系中,直线2x-y-2=0绕它与y轴的交点A按逆时针方向旋转90°所得的直线方程是()A.x-2y+4=0B.x+2y-4=0C.x-2y-4=0D.x+2y+4=04.已知直线l经过点P(2,3),且斜率为-32.(1)求直线l的一般式方程;(2)求与直线l平行,且过点(-3,1)的直线的一般式方程;(3)求与直线l垂直,且过点(-3,1)的直线的一般式方程.题组二直线方程几种形式的相互转化5.(2021重庆八中高二上月考)直线√3x+y+1=0的倾斜角为()A.π6B.π3C.2π3D.−π36.(2020湖北宜昌高二上期末)直线3x+2y+6=0在y轴上的截距为b,则b= ()A.3B.-2C.2D.-37.已知直线kx-y+1-3k=0,当k变化时,所有直线都恒过点()A.(0,0)B.(0,1)C.(3,1)D.(2,1)8.若ac<0,bc<0,则直线ax+by+c=0的图形可能是()9.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是()A.12aa B.12|aa|C.12aaD.12|aa|题组三直线一般式方程的综合应用10.(2020北京清华大学附中高二上期中)若直线ax+2y-1=0与x-2y-1=0垂直,则a的值为()A.1B.-1C.4D.-411.(2021河北保定唐县一中高二上月考)若直线x+(1+m)y-2=0和直线mx+2y+4=0平行,则m的值为()A.1B.-2C.1或-2D.-2312.(2020浙江温州高二上期末)已知直线l:(m2+1)x-2y+1=0(m为常数),若直线l的斜率为12,则m=,若m=-1,则直线l的倾斜角为.13.如图,某地长途汽车客运公司规定旅客可随身携带一定质量的行李,如果超过规定,则需要购买行李票,行李票费用y(元)与行李质量x(千克)的关系用直线AB的方程表示.(1)求直线AB的方程;(2)问旅客最多可免费携带多少千克的行李?能力提升练题组一求直线的一般式方程1.()已知直线a1x+b1y+1=0和直线a2x+b2y+1=0都过点A(2,1),则过点P1(a1,b1)和点P2(a2,b2)的直线方程是()A.2x+y+1=0B.2x-y+1=0C.2x+y-1=0D.x+2y+1=02.()已知过点M(2,1)的直线与x轴、y轴分别交于P,Q两点.若M为线段PQ的中点,则这条直线的方程为()A.2x-y-3=0B.2x+y-5=0C.x+2y-4=0D.x-2y+3=03.()已知点A(0,1),点B在直线l:x+y=0上运动,则当线段AB最短时,直线AB的一般式方程为.4.(2021山东济宁实验中学高二月考,)直线l过点(4,1)且与x轴、y轴的正半轴分别交于A、B两点,O为坐标原点,则△AOB面积的最小值为,当△AOB面积取最小值时,直线l的一般式方程是.5.(2021山东枣庄八中高二上月考,)求适合下列条件的直线方程:(1)经过点A(2,-3),并且其倾斜角等于直线x-√3y+1=0的倾斜角的2倍的直线方程;(2)经过点A(-2,2)并且和两个坐标轴围成的三角形的面积是1的直线方程.题组二直线一般式方程的应用6.(2020湖北武汉华中师大一附中高二上期中,)“m=1”是“直线(m+4)x+3my+1=0与(m-4)x+(m+4)y-5=0垂直”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件7.(2020安徽安庆一中高二上月考,)设A(-2,2),B(1,1),若直线l:ax+y+1=0与线段AB有交点,则a的取值范围是()A.(-∞,-32]∪[2,+∞) B.[-32,2]C.(-∞,-2]∪[32,+∞)D.[-2,32]8.(多选)(2021山东新泰中学高二上月考,)已知直线l:(a2+a+1)x-y+1=0,其中a∈R,下列说法正确的是()A.当a=-1时,直线l与直线x+y=0垂直B.若直线l与直线x-y=0平行,则a=0C.直线l过定点(0,1)D.当a=0时,直线l在两坐标轴上的截距相等9.()直线x sinα+y+2=0(α∈R)的倾斜角的取值范围是.的直10.(2020辽宁六校协作体高二上期中,)直线l:mx+y-1-m=0过定点,过此定点,且倾斜角为π2线方程为.11.()已知直线l1:x+3y-5=0,l2:3kx-y+1=0.若l1,l2与两坐标轴围成的四边形有一个外接圆,则k=.12.(2020湖北宜昌高二上期末,)(1)已知直线l1:2x+7y+4=0与直线l2:mx+3y-2=0平行,求m的值;(2)已知直线l1:(a+2)x+(1-a)y-1=0与直线l2:(a-1)x+(2a+3)y+2=0互相垂直,求a的值.深度解析答案全解全析基础过关练1.D设直线l的方程为x-y+c=0(c≠-1),由点(0,3)在直线x-y+c=0上得0-3+c=0,解得c=3,因此直线l的方程为x-y+3=0,故选D.2.A设垂直于直线2x+y-5=0的直线方程为x-2y+c=0,由点(2,3)在直线x-2y+c=0上,得2-6+c=0,解得c=4, 因此所求的直线方程为x-2y+4=0,故选A.3.D直线2x-y-2=0与y轴的交点为A(0,-2),∵直线2x-y-2=0的斜率为2,,∴所求直线的斜率为-12x,即x+2y+4=0,故选D.∴所求直线的方程为y+2=-12(x-2),即3x+2y-12=0.4.解析(1)由题意知直线l的方程为y-3=-32(2)设所求直线的方程为3x +2y +m =0(m ≠-12),因为所求直线过点(-3,1),所以-9+2+m =0,解得m =7,故所求直线的一般式方程为3x +2y +7=0.(3)设所求直线的方程为2x -3y +n =0,因为所求直线过点(-3,1),所以-6-3+n =0,解得n =9,故所求直线的一般式方程为2x -3y +9=0.5.C 将直线的方程√3a +a +1=0化为斜截式,得a =−√3x -1, 因此直线的斜率k =-√3,设直线的倾斜角为a ,则tan a =−√3, 因为α∈[0,π),所以α=2π3,即倾斜角为2π3,故选C .6.D 将直线的方程3x +2y +6=0化为截距式,得a-2+a-3=1,所以b =-3,故选D .7.C 将直线方程kx -y +1-3k =0化为点斜式方程为y -1=k (x -3),所以直线过定点(3,1).8.C 由题意知,直线方程可化为y =-a a a −a a ,∵aa <0,aa <0,∴aa >0,−a a >0,∴−aa <0,故直线的斜率小于0,在y 轴上的截距大于0.故选C . 9.D 将方程化为截距式为a 1a+a1a=1,∴三角形的面积S =12|1a||1a |=12|aa |.10.C 因为直线ax +2y -1=0与x -2y -1=0垂直,所以a -4=0,解得a =4.故选C . 11.A 由直线x +(1+m )y -2=0和直线mx +2y +4=0平行, 得{1×2=a (1+a ),a ≠-2,解得m =1.故选A . 12.答案 0;45° 解析 由题得-a 2+1-2=12,∴m =0.若m =-1,则直线的斜率k =-2-2=1,所以直线的倾斜角为45°.13.信息提取 ①行李票费用y (元)与行李质量x (千克)呈线性关系;②由图中标出的坐标知A (60,6),B (80,10);③A ,B 两点在直线上.数学建模 以行李票费用y (元)与行李质量x (千克)的关系为背景构建直线方程. 解析 (1)由题图知点A (60,6),B (80,10).由直线方程的两点式得a -6080-60=a -610-6,整理得x -5y -30=0.(2)依题意,令y =0,解得x =30,即旅客最多可免费携带30千克的行李.能力提升练1.A 因为点A (2,1)在直线a 1x +b 1y +1=0上,所以2a 1+b 1+1=0,由此可知点P 1(a 1,b 1)在直线2x +y +1=0上.因为点A (2,1)在直线a 2x +b 2y +1=0上,所以2a 2+b 2+1=0,由此可知点P 2(a 2,b 2)在直线2x +y +1=0上.所以过点P 1(a 1,b 1)和点P 2(a 2,b 2)的直线方程是2x +y +1=0.2.C 设所求直线的方程为y -1=k (x -2).令x =0,得y =1-2k ,所以Q 点坐标为(0,1-2k ),又因为M 为线段PQ 的中点,P 点纵坐标为0,所以根据中点坐标公式得0+(1-2a )2=1,解得a =−12,故所求直线的方程为x +2y -4=0.3.答案 x -y +1=0解析 当线段AB 最短时,AB ⊥l ,所以k AB =1.所以直线AB 的方程为y =x +1,化为一般式方程为x -y +1=0. 4.答案 8;x +4y -8=0解析 设直线l 的方程为a a +a a=1(a >0,b >0). 由点(4,1)在直线上知4a +1a =1. ∵a >0,b >0, ∴1=4a+1a≥2√4a·1a=√aa当且仅当4a=1a,即a =8,b =2时取等号.从而√aa ≥4,即ab ≥16, ∴S △AOB =12ab ≥8,∴△AOB 面积的最小值为8,此时直线l 的方程为a 8+a2=1,即x +4y -8=0. 5.解析 (1)直线x -√3a +1=0的斜率为√33,所以其倾斜角为30°, 所以所求直线的倾斜角为60°, 故所求直线的斜率为√3,又所求直线经过点A (2,-3),所以其方程为y +3=√3(a −2),即√3a −a −3−2√3=0. (2)设直线方程为a a +aa =1,则{12|aa |=1,-2a+2a =1,解得{a =2,a =1或{a =-1,a =-2.故所求的直线方程为x +2y -2=0或2x +y +2=0.6.B 两直线垂直⇔(m +4)(m -4)+3m (m +4)=0⇔(m +4)(m -1)=0⇔m =1或m =-4. ∵{1}⫋{1,-4},∴“m =1”是“直线(m +4)x +3my +1=0与(m -4)x +(m +4)y -5=0垂直”的充分不必要条件,故选B . 7.C 由ax +y +1=0得,y =-ax -1,因此直线l 过定点P (0,-1),若直线l 斜率存在,则斜率k =-a.如图所示,当直线l 由直线PA 按顺时针方向旋转到直线PB 的位置时,符合题意.易得k PB =1-(-1)1-0=2,aaa =2-(-1)-2-0=−32.结合图形知,-a ≥2或-a ≤-32,解得a ≤-2或a ≥32.故选C .8.AC 对于A 项,当a =-1时,直线l 的方程为x -y +1=0,显然与x +y =0垂直,所以正确; 对于B 项,若直线l 与直线x -y =0平行,则(a 2+a +1)·(-1)=1×(-1), 解得a =0或a =-1,所以不正确;对于C 项,当x =0时,y =1,所以直线过定点(0,1),所以正确;对于D 项,当a =0时,直线l 的方程为x -y +1=0,在x 轴,y 轴上的截距分别是-1,1,所以不正确.故选AC . 9.答案 [0,π4]∪[3π4,π)解析 直线x sin α+y +2=0的斜率k =-sin α,∵-1≤sin α≤1,∴-1≤k ≤1, ∴直线的倾斜角的取值范围是[0,π4]∪[3π4,π).10.答案 (1,1);x =1解析 直线l 的方程可化为m (x -1)+(y -1)=0, 令{a -1=0,a -1=0,得{a =1,a =1.故直线l 过定点(1,1).当倾斜角为π2时,直线垂直于x 轴,所以其方程为x =1. 11.答案 ±1解析 如图所示,直线l 1:x +3y -5=0分别交x 轴,y 轴于A ,B 两点,直线l 2:3kx -y +1=0过定点C (0,1). 由点C 在线段OB 上知l 2⊥l 1或l 2与x 轴交于D 点,且∠BCD +∠BAD =180°.①由l 1⊥l 2知,1×3k +3×(-1)=0,解得k =1. ②由∠BCD +∠BAD =180°得,∠BAD =∠OCD.设直线l1的倾斜角为α1,l2的倾斜角为α2,则α1=180°-∠BAD,α2=90°+∠OCD, ∴α1=180°-∠BAD=180°-∠OCD=180°-(α2-90°)⇒α1=270°-α2⇒tanα1=tan(270°-α2)=tan(90°-α2)=sin(90°-a2)cos(90°-a2)=cos a2sin a2=1tan a2⇒tanα1·tanα2=1,∴-13×3k=1⇒k=-1.综上所述,k的值为±1.12.解析(1)直线方程可化为l1:y=-27a−47,a2:a=−a3a+23.依题意得,-a3=−27,解得a=67.(2)∵l1⊥l2,∴(a+2)(a-1)+(1-a)(2a+3)=0,解得a=±1.将a=±1代入方程,均满足题意.故当a=1或a=-1时,直线l1⊥l2.方法技巧已知直线的一般式方程,如果含参数的直线不能判断斜率存在,直接利用一般式的结论解决问题可以避免分类讨论.。

高教版数学基础模块(下册)第6章《直线与圆的方程》练习题、习题及复习题

高教版数学基础模块(下册)第6章《直线与圆的方程》练习题、习题及复习题

高教版数学基础模块(下册)第6章《直线与圆的方程》练习题、习题及复习题练习6.11.如图6-7所示,写出点M、N、P、Q的坐标.2求下列两点间的距离和以两点为端点的线段的中点坐标.(1)A(-1,0),B(2,3):(2)C(4,3),D(7.-1):(3)P(0,3),Q(0,-2)3.如图6-8所示,已知△ABC的三个顶点分别是A(2,2),B(2.0)、C(0,2).(1)求BC边上的中点D的坐标;(2)计算BC边上中线AD的长度.4.已知点A(3a,3b),B(3b,3a),求A,B两点间的距离和线段AB的中点坐标.6.1A知识巩固1.填空题.(1)已知点A(-1,-7)、B(3,-1),则|AB|= .(2)已知点A-2,2)、B(2,-1)、C(-1,-3),则|AB|= ,|BC|= ,|AC|= .(3)已知点A(-2,3)、B(4,-5),则线是AB时中点坐标为 .(4)已知点A(2.-1)、B(-5,4),则|AB|= ,线段AB的中点坐标为 .2求x轴上一点P,使点P与点A(2,-5)的距离等于8.3.已知点P(a,b),Q (-a,b),求P,Q两点间的距离和线段PQ中点的坐标.4.已知点P1(−4,−5),线段P1P2的中点坐标是P(1,-2),求线段端P2点的坐标.5.已知点A(0,2)、B(1,1)、C(2,2),判断△ABC是否为直角三角形,并说出的你的理由。

B能力提升1,已知点P(m,4)、Q(2,n)、R(0,-2),且点Q是线段PR的中点,求m与n的值.2.已知点A(2,1)与点B关于点M(-1,3)对称,点B的坐标.3.已知等边△ABC的两个顶点为A(2,0)、B(-2,0),求顶点C的坐标.4.已知△ABC的三边AB,BC、CA的中点坐标分别为(2.4),(-3.1)、(1,2),求△ABC三个顶点的坐标.C学以致用在平面直角坐标系中画出A(4,5)、B(0,2)、C(-4,-1)三个点,并求证这三点共线。

直线和圆的方程的典型例题

直线和圆的方程的典型例题

问题,利用数形结合法求最值.
[例5]已知直线l:y=k(x-a)及圆O:x2+y2=r2(a>r>0),直线l与圆O
相交于A、B两点,求当k变动时,弦AB的中点的轨迹方程.
【解法一】设轨迹上任一点为M(x,y),A(x1,y1),B(x2,y2).
由得(1+k2)x2-2ak2x+a2k2-r2=0,
(4+2sinθ)2=60+32sinθ+24cosθ=60+40sin(θ+).(其中tan=), 当sin(θ+)=-1时, (|AP|2+|BP|2)min=20, 此时60+24cosθ+32sinθ=20,即3cosθ+4sinθ=-5. 由得
∴P点的坐标为(). 【解法二】设P点的坐标为(x,y). ∵A(-1,0)、B(1,0), ∴|AP|2+|BP|2=(x+1)2+y2+(x-1)2+y2=2(x2+y2)+2=2|OP|2+2. 要使|AP|2+|BP|2取得最小值,需使|OP|2最小. 又点P为圆C:(x-3)2+(y-4)2=4上的点, ∴(|OP|)min=|OC|-r(r为半径). 由(x-3)2+(y-4)2=4知:C(3,4),r=2. ∴|OC|-r=-2=5-2=3, 即(|OP|)min=3,∴(|AP|2+|BP|2)min=2×32+2=20. 此时,OC:y=x 由得 或 (舍) ∴点P的坐标为(). 【点评】解法一是利用了圆的参数方程的形式设出了点P的坐标, 使所求的式子转化为三角函数式,利用三角函数法求最值;解法二设出 的是P点的普通坐标(x,y),使要求的式子转化为求圆上的点到坐标满足(x-)2+y2=.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆的方程综合题、典型题
例题:已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线l ,使l 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线l 的方程,若不存在说明理由。

解析:故这样的直线l 是存在的,方程为x -y -4=0 或x -y +1=0
题:已知圆4)4()3(:2
2
=-+-y x C ,直线1l 过定点)0,1(A 。

(1)若1l 与圆相切,求1l 的方程;
(2)若1l 与圆相交于Q 、P 丙点,线段PQ 的中点为M ,又1l 与022:2=++y x l 的交点为N ,判断AN AM ∙是否为定值,若是,则求出定值;若不是,请说明理由。

解:(1)直线方程是1=x ,0343=--y x (2) 故AN AM ⋅是定值,且为6。

例题:已知C 过点)1,1(P ,且与M :222(2)(2)(0)x y r r +++=>关于直线20x y ++=对称.
(Ⅰ)求C 的方程;
(Ⅱ)设Q 为
C 上的一个动点,求PQ MQ ⋅的最小值;
(Ⅲ)过点P 作两条相异直线分别与C 相交于B A ,,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判
断直线OP 和AB 是否平行?请说明理由.
解:(Ⅰ)22
2x y +=(Ⅱ)PQ MQ ⋅的最小值为4-(Ⅲ)直线AB 和OP 一定平行
例题:已知过点)0,1(-A 的动直线l 与圆C :4)3(22=-+y x 相交于P 、
Q 两点,M 是PQ 中点,l 与直线m :063=++y x 相交于N .
(1)求证:当l 与m 垂直时,l 必过圆心C ; (2)当32=PQ 时,求直线l 的方程;
(3)探索⋅是否与直线l 的倾斜角有关,若无关,请求出其
值;若有关,请说明理由.
解析:(1)∴当l 与m 垂直时,l 必过圆心C (2)直线l 的方程为1-=x 或0434=+-y x
(3)AN AM ⋅与直线l 的斜率无关,且5-=⋅AN AM .
例题:已知以点P 为圆心的圆经过点()1,0A -和()3,4B ,线段AB 的垂直平分线交圆P 于点C 和D
,且
||CD =(1)求直线CD 的方程;⑵求圆P 的方程;⑶设点Q 在圆P 上,试问使△QAB 的面积等于8的点Q 共有几个?证明你的结论.
解:⑴()21y x -=--即x+y-3=0 ⑵圆P 的方程为()()223640x y ++-= 或()()22
5240x y -++= ⑶ 两个点Q 使 △QAB 的面积为8
第17题
例题:已知圆22:9C x y +=,点(5,0)A -,直线:20l x y -=.⑴求与圆C 相切,且与直线l 垂直的直线方程; ⑵在直线OA 上(O 为坐标原点),存在定点B (不同于点A ),满足:对于圆C 上任一点P ,都有PB
PA
为一常数,试求所有满足
条件的点B 的坐标.
解:⑴所求直线方程为2y x =-±⑵点9(,0)5B -有PB
PA
为常数35。

例题:2009年江苏卷)在平面直角坐标系xOy 中,已知圆C 1:4)1()3(2
2
=-++y x 和圆C 2:4)5()4(2
2
=-+-y x . (Ⅰ)若直线l 过点A(4, 0),且被圆C 1截得的弦长为32,求直线l 的方程;
(Ⅱ)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂的直线l 1和l 2,它们分别与圆C 1和圆C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标. 解:(Ⅰ)直线l 的方程为y =0或7x +24y -28=0 (Ⅱ)|)4()5(||)1()3(|a k b b k a -+-=-++)21,25
(-P 或)2
13,23(-P。

相关文档
最新文档